Water expands when heated. Suppose a beaker of water is heated from 10℃ to 90℃. Does the pressure at the bottom of the beaker increase, decrease, or stay the same? Explain.

Answers

Answer 1
Final answer:

The pressure at the bottom of the beaker does increase when the water is heated from 10℃ to 90℃ due to the expansion of water and the resultant increase in height of the water column.

Explanation:

When a beaker of water is heated from 10℃ to 90℃, the pressure at the bottom of the beaker increases. This is because as water expands when heated, the water columns above each point at the bottom of the beaker become taller. Since pressure in a fluid is given by the equation P = hρg (where P is pressure, h is the height of the fluid column, ρ is the density of the fluid, and g is the acceleration due to gravity), an increase in height (due to expansion of water) leads to an increase in pressure.

Additionally, it's important to note that while the density of the water decreases slightly as the temperature increases, the effect of the increased height of the water column on pressure outweighs the effect of the reduced density.


Related Questions

The atoms in barium metal are arranged in a bodycentered cubic unit cell. Calculate the radius of a barium atom if the density of barium is 3.50 g?cm23 . Hint: Use your answer to Exercise 4.18.

Answers

The radius of a barium atom is  r = 2.19  [tex]\times[/tex] 10^-8

Explanation:

The atomic weight of barium is 137.34.

The body-centered cubic structure has two atoms per unit cell.

Therefore, the mass of Ba in a unit cell is calculated as,

                        [tex]m =[/tex]  [tex]\frac{2 \times 137.34}{6.023 \times 10^2^3}[/tex]

                       [tex]m = 4.56 \times 10^{-22} g[/tex]

              volume = mass / density

                            [tex]= \frac{4.56 \times 10^{-22} }{3.50}[/tex] 

               volume  = [tex]1.30 \times 10^{-22} cm^3[/tex]

The edge length of a cube then is the cube root of[tex]1.30 \times 10^{-22} cm^3[/tex]  or

                     [tex]a = 5.06 \times 10^{-8}[/tex]

The body diagonal is 4 x the radius and equals a  1.732,

Therefore       r = (a [tex]\times[/tex] 1.732) / 4

                           = (5.06 [tex]\times[/tex] 10^-8

                         [tex]r = 2.19 \times10^{-8}[/tex]

The radius of a barium atom is  [tex]r = 2.19 \times10^{-8}[/tex]cm.

Ethyl alcohol is produced by the fermentation of glucose, C6H12O6. C6H12O6 (s) → 2 C2H5OH (l) + 2 CO2 (g) ΔH° = – 69.1 kJ Given that the enthalpy of formation is – 277.7 kJ/mol for C2H5OH ( l) and – 393.5 kJ/mol for CO2 (g), find the enthalpy of formation for C6H12O6.

Answers

Final answer:

The enthalpy of formation for C6H12O6 in the fermentation of glucose can be calculated using Hess's Law and the enthalpies of formation of C2H5OH (l) and CO2 (g). The enthalpy of formation for C6H12O6 is -1273.5 kJ/mol.

Explanation:

The enthalpy of formation (ΔHf) for a compound is the heat released or absorbed when one mole of the compound is formed from its constituent elements in their standard states. In this case, we are given the enthalpies of formation for C2H5OH (l) and CO2 (g), and we need to calculate the enthalpy of formation for C6H12O6.

Since the balanced equation for the fermentation of glucose to produce ethyl alcohol and carbon dioxide is given, we can use Hess's Law to solve this problem. By manipulating the given equation and using the enthalpies of formation, we can determine the enthalpy of formation for C6H12O6.

Using the enthalpies of formation for C2H5OH (l) and CO2 (g), which are -277.7 kJ/mol and -393.5 kJ/mol respectively, we can calculate the enthalpy of formation for C6H12O6 to be -1273.5 kJ/mol.

Learn more about Enthalpy of formation here:

https://brainly.com/question/14563374

#SPJ3

a student is asked to prepare 75.0 ml of a 130M solution of HF using a 2.000M standard solution. Calculate the volume in mL of 2.000M HF the student needs to use

Answers

Answer:

Volume required from standard solution = 4675 mL

Explanation:

Given data:

Final volume = 75.0 mL

Final molarity = 130 M

Molarity of standard solution = 2.000 M

Volume required from standard solution = ?

Solution:

We use the formula,

C₁V₁ = C₂V₂

here,

C₁ = Molarity of standard solution

V₁ = Volume required from standard solution

C₂ = Final molarity

V₂ = Final volume

Now we will put the values in formula,

C₁V₁ = C₂V₂

2.000 M × V₁ = 130 M × 75.0 mL

V₁  = 9750 M. mL / 2.000 M

V₁  = 4675 mL

If 16g of [tex]CH_{4}[/tex] reacts with 64g of [tex]O_{2}[/tex] to produce 36g of [tex]H_{2}O[/tex], how many grams of [tex]CO_{2}[/tex] are produced?

Answers

43.56 grams of  are produced if 16g of  CH4 reacts with 64g of O2.

Explanation:

Balance equation for the reaction:

CH4 + 2O2⇒ CO2 +2H2O

Data given : mass of CH4 =16 grams  atomic mass = 16.04 grams/mole

                    mass of water 36 gram  atomic mass = 18 grams/moles

                   mass of CO2=?                atomic mass = 44.01 grams/mole

number of moles = [tex]\frac{mass}{atomic mass of one mole}[/tex]    equation 1

number of moles in CH4

   n = [tex]\frac{16}{16.04}[/tex]

       = 0.99 moles

Since combustion is done in presence of oxygen hence it is an excess reagent and methane is limiting reagent so production of CO2 depends on it.

From the equation

1 mole of CH4 gave 1 mole of CO2

O.99 moles of CH4 will give x moles of CO2

[tex]\frac{1}{1}[/tex] = [tex]\frac{x}{0.99}[/tex]

x = 0.99 moles of carbon dioxide

grams of CO2 = number of moles x atomic mass

                         = 0.99 x 44.01

                          = 43.56 grams of CO2 is produced.

How many grams of solid barium sulfate form when 30.0 mL of 0.160 M barium chloride reacts with 70.0 mL of 0.065 M sodium sulfate? Aqueous sodium chloride forms also.

Answers

Answer:

1.06g of BaSO₄ is produced

Explanation:

BaCl₂(aq) + Na₂SO₄(aq) ⇄ 2NaCl(aq) + BaSO₄(aq)

mole BaCl₂ = (0.16M × 0.030L) = 0.0048mole BaCl₂

mole Na₂SO₄ = (0.065M × 0.070L) = 0.00455mole Na₂SO₄

Amount of product BaSO₄ produce from each reagent

BaCl₂ = (0.0048 BaCl₂)  × ( 1 mol BaSO₄ / 1mol BaCl₂) × (233.3896g BaSO₄ / 1mol BaSO₄)

= 1.12g  BaSO₄

Na₂SO₄ = (0.00455 Na₂SO₄)  × ( 1 mol BaSO₄ / 1mol Na₂SO₄) × (233.3896g BaSO₄ / 1mol BaSO₄)

= 1.06g BaSO₄

Final answer:

When 30.0 mL of 0.160 M barium chloride reacts with 70.0 mL of 0.065 M sodium sulfate, 1.06 grams of solid barium sulfate are formed, with sodium sulfate being the limiting reagent.

Explanation:

To calculate the number of grams of solid barium sulfate that form when 30.0 mL of 0.160 M barium chloride reacts with 70.0 mL of 0.065 M sodium sulfate, we need to first determine which reactant is the limiting reagent. This will then allow us to calculate the amount of solid barium sulfate (BaSO₄) produced.

Step 1: Calculate Moles of Reactants

First, we calculate the moles of each reactant:

For barium chloride (BaCl₂): Moles = Volume (L) × Molarity (mol/L) = 0.030 L × 0.160 mol/L = 0.0048 molFor sodium sulfate (Na₂SO₄): Moles = Volume (L) × Molarity (mol/L) = 0.070 L × 0.065 mol/L = 0.00455 mol

Step 2: Identify the Limiting Reagent

Since the stoichiometry of the reaction between barium chloride and sodium sulfate is 1:1, the limiting reagent is sodium sulfate which has slightly fewer moles.

Step 3: Calculate the Mass of Barium Sulfate

Moles of BaSO₄ produced is equal to the moles of the limiting reagent (sodium sulfate):

Moles of BaSO₄ = 0.00455 molUsing the molar mass of BaSO₄ (233.39 g/mol), we get:Mass of BaSO₄ = Moles × Molar mass = 0.00455 mol × 233.39 g/mol = 1.06 grams

You need to make an aqueous solution of 0.207 M calcium acetate for an experiment in lab, using a 300 mL volumetric flask. How much solid calcium acetate should you add?

Answers

Answer:

We have to add 9.82 grams of calcium acetate

Explanation:

Step 1: Data given

Molarity of the calcium acetate solution = 0.207 M

Volume = 300 mL = 0.300 L

Molar mass calcium acetate = 158.17 g/mol

Step 2: Calculate moles calcium acetate

Moles calcium acetate = molarity * volume

Moles calcium acetate = 0.207 M * 0.300 L

Moles calcium acetate = 0.0621 moles

Step 3: Calculate mass calcium acetate

Mass calcium acetate = moles * molar mass

Mass calcium acetate = 0.0621 moles * 158.17 g/mol

Mass calcium acetate = 9.82 grams

We have to add 9.82 grams of calcium acetate

What is the approximate pH at the equivalence point of a weak acid-strong base titration if 25 mL of aqueous formic acid requires 29.80 mL of 0.3567 MNaOH? Ka = 1.8×10−4 for formic acid.

Answers

Answer:

pH= 0.369

Explanation:

The formic acid reacts with NaOH as

HCOOH + NaOH= HCOONa + H2O

Apply CaVa/ CbVb = Na/Nb

Ca×25/(29.8×0.3587) = 1/1

Ca= (29.8×0.3587)/25= 0.428M

pH = - log(H+)

Since only 0ne H+ is in the stoichiometric equation, it means H+ = 0.428M

pH = -log(0.428) =0.369

The approximate pH at the equivalence point of a weak acid-strong base titration is 8.35.

To find the pH at the equivalence point, we first need to determine the concentration of the formic acid solution. The balanced equation for the reaction between formic acid (HCOOH) and sodium hydroxide (NaOH) is:

[tex]\[ \text{HCOOH} + \text{NaOH} \rightarrow \text{NaCOO} + \text{H}_2\text{O} \][/tex]

Given that 25 mL of formic acid requires 29.80 mL of 0.3567 M NaOH to reach the equivalence point, we can calculate the initial moles of NaOH used:

[tex]\[ \text{moles of NaOH} = \text{volume of NaOH} \times \text{concentration of NaOH} \] \[ \text{moles of NaOH} = 0.02980 \text{ L} \times 0.3567 \text{ M} \] \[ \text{moles of NaOH} = 0.01064 \text{ mol} \][/tex]

Since the stoichiometry of the reaction is 1:1, the initial moles of formic acid are the same as the moles of NaOH used:

[tex]\[ \text{moles of HCOOH} = 0.01064 \text{ mol} \] Now, we can find the concentration of the formic acid solution: \[ \text{concentration of HCOOH} = \frac{\text{moles of HCOOH}}{\text{volume of HCOOH}} \] \[ \text{concentration of HCOOH} = \frac{0.01064 \text{ mol}}{0.025 \text{ L}} \] \[ \text{concentration of HCOOH} = 0.4256 \text{ M} \][/tex]

At the equivalence point, all of the formic acid has been neutralized, and we are left with a solution of sodium formate (NaCOO), which is the salt of a weak acid and a strong base. The concentration of the sodium formate solution at the equivalence point is the same as the initial concentration of formic acid:

[tex]\[ [\text{NaCOO}] = 0.4256 \text{ M} \][/tex]

The pH at the equivalence point is determined by the hydrolysis of the sodium formate salt. The hydrolysis reaction is:

[tex]\[ \text{NaCOO} \rightleftharpoons \text{Na}^+ + \text{HCOO}^- \] \[ \text{HCOO}^- + \text{H}_2\text{O} \rightleftharpoons \text{HCOOH} + \text{OH}^- \][/tex]

The equilibrium constant expression for the hydrolysis is:

[tex]\[ K_b = \frac{[\text{HCOOH}][\text{OH}^-]}{[\text{HCOO}^-]} \][/tex]

Since [tex]\( K_b = \frac{K_w}{K_a} \), where \( K_w \)[/tex] is the ionization constant of water, we can find [tex]\( K_b \)[/tex]:

[tex]\[ K_b = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-4}} \] \[ K_b = 5.56 \times 10^{-11} \][/tex]

Assuming that the hydrolysis of sodium formate is small, we can approximate the concentration of [tex]HCOO^-[/tex] to be equal to the concentration of NaCOO:

[tex]\[ [\text{HCOO}^-] \approx 0.4256 \text{ M} \][/tex]

The concentration of HCOOH produced by hydrolysis is negligible compared to the initial concentration of [tex]HCOO^-[/tex], so we can say:

[tex]\[ [\text{HCOOH}] \approx 0 \][/tex]

The concentration of [tex]OH^-[/tex] can be found using the equilibrium constant expression:

[tex]\[ K_b = \frac{[\text{HCOOH}][\text{OH}^-]}{[\text{HCOO}^-]} \] \[ 5.56 \times 10^{-11} = \frac{(0)[\text{OH}^-]}{0.4256} \][/tex]

[tex]Since \( [\text{HCOOH}] \) is approximately zero, we can rearrange the equation to solve for \( [\text{OH}^-] \):[/tex]

[tex]\[ [\text{OH}^-] = K_b \times \frac{[\text{HCOO}^-]}{[\text{HCOOH}]} \] \[ [\text{OH}^-] = 5.56 \times 10^{-11} \times \frac{0.4256}{0} \][/tex]

However, since [tex]\( [\text{HCOOH}] \)[/tex] cannot be zero, we can instead use the initial concentration of [tex]HCOO^-[/tex] to find an approximate value for [tex]\( [\text{OH}^-] \)[/tex]:

[tex]\[ [\text{OH}^-] \approx \sqrt{K_b \times [\text{HCOO}^-]} \] \[ [\text{OH}^-] \approx \sqrt{5.56 \times 10^{-11} \times 0.4256} \] \[ [\text{OH}^-] \approx \sqrt{2.36 \times 10^{-11}} \] \[ [\text{OH}^-] \approx 1.54 \times 10^{-6} \text{ M} \][/tex]

Now we can calculate the pOH and then the pH:

[tex]\[ \text{pOH} = -\log[\text{OH}^-] \] \[ \text{pOH} = -\log(1.54 \times 10^{-6}) \] \[ \text{pOH} \approx 5.82 \][/tex]

Since pH + pOH = 14:

[tex]\[ \text{pH} = 14 - \text{pOH} \] \[ \text{pH} = 14 - 5.82 \] \[ \text{pH} \approx 8.18 \][/tex]

However, we must consider that the assumption that [tex]\( [\text{HCOOH}] \)[/tex] is negligible may not be entirely accurate.

The actual pH at the equivalence point will be slightly higher due to the common ion effect, which suppresses the ionization of the weak acid (HCOOH) in the presence of its conjugate base [tex](HCOO^-)[/tex].

Taking this into account, the pH at the equivalence point is approximately 8.35.

Electrochemical gradients Because ions carry a charge (positive or negative) their transport across a membrane is governed not only by concentration gradients across the membrane but also by differences in charge across the membrane (also referred to as membrane potontia) Together, the conoentration (chemical) gradient and the charge difforence (electrical gradient) across the plasma membrane make up the electrochemical gradient. consider the plasma membrane of an animal cell that oontains a sodium potassium pump as wel as two non-gated (always open) ion channelse a Nat channel and a K channel. The effect of the sodium potassium pump on the concentrations of Na and K as well as the distribution of charge across the plasma membrane is indicated in the figure below. Outside cell channel (Nat) high K 1 high inside cel which of the following statements correctly describes) the driving forces for diffusion of Na and K ions through their respective channels? a. The diffusion of Na ions into the cell is facilitated by the Na concentration gradient across the plasma membrane. b. The diffusion of Na" ions into the cell is impeded by the electrical gradiont across the plasma membrane c. The diffusion of K ions out of the cel is impeded by the KT concentration gradient across the plasma membrane.

Answers

Answer:

a. The diffusion of Na ions into the cell is facilitated by the Na concentration gradient across the plasma membrane.

Explanation:

Cells differ in the concentration of Na+  and many other chemicals inside and out side of the cell, so diffusion of Na+ ions into the cell is facilitated by the Na+ concentration gradient across the membrane.

The diffusion of K+ ions out of the cell is also prevented by the electrical gradient across the plasma membrane.

In the cell, the electro chemical gradient is larger for Na+ than for K+ and many other substances.

Final answer:

Ions move across the cell membrane through channels, driven by the combined forces of the concentration gradient (chemical) and the electrical gradient. This process, known as diffusion, is influenced by the electrochemical gradient. The correct option is C.

Explanation:

The driving forces for the diffusion of Na+ and K+ ions through their respective channels are dependent on both the concentration gradient and the electrical gradient, which together make up the electrochemical gradient. For Na+ ions, the concentration gradient facilitates their diffusion into the cell, as there are more Na+ ions outside the cell than inside (option a). However, the inside of the cell is typically negatively charged compared to the outside and there is an opposite electrical gradient, that impedes the transport of Na+ ions into the cell (option b). For the K+ ions, there are more inside the cell than outside, creating a concentration gradient that facilitates their diffusion out of the cell. However, the electrical gradient impedes this diffusion (option c).

Thus, ions move across the membrane via channels in a way that balances both the concentration (chemical) gradient and the electrical gradient to establish the electrochemical equilibrium.

Learn more about the Diffusion of Ions here:

https://brainly.com/question/32878011

#SPJ3

In the molecule, HCl, the __atom pulls more on the bonded pair of electrons, creating a dipole
a) hydrogen
b) chlorine

Which atom has a higher electronegativity?
a) chlorine
b) hydrogen

Answers

Final answer:

In an HCl molecule, the chlorine atom is more electronegative than hydrogen, resulting in chlorine pulling the bonded electrons towards itself more and creating a dipole with a partial negative charge. This makes chlorine the atom that has a higher electronegativity in comparison to hydrogen.

Explanation:

In the molecule HCl, the chlorine atom pulls more on the bonded pair of electrons, creating a dipole. Thus, the correct answer is (b) chlorine for both parts of the question. Chlorine has a higher electronegativity compared to hydrogen, which is why the electron density in the HCl molecule is uneven and is greater around the chlorine nucleus. This difference in electronegativity between hydrogen (XH = 2.20) and chlorine (XCl = 3.16) results in a polar covalent bond with a dipole moment. Consequently, chlorine bears a partial negative charge (designated as δ−), and hydrogen bears a partial positive charge (designated as δ+), leading to dipole-dipole attractions between HCl molecules.

You have a mixture of the noble gases Xe, Ne, and He at 6.0 atm. The partial pressure of Xe is 2.7 atm and the mole fraction of Ne is 0.2500. What is the partial pressure of He in this mixture?

Answers

Answer:

The partial pressure of He = 1.8 atm

Explanation:

Step 1: Data given

The total mass = 6.0 atm

Partial pressure of Xe = 2.7 atm

Mol fraction of Ne = 0.2500

Step 2: Calculate partial pressure of Ne

Partial pressure Ne = total pressure * mol fraction

Partial pressure Ne = 6.0 atm * 0.2500

Partial pressure Ne = 1.5 atm

Step 3: Calculate the partial pressure of He

Total pressure = partial pressure of Xe + partial pressure of Ne + partial pressure of He

6.0 atm = 2.7 atm + 1.5 atm + pHe

pHe = 6.0 - 2.7 - 1.5

pHe = 1.8 atm

The partial pressure of He = 1.8 atm

A certain compound has the percent composition (by mass) 85.63% C and 14.37% H. The molar mass of the compound is 42.0 g/mol. Calculate the empirical formula and the molecular formula.

Answers

Answer:

The molecular formula is C3H6

Explanation:

Step 1: Data given

Suppose the compound has a mass of 100 grams

The compound contains:

85.63 % C = 85.63 grams C

14.37 % H = 14.37 grams H

Molar mass C = 12.01 g/mol

Molar mass H = 1.01 g/mol

Step 2: Calculate moles

Moles = grams / molar mass

Moles C = 85.63 grams / 12.01 g/mol

Moles C = 7.130 moles

Moles H = 14.37 grams / 1.01 g/mol

Moles H = 14.2 moles

Step 3: Calculate the mol ratio

We divide by the smallest amount of moles

C: 7.130 moles / 7.130 moles = 1

H = 14.2 moles / 7.130 moles = 2

The empirical formula is CH2

The molar mass of CH2 = 14 g/mol

Step 4: Calculate molecular formula

We have to multiply the empirical formula by n

n = 42 / 14 = 3

n*(CH2) = C3H6

The molecular formula is C3H6

The empirical formula of the compound is [tex]CH_2[/tex], and the molecular formula is [tex]C_2H_4[/tex].

To determine the empirical formula, we start by assuming a 100 g sample of the compound. Given the percent composition, we have 85.63 g of carbon and 14.37 g of hydrogen. We then convert these masses to moles by dividing by the molar mass of each element:

For carbon (C), the molar mass is approximately 12.01 g/mol:

Moles of C = 85.63 g / 12.01 g/mol  7.13 moles of C

For hydrogen (H), the molar mass is approximately 1.008 g/mol:

Moles of H = 14.37 g / 1.008 g/mol 14.26 moles of H

Next, we find the simplest whole-number ratio of moles of C to moles of H by dividing both by the smallest number of moles:

Dividing by the smaller number of moles (7.13 moles of C):

Ratio of C to H  7.13/7.13 : 14.26/7.13  1 : 2

Thus, the empirical formula is [tex]CH_2[/tex].

To find the molecular formula, we need the molar mass of the empirical formula and compare it to the given molar mass of the compound. The molar mass of the empirical formula [tex]CH_2[/tex] is:

Molar mass of [tex]CH_2[/tex] = (12.01 g/mol for C) + (2 × 1.008 g/mol for H) 14.026 g/mol

Now, we calculate the molecular formula by finding the ratio of the molar mass of the compound to the molar mass of the empirical formula:

Ratio = Molar mass of compound / Molar mass of empirical formula

Ratio = 42.0 g/mol / 14.026 g/mol  3

This ratio tells us that the molecular formula is three times the empirical formula, so:

Molecular formula = [tex](CH_2)_3[/tex] = [tex]C_3H_6[/tex]

However, we must check if there is a smaller whole number ratio that would give us the correct molar mass. In this case, the empirical formula [tex]CH_2[/tex] already gives us the simplest ratio, and the molecular formula must be an integer multiple of the empirical formula. The correct molecular formula that is an integer multiple and has the correct molar mass is [tex]C_2H_4[/tex] (which is also an alkene, consistent with the given percent composition and molar mass).

A metaphor of human-computer interaction (HCI) in which the user interacts directly with objects on the display screen, is referred to as ____. 1. desktop metaphor 2. document metaphor 3. direct manipulation metaphor 4. dialog metaphor

Answers

Answer:. 4. dialog metaphor

Explanation:

This is a metaphor of HCI in which interacting with the computer is much like carrying on a conversation or dialog. The user asks the computer for something, and the computer responds. The computer might then ask the user for something, and the user responds. The text provides an example that describes a manager and an assistant carrying on a conversation about messages .

The pressure of neon changes from 786mmHg to 1811mmHg. If the initial temperature 87°C, what is the new temperature (in Kelvin Unit)?​

Answers

Answer:

The new temperature is 829.5 K

Explanation:

Step 1: Data given

The initial pressure of neon = 786 mmHg

The final pressure of neon = 1811 mmHg

The initial temperature = 87 °C

Step 2: Calculate the new temperature

P1/T1 = P2/T2

⇒P1 = the initial pressure = 786 mmHg  = 1.03421 atm

⇒T1 = the initial temperature = 87 °C = 360 K

⇒P2 = the final pressure = 1811 mmHg = 2.382895 atm

⇒T2 = the final temperature = ?

1.03421 atm / 360 K = 2.382895 atm / T2

T2 = 829.5 K

786/360 = 1811 / T2

The new temperature is 829.5 K

Most pollutants enter the atmosphere from fossil fuel burning. Burning fossil fuels releases many pollutants into the air. These pollutants include carbon monoxide, carbon dioxide, nitrogen dioxide, and sulfur dioxide. Which of these is LEAST likely to contribute to the air pollution problem from the use of fossil fuels? A) Raising livestock in West Texas. B) Taking a cross country trip in a charter bus. C) Providing power for the city in which you live. D) Providing lights and air for the schools in your district.

Answers

Providing lights and air for the schools in your district.

Explanation:

The major cause of the pollutant entering the atmosphere is through the use of fossil fuels for various activities. These fuels when burnt releases Carbon dioxide, Carbon monoxide, nitrogen dioxide etc gases.

Among all the given options, providing lights and air for the school in your district would consume the least power. Consuming least power would translate into the need for producing less energy hence less fossil fuel consumption. As the fossil fuels consumption would be less, less amount of harmful gases would be emitted in atmosphere thus causing less air pollution.

The scenario LEAST likely to contribute to air pollution from the use of fossil fuels is raising livestock in West Texas as it is not directly associated with the combustion of fossil fuels.

The student's question asks which scenario is LEAST likely to contribute to air pollution from the use of fossil fuels in the options provided. While burning fossil fuels releases pollutants like carbon monoxide, carbon dioxide, nitrogen dioxide, and sulfur dioxide into the atmosphere, raising livestock in West Texas (option A) is not primarily associated with burning fossil fuels. Instead, it's more related to methane emissions from the digestive processes of the cattle, which is a greenhouse gas but not a direct result of fossil fuel combustion like the other options are. Taking a cross-country trip in a charter bus (option B), providing power for the city (option C), and providing lights and air for schools in your district (option D) all involve the direct combustion of fossil fuels, and thus, contribute to air pollution related to those activities.

An aqueous solution of iron(II) sulfate (FeSO4) is prepared by dissolving 2.00 g in sufficient deionized water to form a 200.00 mL solution. Calculate the molarity of the solution.

Answers

Answer:

0.066mol/dm^3

Explanation:

The molarity is simply calculating the number of moles in 1L or 1000ml

To get this, we need to know the amount in grammes that would be present in 1L.

Since 2g is sufficient for 200ml, then for 1000ml, the amount sufficient would be 5 * 2 = 10g

Now to get the number of moles needed, we need to know the molar mass of the compound. That is molar mass of FeSO4 = 56 + 32 + 4(16) = 152g/mol

The number of moles is thus 10/152 = 0.066 mol/dm^3

100 POINTS!!!! AND BRAINLIEST!!!!PLS HELP!!!!! 50g of zinc are reacted with 50g of hydrogen chloride.  Calculate the amount of hydrogen made. Equation: Zn + _2_HCl --> ___ZnCl2 + ___H2​

Answers

Answer:

1.38 g H₂

Explanation:

Zn  +  2 HCl  ⇒  ZnCl₂  +  H₂

To solve, you need to first find the limiting reagent.  Convert grams to moles and use the mole ratios in the chemical equation to convert from the reagent to the product.  The reagent that produces the least is the limiting reagent.

Zn

(50 g)/(65.38 g/mol) = 0.7648 mol Zn

(0.7648 mol Zn) × (1 mol H₂/1 mol Zn) = 0.7648 mol H₂

HCl

(50 g)/(36.46 g/mol) = 1.371 mol HCl

(1.371 mol HCl) × (1 mol H₂/2 mol HCl) = 0.6857 mol H₂

HCl produces less product so this is the limiting reagent.  Since you have already converted to moles, you simply need to convert from moles to grams to find the amount of hydrogen made.

(0.6857 mol) × (2.016 g/mol) = 1.38 g H₂

You will have 1.38 g of H₂.

Answer:

Hi

Explanation:

1.38 g H₂

Explanation:

Zn  +  2 HCl  ⇒  ZnCl₂  +  H₂

To solve, you need to first find the limiting reagent.  Convert grams to moles and use the mole ratios in the chemical equation to convert from the reagent to the product.  The reagent that produces the least is the limiting reagent.

Zn

(50 g)/(65.38 g/mol) = 0.7648 mol Zn

(0.7648 mol Zn) × (1 mol H₂/1 mol Zn) = 0.7648 mol H₂

HCl

(50 g)/(36.46 g/mol) = 1.371 mol HCl

(1.371 mol HCl) × (1 mol H₂/2 mol HCl) = 0.6857 mol H₂

HCl produces less product so this is the limiting reagent.  Since you have already converted to moles, you simply need to convert from moles to grams to find the amount of hydrogen made.

(0.6857 mol) × (2.016 g/mol) = 1.38 g H₂

So you will end up with 1.38 g of H₂.

If a negatively charged ion is more concentrated inside the cell, the forces required to balance the chemical gradient would be directed ________. Thus, the equilibrium potential for this ion would be ________ charged.

Answers

If a negatively charged ion is more concentrated inside the cell, the forces required to balance the chemical gradient would be directed Inward. Thus, the equilibrium potential for this ion would be Positively charged.

Explanation:

The measurement of potential of resting membrane is distributed unequally in the form of ions or the charged particles, which are consist between both the cell's internal structure and external structure, by the membrane's changing permeability to various ion forms.

Like in most of the neurons the potassium and organic ions which are common in amino acids are present more in internal portion of cell than its outer portion. By comparison sodium and chloride ions are normally present in the cell externally at higher concentrations. This implies there are balanced gradients of concentration around the membrane for all the most concentrated forms of ions.

There are two bars of gold-silver alloy. The first bar has 2 parts of gold and 3 parts of silver, and the other has 3 parts of gold and 7 parts of silver. If both bars are melted into an 8 kg bar with the final ratio of 5:11 (gold to silver), what was the weight of the first bar?

Answers

Answer : The weight of first bar is, 1 kg

Explanation :

Let the weight of first bar and second bar be, x and y.

The ratio of gold and silver in first bar is, 2 : 3

The ratio of gold and silver in second bar is, 3 : 7

The final ratio of gold and silver in first and second bar is, 5 : 11

Total weight of bar = 8 kg

The equations will be:

[tex]\frac{2}{5}x+\frac{3}{10}y=\frac{5}{16}\times 8[/tex]       ..........(1)

[tex]\frac{3}{5}x+\frac{7}{10}y=\frac{11}{16}\times 8[/tex]       ..........(2)

Solving both the equations, we get:

[tex]4x+3y=25[/tex]       ..........(3)

[tex]6x+7y=55[/tex]       ..........(4)

Now we are multiplying equation 3 by 6 and equation 4 by 4, we get:

[tex]24x+18y=150[/tex]       ..........(5)

[tex]24x+28y=220[/tex]       ..........(6)

Now we are subtracting equation 5 from 6, we get the value of 'y'.

y = 7

Now put the value of 'y' in equation 5, we get the value of 'x'.

x = 1

Thus, the weight of first bar and second bar is, 1 kg and 7 kg respectively.

12. If the total pressure exerted by 3 gases is 45 atm and each individual gas has the
same pressure, what is the pressure of each gas?​

Answers

Answer:

Partial pressure for each of the three gases, in the mixture is 15 atm

Explanation:

Remember that the total pressure of a mixture, is the sum of partial pressures from the gases contained in the mixture.

Our total pressure = 45 atm

The 3 gases have the same pressure, so we can propose this equation:

3x = 45 atm

where x is the partial pressure for each of the three gases.

x = 45/3 → 15 atm

1. The element copper has naturally occurring isotopes with mass numbers of 63 and 65. The relative abundance and atomic masses are 69.2% for a mass of 62.93amu and 30.8% for a mass of 64.93amu. Calculate the average atomic mass of copper.

Answers

Answer: The average atomic mass of copper is 63.546 amu

Explanation:

Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.

Formula used to calculate average atomic mass follows:

[tex]\text{Average atomic mass }=\sum_{i=1}^n\text{(Atomic mass of an isotopes)}_i\times \text{(Fractional abundance})_i[/tex]  .....(1)

For isotope 1 (Cu-63):

Mass of isotope 1 = 62.93 amu

Percentage abundance of isotope 1 = 69.2 %

Fractional abundance of isotope 1 = 0.692

For isotope 2 (Cu-65):

Mass of isotope 2 = 64.93 amu

Percentage abundance of isotope 2 = 30.8 %

Fractional abundance of isotope 2 = 0.308

Putting values in equation 1, we get:

[tex]\text{Average atomic mass of Copper}=[(62.93\times 0.692)+(64.93\times 0.308)]\\\\\text{Average atomic mass of Copper}=63.546amu[/tex]

Hence, the average atomic mass of copper is 63.546 amu

Chemist and physicist marie curie became famous for her pioneering research on radioactivity. What are the two chemical elements that she discovered?

Answers

Answer:

The two elements are POLONIUM and RADIUM.

Explanation:

Maria Curie is a French physicist and chemist, though she was of a Polish naturals. She was the first woman to receive a Noble Price which she earned for conducting leading and head way research on radioactivity. She discovered the theory of radioactivity; also the techniques isolating radioactive isotopes. These helped her and her husband discover Polium and Radium.

Answer: She discovered polonium and radium.

Explanation: In 1896, intrigued by the physicist Henri Becquerel’s accidental discovery of radioactivity, Curie began studying uranium rays; Pierre soon joined her in her research. Two years later, the Curies discovered polonium—named after Marie’s homeland—and radium. In 1903 they shared the Nobel Prize in physics with Becquerel for their groundbreaking work on radioactivity.

Select the correct answer from each drop-down menu. The service sector in Jessica's economy is dominant. Which sector is dominating Jessica's country? Jessica lives in a primarytertiarysecondary sector economy. ManufacturingFishingHospitality could be one of the most important occupation in Jessica's economy

Answers

Answer:

The services sector dominates the country's economy

Jessica lives in a Tertiary sector economy

Hospitality could be most important occupation

Explanation:

The services sector is the tertiary sector of the economy.

Manufacturing is categorized as secondary sector and fishing is primary sector since it is refers to raw materials obtained.

Answer:.......

Service sectors in jessica's country is dominating their economy.

The tertiary sector is dominating jessica's country.

Hospitality is one of the most important jobs in jessica's country.

Explanation:.......

Services sector is also known as tertiary sector in an economy.There are various sectors of an economy, there is primary sector, manufacturing sector also known as secondary sector and tertiary sector also known as service sector.

When a particular rock formed it contained 12mg of radioactive isotope of potassium-40. The rock now contains 3mg of potassium-40. The half life of potassium-40 is 1.3 billion years. The approximate age of the rock is _____ billion years

Answers

Answer : The age of the rock is, 2.60 billion years

Explanation :

Half-life = 1.3 billion years

First we have to calculate the rate constant, we use the formula :

[tex]k=\frac{0.693}{t_{1/2}}[/tex]

[tex]k=\frac{0.693}{1.3\text{ billion years}}[/tex]

[tex]k=0.533\text{ billion years}^{-1}[/tex]

Now we have to calculate the time passed.

Expression for rate law for first order kinetics is given by:

[tex]t=\frac{2.303}{k}\log\frac{a}{a-x}[/tex]

where,

k = rate constant  = [tex]0.533\text{ billion years}^{-1}[/tex]

t = time passed by the sample  = ?

a = initial amount of the reactant  = 12 mg

a - x = amount left after decay process = 3 mg

Now put all the given values in above equation, we get

[tex]t=\frac{2.303}{0.533}\log\frac{12}{3}[/tex]

[tex]t=2.60\text{ billion years}[/tex]

Therefore, the age of the rock is, 2.60 billion years

Identify the correct sequence of steps in the generation of an action potential. 1. Activation of sodium channels and rapid depolarization 2. Inactivation of sodium channels and activation of potassium channels 3. Depolarization to threshold 4. Closing of potassium channels

Answers

Answer:

The sequence is: 3,1,2,4

Explanation:

It is understood as the potential of action to the electric wave that originates from the changes that the neuronal membrane undergoes due to the electrical variations and its relation between the external and internal means of the neuron. It begins in the axon cone, where a large number of sodium channels are observed. Its phases are as follows:

-resting potential

-depolarization

-repolarization

-hyperpolarization

-resting potential

-the potential for action and release of neurotransmitters

The correct steps in the generation of an action potential is 3, 1, 2, 4.

• A brief reversal of membrane potential where the membrane potential varies from -70 millivolts to +30 millivolts is termed as the action potential.  

• The action potential possess three main phases, that is, depolarization, repolarization, and hyperpolarization.  

• When the positively charged sodium ions moves into a neuron with the opening of voltage-gated sodium channels it is known as depolarization.  

• The closing of the sodium ion channels and the opening of the potassium ion channels results in repolarization.  

• Due to an excess of open potassium channels and the efflux of potassium from the cell hyperpolarization takes place.  

• The depolarization is also known as the rising phase, which results when the positively charged sodium ions suddenly rush in via the open voltage-gated sodium channels.  

• The repolarization also known as the falling phase due to slow closing of the sodium channels and the opening of the potassium channels.  

• Hyperpolarization is a phase of increased permeability of potassium resulting in excessive potassium efflux before the closing of the potassium channels.  

Thus, the correct sequence of the generation of an action potential is 3, 1, 2, 4.

To know more about:

https://brainly.com/question/13168794

Predict whether the following reactions will be exothermic or endothermic. Reaction A. N 2 ( g ) + 3 H 2 ( g ) ⟶ 2 NH 3 ( g ) Reaction B. S ( g ) + O 2 ( g ) ⟶ SO 2 ( g ) Reaction C. 2 H 2 O ( g ) ⟶ 2 H 2 ( g ) + O 2 ( g ) Reaction D. 2 F ( g ) ⟶ F 2 ( g )

Answers

Answer :

Exothermic reactions : A, B, D

Endothermic reaction : C

Explanation :

Endothermic reaction : It is defined as the chemical reaction in which the energy is absorbed from the surrounding.

In the endothermic reaction, the energy of reactant are less than the energy of product.

Exothermic reaction : It is defined as the chemical reaction in which the energy is released into the surrounding.

In the exothermic reaction, the energy of reactant are more than the energy of product.

As we know that, heat is released in the bond formation and heat is required in the bond breaking.

Reaction (A):

[tex]N_2(g)+3H_2(g)\rightarrow 2NH_3(g)[/tex]

In this reaction, the more bonds are formed than the bond broken. That means, heat will be released. So, It is an exothermic reaction.

Reaction (B):

[tex]S(g)+O_2(g)\rightarrow SO_2(g)[/tex]

In this reaction, burning of sulfur with oxygen takes place. That means, heat will be released. So, It is an exothermic reaction.

Reaction (C):

[tex]2H_2O(g)\rightarrow 2H_2(g)+O_2(g)[/tex]

This reaction is a decomposition reaction. That means, heat will be required. So, It is an endothermic reaction.

Reaction (D):

[tex]2F(g)\rightarrow F_2(g)[/tex]

In this reaction, formation of fluorine molecule from its atoms releases heat. So, It is an exothermic reaction.

Hence, the exothermic reactions are, A, B, D and endothermic reaction is, C

Final answer:

Endothermic reactions absorb heat energy from their surroundings, while exothermic reactions release heat energy. The type of reaction can sometimes be predicted, but not always. Examples are provided for each reaction type.

Explanation:

The subject matter in focus is predicting whether reactions, specifically:

Reaction A. N2 ( g ) + 3 H2 ( g ) ⟶ 2 NH3 ( g )

Reaction B. S ( g ) + O2 ( g ) ⟶ SO2 ( g )

Reaction C. 2 H2O ( g ) ⟶ 2 H2 ( g ) + O2 ( g )

<

Reaction D. 2 F ( g ) ⟶ F2 ( g ),

will be endothermic or exothermic.

An exothermic reaction is a chemical reaction that releases energy by light or heat. It is the opposite of an endothermic reaction. Expressed in a chemical equation: reactants → products + energy.

An example of an exothermic reaction is the mixture of sodium and chlorine to yield table salt. This reaction produces a bright yellow light.

An endothermic reaction is a process or reaction that absorbs energy in the form of heat. Its enthalpy change is positive, and it takes in heat energy directly from its surroundings.

An example of an endothermic reaction is photosynthesis. Plants absorb sunlight (energy) to convert carbon dioxide and water into glucose (food) and oxygen.

Often in Chemistry, is not possible to predict directly if a reaction is exothermic or endothermic just by looking at it but there are a few cases where a good guess can be made.

Learn more about Endothermic and Exothermic Reactions here:

https://brainly.com/question/9799465

#SPJ3

A student carries out the same titration but uses an indicator instead of a pH meter. If the indicator changes color slightly past the equivalence point, what will the student obtain for the calculated concentration of the acid?

Answers

When a titration is performed using an indicator that changes color slightly past the equivalence point, the calculated acid concentration will be marginally lower due to the slight excess of titrant added.

During a titration, the equivalence point is where the amount of titrant added neutralizes the analyte, resulting in a solution where the concentration of hydrogen ions ([tex][H^+][/tex]) equals the concentration of hydroxide ions ([tex][OH^-][/tex]). An indicator is used to visually signal this point through a color change.

When using an indicator that changes color slightly past the equivalence point, the student will observe a color change indicating a slightly larger volume of titrant has been added than necessary. Consequently, the calculated concentration of the acid will be slightly lower than its actual concentration, because the calculation will be based on a presumed complete neutralization that requires a bit more of the titrant.

It is vital to choose an indicator with a color change interval that brackets the pH at the equivalence point for an accurate titration. Methyl orange, for instance, changes color in the acidic range and is suitable for the titration of a weak base with a strong acid.

Phenolphthalein would be another choice as an indicator, changing from colorless to pink as the pH rises above 8.3, which can accurately signal the equivalence point in many titrations.

An aerosol can contains gases under a pressure of 4.50 atm at 20.0 degrees Celsius. If the can is left on a hot, sandy beach, the pressure of the gases increases to 4.78 atm. What is the Celsius temperature on the beach? HINT: Temperature must be in Kelvin while solving the problem.

Answers

The resultant temperature on the beach is 294.39 K.

What is the relation between temperature and pressure?

Relation between the temperature and pressure of gas will be explained by using the ideal gas equation PV = nRT.

And for this question, required equation is:

P₁/T₁ = P₂/T₂, where

P₁ & T₁ are the initial pressure and temperature.P₂ & T₂ are the final pressure and temperature.

On putting values from question, we get

T₂ = (4.78)(20) / (4.50) = 21.24 degrees Celsius

T₂ = 21.24 degrees Celsius = 294.39 K

Hence required temperature is 294.39 K.

To know more about ideal gas equation, visit the below link:

https://brainly.com/question/3778152

#SPJ2

Final answer:

To determine the new temperature on the beach causing an increase in pressure within an aerosol can from 4.50 atm to 4.78 atm, the Gas Law is utilized, yielding a final temperature of 35.1 degrees Celsius.

Explanation:

The question involves finding the new temperature at which the pressure of gases in an aerosol can increases from 4.50 atm to 4.78 atm, initially at 20.0 degrees Celsius. We will use the Gas Law, which states that for a constant volume and amount of gas, the pressure of the gas is directly proportional to its temperature. This can be mathematically represented as P1/T1 = P2/T2, where P is the pressure, T is the temperature in Kelvin, and subscripts 1 and 2 refer to the initial and final states, respectively.

First, convert the initial temperature from Celsius to Kelvin: T1 = 20.0 + 273.15 = 293.15 K. Then, solve for T2: T2 = (P2 × T1) / P1 = (4.78 atm × 293.15 K) / 4.50 atm. T2 = 308.25 K, which converts back to 35.1 degrees Celsius when subtracted by 273.15.

Therefore, the Celsius temperature on the beach where the pressure of the gases in the aerosol can increases to 4.78 atm is 35.1 degrees Celsius.

Convertible bonds are usually secured by a first or second mortgage.pay interest only in the event earnings are sufficient to cover the interest. may be exchanged for equity securities. have priority over other indebtedness.

Answers

Answer:

may be exchanged for equity securities.

Explanation:

Convertible bonds -

It refers to the type of bond which can easily be converted to stocks .

It refers to as the fixed - income debt security which can give the interest payments and can be converted to some predetermined number of equity shares and common stock , is referred to as convertible bonds .

The process of conversion can be done at any time period of the bond .

Hence , from the given information of the question ,

The correct answer is may be exchanged for equity securities.

The atomic nucleus contains two subatomic particles, the proton and the neutron. Atoms of different elements have different numbers of protons and neutrons. The nuclei of atoms that are the most stable have proton to neutron ratios of A) 1 to 1 B) 2 to 1 C) 1 to 2 D) there is no pattern that indicates stability in the nucleus

Answers

Answer:

The correct option is;

A) 1 to 1.

Explanation:

A stab;e nuclei requires the presence of a neutron to accommodate the the protons repulsion forces within the nucleus. An increase in the number of protons should be accompanied by an even more instantaneous increase in the number of neutrons to balance the forces in the nucleus. If there is an excess of neutrons or a deficit in protons a state of unbalance exists in the nucleus, which results to nuclear instability.

Therefore, the ratio of neutrons to protons is an appropriate way in foretelling nuclear stability and a stable nuclei is known to have a proton to neutron ratio of 1:1 and the number of protons and neutrons in the stable nuclei are usually even numbers.

What salt is formed during the neutralization reaction between sulfuric acid left-parenthesis H subscript 2 S O subscript 4 right-parenthesis and lithium hydroxide (LiOH)?

Answers

Answer:

Li₂SO₄ is the formed salt

Explanation:

We determine the reactants dissociations:

H₂SO₄ → 2H⁺ + SO₄⁻²

LiOH → Li⁺ + OH⁻

The 2H⁺ link the OH⁻ to form water, but there is one more H⁺, so we need another OH⁻ to finally produce 2 moles of H₂O

In conclussion to determine the lithium sulfate, which is the formed salt, Li will release 2 e⁻ as this equation shows:

2Li → 2Li⁺ + 2e⁻

Now the neutralization reaction is:

2LiOH + H₂SO₄ → Li₂SO₄ + 2H₂O

The neutralization reaction between sulfuric acid (H₂SO₄) and lithium hydroxide (LiOH) results in the formation of lithium sulfate (Li₂SO₄).

The neutralization reaction between sulfuric acid (H₂SO₄) and lithium hydroxide (LiOH) is a chemical process that involves the combination of an acid and a base to form a salt and water. In this reaction, the hydrogen ions (H⁺) from sulfuric acid react with the hydroxide ions (OH⁻) from lithium hydroxide to form water (H₂O). The remaining ions combine to form the salt, which is lithium sulfate (Li₂SO₄).

The balanced chemical equation for this neutralization reaction is:

H₂SO₄ + 2LiOH → Li₂SO₄ + 2H₂O

In this equation:

- H₂SO₄ is sulfuric acid, which provides the H⁺ ions.

- 2LiOH is lithium hydroxide, which provides the OH⁻ ions.

- Li₂SO₄ is lithium sulfate, the salt formed as a result of the reaction.

- 2H₂O represents the water produced.

Lithium sulfate (Li₂SO₄) is an ionic compound composed of lithium ions (Li⁺) and sulfate ions (SO₄²⁻). It is a white crystalline solid that is soluble in water and commonly used in various industrial and laboratory applications.

This type of neutralization reaction is essential in chemistry, as it demonstrates the principles of acid-base reactions and the formation of salts. It also has practical applications in various chemical processes and industries where the control of pH and the creation of specific salts are important.

For more such questions on Acid-Base Reactions

https://brainly.com/question/10467673

#SPJ3

Other Questions
What must the charge (sign and magnitude) of a particle of mass 1.41 gg be for it to remain stationary when placed in a downward-directed electric field of magnitude 670 N/CN/C ? What did the US have to do with the rise of the Khmer Rouge? Why did the Khmer Rouge want to kill everyone with any level of education after they took power? A customer has $24,000 to invest in mutual fund shares. The registered representative advises the customer to invest $8,000 on ABCD fund; $8,000 in DEFF fund; and $8,000 in XYZZ fund; to give the customer complete diversification and reduce risk. These 3 funds all have different sponsors. This action is:________ A) appropriate for the customer B) a violation known as a breakpoint sale C) a violation known as spinning D) a violation known as interpositioning What is motif? How does William Shakespeare use loyalty as motif throughout Julius Cesar? Why were Italian city-states able to fund Renaissance art and sciencework? Which person is responsible for the financial support of the production and, working closely with the director, also contributes to many "directorial" decisions in the production process? Indicate whether the scenarios would result in an increase, a decrease, or no change in the long-run aggregate supply (LRAS) curve for a hypothetical economy. Each label may be used more than once.1. The mandatory retirement age in Wonkaland is abolished. 2. Wonkaland's main export is candy. Candy from this country increases in popularity as consumers all over the world want to buy Wonkalandian candy. 3. Since candy from Wonkaland has become an international sensation, factories in Wonkaland double the number of candy making machines. 4. The top candy companies in Wonkaland chose to relocate their means of production to other countries around the world. Thrombin catalyzes the activation of these molecules present in plasma. 2. : Makes up most of plasma protein. 3. : The major contributor to plasma osmotic pressure. 4. : Forms the structural framework of a blood clot. QUESTIONS FOR DISCUSSION 1. Using the health problem analysis framework, illustrate how infant (and specifically neonatal) mortality rates are affected by "better babies or better care." 2. What is the public health "science" underlying the Outcome Oriented Perinatal Surveillance System What is ironic about Juvencio fierce desire to live?How does the authors use of irony help develop this theme? what would be the expected response to a skin injury if the involved tissue had lost the normal cell characteristic of contact inhibition?a-failure of wound to closeb-replacement with scar tissue rather than skinc-excessive growth of replacement tissued-displacement of skin cells into other body tissues Taylor got the sense that Ravi liked him, so he began to have feelings for Ravi. Recognizing and enjoying Taylor's feelings for him, Ravi's feelings for Taylor grew which in turn caused Taylor's feelings for him to increase. Which term best describes what Taylor and Ravi are experiencing? how do oceanographers measure the salinity of ocean water? A. by measuring the density of the waterB. by measuring the depth of the water C. by measuring the conductivity of the water.D. by measuring the amount of marine life present A bag contains two red marbles and three blue marbles. You randomly pick a marble. Alphonse Company manufactures staplers. The budgeted sales price is $ 16.00 per stapler, the variable costs are $ 4.00 per stapler, and budgeted fixed costs are $ 10 comma 000. What is the budgeted operating income for 5 comma 000 staplers? A plastic rod 1.5 m long is rubbed all over with wool, and acquires a charge of -9e-08 coulombs. We choose the center of the rod to be the origin of our coordinate system, with the x-axis extending to the right, the y-axis extending up, and the z-axis out of the page. In order to calculate the electric field at location A = < 0.7, 0, 0 > m, we divide the rod into 8 pieces, and approximate each piece as a point charge located at the center of the piece. 1. What is the length of one of these pieces? 2. What is the location of the center of piece number 2? 3. How much charge is on piece number 2? Blood vessel walls contain elastin, a protein that allows the vessel to stretch under high pressure. Which type of blood vessel do you expect will have the highest concentration of elastin in its walls? Two boxes of masses m=35kg and m2=45kg, are hung vertically from opposite ends of a rope passing over a rigid horizontal metal rod. They system starts moving from rest. Assuming that friction between the rod and the rope is negligible, determine the magnitude of(a) the acceleration of the boxes(b) the tension in the rope(c) the magnitude of each box's displacement after 0.5s The system is in equilibrium and the pulleys are frictionless and massless. 5 kg 8 kg 9 kg T Find the force T. The acceleration of gravity is 9.8 m/s 2 . Answer in units of N. Gene Craft Inc. is the market leader in the pharmaceutical industry. Though most of its resources are common to those of its competitors, a few rare resources have helped the company gain and sustain a competitive advantage. Which of the following assets of Gene Craft Inc. is most likely to be considered a rare resource that is best contributing to its competitive advantage? A. The company's land and buildings B. The company's plant and machinery C. The company's raw material supplies D. The company's chemical patents