Answer: Both (a) and (b)
Explanation:
Lipids are heterogeneous group of compounds of biochemical importance. Lipids may be defined as compounds which are relatively insoluble in water and are concentrated of energy source.
Fatty acids are aliphatic carboxylic acids and have the general formula, R-COOH, where COOH is the functional group and R group are hydrocarbon chain.
The structure of fat contains lot of C-C and C-H bonds and there are lot of calories, and therefore energy is packed into thier chemical structure.
Despite fat contains glycerol polar group, the long chains of hydrocarbon which are non polar makes fats insoluble in water.
Answer:
Both (a) and (b)
(a) rich in energy.
(b) insoluble in water.
Explanation:
Fats are stored as triesters (triglycerides), which when hydrolyzed form the three alcohol molecules (triglycerol) and three fatty acids. The acids that are liberated usually have long carbon chains that contain anywhere from 4 to 18 carbons. The C-C and C-H have high electron molecules present hence whey they are good sources of energy.
However, the bonding between carbon (C-C) and hydrogen (C-H) are not polar. This is because the electrons in covalent bonds are shared equally between the carbon and the hydrogen (due to their similar electronegative values) and there are no partial charges. Thus, long chains of C-C and C-H bonds form fats.
How much energy must be removed from a 125 g sample of benzene (molar mass= 78.11 g/mol) at 425.0 K to liquify the sample and lower the temperature to 335.0 K? The following physical data may be useful.Hvap = 33.9 kJ/molHfus = 9.8 kJ/molCliq = 1.73 J/g CCgas = 1.06 J/g CCsol = 1.51 J/g CTmelting = 279.0 KTboiling = 353.0 Ka. 95.4 kJ
b. 74.4 kJ
c. 38.9 kJ
d. 67.7 kJ
e. 54.3 kJ
Answer: d) 67.7KJ
Explanation:
Number of moles of Benzene= 125/78.11=1.60 moles
Q = mc◇T = 125× 1.60×(425-353)= 9540J
Q= ◇Hvap× 1.60=
33.9 × 1.60 = 54.24KJ
Q = mc◇T= 125 × 1.73× (353-335)=3803KJ
Total energy required to remove Carbon= (9540 + 54240+ 3893) J =67,673J =67
7KJ
Which response contains all of the following I) PCl3 + 3 H2O → 3 HCl + H3PO3 II) Fe2O3 + 3 CO → 2 Fe + 3 CO2 III) CaCO3 + 2 HNO3 → Ca(NO3)2 + CO2 + H2O that are oxidation-reduction reactions and no others?
Answer:
II) This is because Fe₂O₃ is reduced to Fe and CO is oxidized to CO₂
Explanation:
The equation II which is Fe₂O₃ + 3CO → 2Fe + 3CO₂ is the only exclusive oxidation-reduction reaction since, Fe₂O₃ is reduced to Fe by the removal of oxygen and CO is oxidized to CO₂ by the addition of oxygen.
Equation I is a hydrolysis reaction while equation III is an acid-base reaction. There is change of oxidation number in equations I and III, but they are not exclusively oxidation-reduction reactions.
The only oxidation-reduction reaction among the given reactions is option ll) Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
To determine which among the given reactions are redox reactions, we need to check if there is a change in oxidation states of the elements involved in the reactions.
Let's analyze each reaction:
PCl₃ + 3 H₂O → 3 HCl + H₃PO₃:
Here, phosphorus (P) in PCl3 has an oxidation state of +3 and remains +3 in H3PO3. Chlorine (Cl) changes from -1 in PCl3 to -1 in HCl, and hydrogen (H) changes from +1 in H2O to +1 in HCl and H3PO3. This indicates no change in oxidation states for any element, so this is not a redox reaction.Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂:
In this reaction, iron (Fe) goes from +3 in Fe2O3 to 0 in Fe, and carbon (C) goes from +2 in CO to +4 in CO2. Since there is a change in oxidation states, it confirms that this is a redox reaction.CaCO₃ + 2 HNO₃ → Ca(NO₃)₂ + CO₂ + H₂O:
Here, calcium (Ca), carbon (C), nitrogen (N), and oxygen (O) retain their oxidation states throughout the reaction. Therefore, this is not a redox reaction.Hence, the only oxidation-reduction reaction is:
II) Fe2O3 + 3 CO → 2 Fe + 3 CO2Suppose that 0.48 g of water at 25∘C∘C condenses on the surface of a 55-gg block of aluminum that is initially at 25∘C∘C. If the heat released during condensation goes only toward heating the metal, what is the final temperature (in degrees Celsius) of the metal block
Final answer:
After calculating the heat released by the condensation of water and equating it to the heat absorbed by the aluminum block, the final temperature of the aluminum block is found to be approximately 25.2°C.
Explanation:
The question asks us to determine the final temperature of an aluminum block after heat transfer occurs due to condensation of water on its surface. Both the water and the aluminum block initially have the same temperature of 25°C. We can use the concept of thermal equilibrium and specific heat capacity to solve this problem.
The heat released during the condensation of water (Qwater) is used to increase the temperature of the aluminum block (Qaluminum). According to the principle of conservation of energy, Qwater = Qaluminum.
We can calculate Qwater using the latent heat of condensation for water, which is 2260 J/g. Since 0.48 g of water condenses:
Qwater = mass × latent heat = 0.48 g 2260 J/g = 1084.8 J
Next, we calculate the change in temperature of the aluminum block using its specific heat capacity (900 J/kg•K), which allows us to find the final temperature:
Qaluminum = mass × specific heat capacity × change in temperature
1084.8 J = 0.055 kg × 900 J/kg•K × (final temperature - initial temperature)
Now, isolating the final temperature, we can solve for it:
final temperature = (1084.8 J / (0.055 kg × 900 J/kg•K)) + 25°C
final temperature = 25.2°C
Thus, the final temperature of the aluminum block, after absorbing the heat from the condensation of water, is approximately 25.2°C.
THE LAST QUESTION I NEED, PLEASE HELP! WILL MARK BRAINLIEST IF CORRECT!
Above which point on a phase diagram can you no longer distinguish between a liquid and a gas?
melting point
triple point
critical point
boiling point
Critical Point
I took the test
_____ is the process of an atom giving up or gaining one or more electrons through its interactions with other atoms.
Answer: ionization
Explanation:
is the minimum amount of energy required to remove the most loosely bound electron of an isolated neutral gaseous atom or molecule
Ionic bonding is the process of an atom giving up or gaining one or more electrons through its interactions with other atoms. It involves the transfer of electrons between atoms to form ions and create an ionic bond.
Explanation:Ionic bonding is the process of an atom giving up or gaining one or more electrons through its interactions with other atoms.
During this process, atoms with fewer electrons in their outermost energy level, known as valence electrons, tend to give up those electrons and become positively charged ions. Atoms with more valence electrons tend to gain electrons and become negatively charged ions. This transfer of electrons creates an electrostatic attraction between the positive and negative ions, resulting in the formation of an ionic bond.
For example, in the compound sodium chloride (NaCl), sodium loses one electron to become a positively charged ion (Na+) and chlorine gains that electron to become a negatively charged ion (Cl-). The positively charged sodium ion and the negatively charged chloride ion are then attracted to each other, forming an ionic bond.
Learn more about Ionic bonding here:https://brainly.com/question/18297125
#SPJ3
While studying force fields, Ms. Garcia told her students they were about to experiment with magnets. Before beginning the magnet experiments, Ms. Garcia set up this demonstration: three magnets that seemed to hover, one above the other, without touching. Label the poles of the magnets, A, B and C, in this arrangement. A) A north, B south, C south. B) A south, B north, C north. C) A north, B north, C south. D) A, B, and C are all south poles.
Answer:
The answer is A. a north, B south and C south
Explanation:
i just took the test
Answer:
A
Explanation:
USATestprep
describe how these nutrients and elements such as carbon, oxygen, and nitrogen are cycled through ecosystems.
Answer:
Carbon Cycle
Steps of the Carbon Cycle
CO2 is removed from the atmosphere by photosynthetic organisms (plants, cyanobacteria, etc.) and used to generate organic molecules and build biological mass. Animals consume the photosynthetic organisms and acquire the carbon stored within the producers. CO2 is returned to the atmosphere via respiration in all living organisms. Decomposers break down dead and decaying organic matter and release CO2. Some CO2 is returned to the atmosphere via the burning of organic matter (forest fires). CO2 trapped in rock or fossil fuels can be returned to the atmosphere via erosion, volcanic eruptions, or fossil fuel combustion.Nitrogen Cycle
Steps of the Nitrogen Cycle
Atmospheric nitrogen (N2) is converted to ammonia (NH3) by nitrogen-fixing bacteria in aquatic and soil environments. These organisms use nitrogen to synthesize the biological molecules they need to survive. NH3 is subsequently converted to nitrite and nitrate by bacteria known as nitrifying bacteria. Plants obtain nitrogen from the soil by absorbing ammonium (NH4-) and nitrate through their roots. Nitrate and ammonium are used to produce organic compounds. Nitrogen in its organic form is obtained by animals when they consume plants or animals. Decomposers return NH3 to the soil by decomposing solid waste and dead or decaying matter. Nitrifying bacteria convert NH3 to nitrite and nitrate. Denitrifying bacteria convert nitrite and nitrate to N2, releasing N2 back into the atmosphere.Oxygen Cycle
Oxygen is an element that is essential to biological organisms. The vast majority of atmospheric oxygen (O2) is derived from photosynthesis. Plants and other photosynthetic organisms use CO2, water, and light energy to produce glucose and O2. Glucose is used to synthesize organic molecules, while O2 is released into the atmosphere. Oxygen is removed from the atmosphere through decomposition processes and respiration in living organisms.
Explanation:
Determine the concentration of a solution made by dissolving 44.0 g of calcium chloride (CaCl2) in 0.30 L of solution. SHOW YOUR WORK for credit. Partial credit is awarded! Correct answers with no work will not receive credit. Reminder of the the steps: 1. Identify what you know and what you want, and the units. Known: 0.30 L, 44.0 g CaCl2 Want: molarity (mol /L ) 2. Find the amount of CaCl2 in moles. molar Mass of CaCl2 = 110.98 g/mol. Formula: Moles = grams / molar mass 3. Use dimensional analysis to set up and solve equation. Formula: M = mol solute / L solution
Answer:
[CaCl₂] = 1.32 M
Explanation:
We know the volume of solution → 0.30 L
We know the mass of solute → 44 g of CaCl₂
Let's convert the mass of solute to moles.
44 g . 1 mol / 110.98 g = 0.396 moles
Molarity (mol/L) → 0.396 mol / 0.3 L = 1.32 M
For questions 22 – 24, write an equation for the reaction of hydrogen chloride and sodium sulfide to produce hydrogen sulfide with sodium chloride.
22. Show the formulas of the reactants.
23. Show the formulas of the products.
24. Write the balanced the equation for this reaction.
Answer:
1. The reactants are HCl and Na2S
2. The products are H2S and NaCl
3. The balance equation is given below:
2HCl + Na2S —> H2S + 2NaCl
Which of the following is the correct ranking of the three bonds and interactions in order from highest to lowest in terms of their bond strength between two side chains of a protein in their tertiary structure?
I. Disulfide bond between two cystines
II. Hydrophobic interactions between two leucines
III. H-bonding in water
Answer:
I > III > II
Explanation:
I) A disulfide bond between two cystines is created when a sulfur atom from one cystine forms a strong, single covalent bond with a sulfur atom from a second cystine. When a disulfide bond is created, each cystine loses one hydrogen atom. The atom count is 11 for a cystine in mid-chain, but changes to 10 if the cystine joins with another in a disulfide bond. This lead to a much more stable intermolecular interaction.
III) Hydrogen Bonding in water
These hydrogen bonds are at best an interaction, inducing slight positive and negative charges in the Hydrogen and Oxygen/Nitrogen atoms.
The Hydrophilic amino acids have O & N atoms, which form hydrogen bonds with water. These atoms have an uneven distribution of electrons, creating a polar molecule that can interact and form hydrogen bonds with water.
The hydrogen bonds aren't as strong as the covalent bonds in disulfides.
II) Hydrophobic interactions between two leucines
A hydrophobic interaction is formed between two nonpolar molecules.
It describes the preference of nonpolar molecular surfaces to interact with other nonpolar molecular surfaces, thereby displacing water molecules from the interacting surfaces.
A syringe containing 1.64 mL of oxygen gas is cooled from 94.6 ∘C to 0.3 ∘C. What is the final volume Vf of oxygen gas?
Answer:
[tex]V_f=V_2=1.22\times 10^{-3} L=1.22mL[/tex]
Explanation:
Use Charles's law which states: "At constant pressure, the volume occupied by a gas sample is directly proportional to the absolute temperatures they support."
This law can be expressed mathematically as follows:
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
Where:
[tex]V_1=Initial\hspace{3}volume=1.64mL=1.64\times 10^{-3} L\\V_2=Final\hspace{3}volume\\T_1=Initial\hspace{3}temperature=94.6$^{\circ}$C=367.75K\\T_2=Final\hspace{3}temperature=0.3$^{\circ}$C=273.45K[/tex]
Solving for [tex]V_2[/tex]
[tex]V_2=\frac{V_1*T_2}{T_1} =\frac{(1.64\times 10^{-3} )*273.45}{367.75} =1.21946431\times 10^{-3} \approx1.22\times 10^{-3} L =1.22mL[/tex]
As long as there is some residual liquid present after equilibrium is reached, the vapor pressure of a liquid at any given temperature is an intensive property of the liquid.
Is this true or false?
Answer:
True
Explanation:
Every material in made up of intensive or extensive property. Intensive property of a system does not depend on the system size or the amount of material in the system. But extensive property on the other hand depends on the amount of material present in the system.
Examples of intensive properties include temperature, density, vapor pressure and viscosity.
Assuming that there is some residual liquid left after equilibrium is reached, no matter how much liquid is present, at any given temperature, the vapor pressure will be the same because it is an intensive property.
What is the symbol (including the atomic number, mass number, and element symbol) for the nitrogen isotope with 8 neutrons?
Answer:
¹⁵₇N
Explanation:
Nitrogen
Element Symbol - N
Atomic Number (No of protons) = 7
Neutrons = 8
Mass Number (Protons + Neutrons) = 7 + 8 = 15
The symbol for the nitrogen isotope with 8 neutrons is N-15.
Explanation:The symbol for an element represents its identity, and is composed of the element's atomic number and an elemental symbol. The atomic number represents the number of protons in the nucleus of an atom. The mass number represents the total number of protons and neutrons in the nucleus. To determine the symbol for the nitrogen isotope with 8 neutrons, we need to identify the atomic number and mass number for nitrogen. Nitrogen has an atomic number of 7, which means it has 7 protons. Since the mass number is the sum of protons and neutrons, we can subtract 8 neutrons from the mass number to find the number of protons in the isotope. Therefore, the nitrogen isotope with 8 neutrons has an atomic number of 7 and a mass number of 15. The symbol for nitrogen is N, so the symbol for the nitrogen isotope with 8 neutrons is N-15.
Learn more about nitrogen isotope symbol here:https://brainly.com/question/10985592
#SPJ3
Students wanted to test which acid was most effective at preventing hornworms from feeding on tomato plants. The students sprayed salicylic acid on one group of 15 tomato plants and jasmonic acid on a second group of 15 tomato plants. then students placed one hornworm, with a mass of 30 to 35 mg on each tomato plant. The students recorded the mass of the hornworms after one week. Which of these should the students do to make their conclusion more scientifically valid?
a. they should spray each tomato plant with more than one acid
b. they should place different kinds of worms on the tomato plants
c. they should place more than one hornworm on each tomato plant
d. they should determine the average mass of the tomato plants along with the mass of the hornworms
they should place more than one hornworm on each tomato plant
Answer: Option D
They should determine the average mass of the tomato plants along with the mass of the hornworms
Explanation:
Determining the average mass of the tomato along with the mass of hornworms will tell the researcher whether the hornworms is still feeding on the tomato or not.
If the mass of the tomato is reducing, then the researcher would know that the acid is not effective in keeping the hornworms away from the tomato or otherwise.
The double-reciprocal transformation of the Michaelis-Menten equation, also called the Lineweaver-Burk plot, is given by
1/V0= KM/(Vmax[S]) + 1/Vmax
To determine Km from a double-reciprocal plot, you would:
a. multiply the reciprocal of the x-axis intercept by –1.
b. multiply the reciprocal of the y-axis intercept by –1.
c. take the reciprocal of the x-axis intercept.
d. take the reciprocal of the y-axis intercept.
e. take the x-axis intercept, where V0= 1/2 Vmax.
Answer:
option a
Explanation:
Lineweaver–Burk plot also known as double displacement plot is used for the study of enzyme kinetics.
It is reciprocal of Michaelis-Menten equation. The Michaelis-Menten equation for enzyme catalysis is as follows:
[tex]V=\frac{V_{max} [S]}{K_m+[S]}[/tex]
Take the reciprocal
[tex]\frac{1}{V} =\frac{K_m+[S]}{V_{max}[S]} =\frac{K_m}{V_{max}} \frac{1}{[S]} +\frac{1}{V_{max}}[/tex]
The plot or graph between 1/V and 1/[S] is called Lineweaver–Burk plot.
Slope of the plot is [tex]\frac{K_m}{V_{max}}[/tex].
Intercept of y-axis is .
Intercept of x-axis is [tex]-\frac{1}{K_m}[/tex]
Therefore, by taking the reciprocal of intercept of x-axis and multiplying by -1, Km value can be determined.
Therefore, the correct option is a.
To determine Km from a Lineweaver-Burk plot, multiply the reciprocal of the x-axis intercept by -1.
Explanation:To determine the Michaelis constant (Km) from a double-reciprocal plot or Lineweaver-Burk plot, you need to focus on the x-axis intercept. According to the Lineweaver-Burk equation:
1/V0 = (Km/Vmax)(1/[S]) + (1/Vmax)
Where V0 is the initial velocity, Vmax is the maximum velocity, [S] is the substrate concentration, and Km is the Michaelis-Menten constant.
To find Km, you should take the reciprocal of the x-axis intercept and multiply it by -1. This is because the x-axis intercept represents -1/Km in the Lineweaver-Burk plot. Therefore, the correct answer is:
a. multiply the reciprocal of the x-axis intercept by -1.In the quantum mechanical model of the atom, electrons are said to occupy three dimensional regions of probability around the nucleus called Each of these is assigned a to indicate its relative size and and energy:________
Answer:
Although the question is not clear enough, I'll explain in the most helpful way that I can.
Explanation: The Quantum Mechanical Model of the atom is one of two models that explains the structure of an atom. In this model, it is imposssible to know the exact position and momentum of an electron at the same time and thus its position is uncertain. However, electrons are said to occupy three dimensional regions of probability referred to as 'ORBITALS'. You can simply refer to the orbitals as where there is very high likelihood for one or two electrons to be found. Each of these orbials are depicted with a number, n and a letter(s,p,d,f or g) eg 1s, 2p, etc. The 'number' signifies the distance of the orbital from the nucleus and the energy level of the electron in an atom while the 'letter' indicates the shape of the orbital, for example, the s-orbital is spherical in shape.
I hope this helps!
In a sealed gas-liquid system at constant temperature, eventually...?
there will be no more evaporation.
the rate of evaporation equals the rate of condensation.
the rate of condensation decreases to zero.
the rate of condensation exceeds the rate of evaporation.
Explanation:
Evaporation
It is the process of converting liquid into vapors .
Condensation
It is the process of converting vapors back into liquid state .
Suppose if we have a sealed container and we are supplying it with no or little heat , we will see that as we increase heat , the particles starts moving faster .When they move they also colloide and transfer energies .The kinetic energies of certain molecule increase to an extent that they leave the other particles and escape in atmosphere .That is evaporation occurs .At the same time when these vapors collide with each other or with the walls of container they get cooled and again get converted to liquid state .It is seen that a equilibrium is reached when "rate of evaporation becomes equal to rate of condensation ".
Question 1: A substance that is soluble in two liquids and makes an emulsion last longer is called what?
Question 2: What is the process called that reduces the size of particles so emulsions will last longer?
Answer:
1. A substance that is soluble in two liquids and makes an emulsion last longer is called "Emulsifier".
2. The process that reduces the size of particles so emulsions will last longer is called "Homogenization".
Explanation:
Emulsifiers are additives which enable two liquids to mix around each other. Water and oil separate in a container, for an instance, but using an emulsifier can make the liquids blend along. It is widely used on various foods and beverages. Egg yolks and mustard are a few examples of emulsifiers.
Homogenization is the physical mechanism by which the fat molecules in milk are broken down because then they stay incorporated instead of segregated as cream. Majority of the milk sold in the United States is homogenized.
If 0.500 moles of sulfuric acid and 0.500 moles of Aluminum hydroxide react to make water and aluminum sulfate. a) which reactant is the limiting reactant b) How many moles of Aluminum sulfate is produced?
Answer:
The correct answer to a) is sulfuric acid
b) 1/6 moles of aluminum sulfate is produced
Explanation:
To solve this we need to write out the balaned chemical equation as follows
Al(OH)3(s) + 3 H2SO4(aq) -----> Al2 (SO4)3(aq) + 6 H2O(l)
Here we see that one mole of aluminium hydroxide reacts with three moles of sulphuric acid to form one mole of aluminium sulphate and six ,oles of water
Hence the limiting reactant in this question is the sulphuric acid as 0.5 moles of alumininium hydroxide requires 1.5 moles of sulphuric acid to completely use up the aluminium hydroxide present
Dividing the number of moles of the reactants present by the amount of moles of sulphuric acid required we have
Hence 3 mole of sulphric acid combines with 1 mole of Aluminium hydroxide
0.5 mole of sulfuric acid combines with 0.5÷3 or 1/6 mole of Aluminium hydroxide
Hence the correct answer is sulfuric acid
b) to solve this, since three moles of sulfuric acid produces one mole of aluminium sulfate then 0.5 moles of sulfuric acid produces 0.5/3 or 0.166 mole of aluminum sulfate
hence 1/6 moles of aluminum sulfate is produced
A BaSO4 slurry is ingested before the gastrointestinal tract is x-rayed because it is opaque to x-rays and defines the contours of the tract. Ba2+ ion is toxic, but the compound is nearly insoluble. If ΔG o at 37°C (body temperature) is 59.1 kJ/mol for the process BaSO4(s) ⇌ Ba2+(aq) + SO42−(aq) what is the [Ba2+] in the intestinal tract? (Assume that the only source of SO42− is the ingested slurry.)
Explanation:
The given reaction equation is as follows.
[tex]BaSO_{4}(s) \rightleftharpoons Ba^{2+}(aq) + SO_{4}^{2-}(aq)[/tex]
The value of [tex]\Delta G^{o}[/tex] = 59.1 kJ/mol
We know that ,
[tex]\Delta G^{o} = -RT ln K_{sp}[/tex]
or, [tex]ln K_{sp} = -(\frac{\Delta G^{o}}{RT}) [/tex]
= -(\frac{59.1 kJ/mol}{(8.314 \times 10^{-3} kJ/mol.K \times 310 K))}[/tex]
= -22.93
or, [tex]K_{sp} = e^{-22.93}[/tex]
= [tex]1.1 \times 10^{-10}[/tex]
[tex]K_{sp} = [Ba^{2+}][ SO_{4}^{2-}][/tex]
Therefore, [tex][Ba^{2+}] =\sqrt{K_{sp}}[/tex]
= [tex]\sqrt{ 1.1 \times 10^{-10}}[/tex]
= [tex]1.05 \times 10^{-5} M[/tex]
Therefore, we can conclude that the value of [tex][Ba^{2+}][/tex] in the intestinal tract is [tex]1.05 \times 10^{-5} M[/tex].
The concentration of Ba2+ (barium ions) in the intestinal tract following the ingestion of BaSO4 slurry can be calculated using the equilibrium constant (K) derived from the Gibbs free energy equation. After performing the calculations, [Ba2+] is found to be 3.45 x 10⁻⁶ M.
Explanation:The question is essentially asking for the concentration of Ba2+ ions in the intestinal tract following the ingestion of BaSO4 slurry, given a ΔG° value of 59.1 kJ/mol at 37°C. In order to solve this, we need to consider the process of the reaction: BaSO4(s) ⇌ Ba2+(aq) + SO42−(aq). From the Gibbs free energy equation, we can calculate the equilibrium constant (K) as: K = e^(-ΔG°/RT), where R is the gas constant (R = 8.314 J/molK) and T is the temperature in Kelvin (37°C = 310K).
Therefore, ΔG° = -RTlnK -> K=e^(-ΔG°/RT). We find K = e^(-(−59.1×10³J mol⁻¹)/((8.314 J K⁻¹ mol⁻¹)(310 K))), which gives K = 1.19 x 10⁻¹⁰. Since the equilibrium involves the dissolution of one BaSO4 molecule to give one Ba2+ ion and one SO42- ion, the equilibrium concentrations of Ba2+ and SO42- are equal. Hence, [Ba2+] = sqrt(K) = sqrt(1.19 x 10⁻¹⁰) = 3.45 x 10⁻⁶ M.
In conclusion, the concentration of Barium ions, Ba2+, in the intestinal tract following ingestion of BaSO4 slurry would be around 3.45 x 10⁻⁶M.
Learn more about Concentration of Barium Ions here:https://brainly.com/question/32261464
#SPJ3
Researchers tested a meteorite for organic molecules containing 13C and 15N, which are carbon and nitrogen atoms with one extra neutron. However, a skeptic questions whether these "heavy" carbon and nitrogen isotopes would readily bond to make organic molecules such as amino acids and nitrogenous bases. Would extra neutrons affect the bonding of heavy carbon and nitrogen atoms?
1.Yes, extra neutrons would make carbon and nitrogen more likely to bond.
2.No, because only electrons are involved in bonding.
3.No, because the number of protons remains the same.
4.Yes. Atoms with extra neutrons must also have extra electrons, which would affect bonding.
Answer:
The correct option is 2.No, because only electrons are involved in bonding.
Explanation:
The type of bond formed by carbon and nitrogen (carbon-nitrogen bond) is covalent bond
Also known as molecular bond, a covalent bond involves the sharing of pairs of electrons (known as bonding pairs or shared pairs) between the carbon and nitrogen atoms forming stable, balanced forces in attraction and repulsion as they share common electrons in their compounds.
This electron sharing covalent bond is what enables the formation of the several compounds between carbon and nitrogen for example, in an amine, nitrogen which has five electrons, has two remaining electrons that forms a lone pair whereby it can combine further with other elements.
Hence the factor that influences the bonds to make the numerous organic molecules is the available electrons which constitutes the shared electron pairs in covalent bonds while the neutrons which function is to keep the repulsive forces of positively charged protons from ripping the nucleus apart.
Liquid nitrogen has a density of 0.808 g/mL and boils at 77 K. Researchers often purchase liquid nitrogen in insulated 195-L tanks. The liquid vaporizes quickly to gaseous nitrogen (which has a density of 1.15 g/L at room temperature and atmospheric pressure) when the liquid is removed from the tank. Suppose that all 195 L of liquid nitrogen in a tank accidentally vaporized in a lab that measured 10.00 m× 10.00 m× 2.50 m.What maximum fraction of the air in the room could be displaced bythe gaseous nitrogen?
Answer:
The nswer to the question is
The maximum fraction of the air in the room that could be displaced by the gaseous nitrogen is 0.548 or 54.8 %
Explanation:
To solve the question we note that
The density of the liquid nitrogen = 0.808g/mL and the volume is 195 L tank (vaporised)
Therefore since density = mass/volume we have
mass = Density × volume = 0.808 g/mL × 195 L × 1000 ml/L =157560 g
In gaseous form the liquid nitrogen density =1.15 g/L
That is density = mass/volume and volume = mass/density = 157560 g/(1.15g/L) or
volume = 137008.69565 L
The dimension of the room = 10 m × 10 m × 2.5 m = 250 m³ and
1 m³ is equivalent to 1000 L, therefore 250 m³ = 250 m³ × 1000 L/m³ = 250000L
Therefore fraction of the volume occupied by the gaseous nitrogen =
137008.69565 L/250000 L = 0.548
Therefore the gaseous nitrogen occpies 54.8% of the room
To find the maximum fraction of air displaced by vaporized nitrogen in a room, calculate the mass of liquid nitrogen, convert it to gaseous volume, and compare it to the room's volume.
Explanation:When considering the accidental vaporization of 195 liters of liquid nitrogen in a closed room, we need to calculate the volume of the room and determine what fraction of the room's air could potentially be displaced by the nitrogen gas. To do this, we will use the given room dimensions and the densities of liquid and gaseous nitrogen. The room's volume is 10.00 m x 10.00 m x 2.50 m, which equals 250 cubic meters or 250,000 liters. The density of liquid nitrogen is 0.808 g/mL, and it converts to 0.808 kg/L since there are 1000 milliliters in a liter. Multiplying the density by the total volume of liquid nitrogen gives us the mass in kilograms, which is then converted to the volume of gaseous nitrogen at standard temperature and pressure using the given density of 1.15 g/L.
Now, converting the mass to volume for gaseous nitrogen, we can find out the fraction of room's air displaced by using the ratio of nitrogen gas volume over the room's total volume. This is an application of the ideal gas law where a given mass of gas occupies different volumes based on its phase (liquid or gas) and other conditions such as temperature and pressure.
Calculate the work (kJ) done during a reaction in which the internal volume contracts from 85 L to 12 L against an outside pressure of 2.4 atm.
Answer:
The work done on the system is 17.75_KJ
Explanation:
To solve this question we need to know the required equations from the given variables, thus
Initial volume = 85L
Final volume = 12L
External pressure = 2.4 atm.
work done = - PΔV
2.4×(85-12) = 175.2L×atm
Converting from L•atm to KJ is given by
1 L•atm = 0.1013 kJ
(175.2 L•atm) * (0.1013 kJ / 1 L•atm)
= 17.75 kJ
The work done on the system is 17.75_KJ
The work done on the system is -17.75 kJ.
Work done is obtained using the relation;
w = PΔV
where;
w = work done
V = change in volume
V1 = 85 L
V2 = 12 L
P = 2.4 atm
Hence;
w = 2.4 atm(12 - 85) L = -175.2 atm L
Now;
1 L atm = 101.325 J
-175.2 atm L = -175.2 atm L × 101.325 J/1 L atm = -17.75 kJ
Learn more: https://brainly.com/question/6592407
Calculate the number of moles of each compound, given the number of molecules. If you need to make a number a superscript, put a ^ in front of the number. For example, 2.45 x 1022 would be written as 2.45 x 10^22. 2.46 x 1021 molecules of CO2 10,000 molecules of H2O 8.75 x 1032 molecules of C6H12O6
The number of moles in each compound is:
2.46 x 10²¹ molecules CO₂ = 0.00408 mol CO₂10,000 molecules H₂O = 1.66 × 10⁻²⁰ mol H₂O8.75 x 10³² molecules C₆H₁₂O₆ = 1.45 × 10⁹ mol C₆H₁₂O₆What is Avogadro's number?
It is the number of atoms or molecules in one mole of a substance, equal to 6.023 × 10²³.
We want to convert molecules to moles, so Avogadro's number will be the conversion factor.
2.46 x 10²¹ molecules CO₂ × 1 mol CO₂/6.023 × 10²³ molecules = 0.00408 mol CO₂10,000 molecules H₂O × 1 mol H₂O/6.023 × 10²³ molecules = 1.66 × 10⁻²⁰ mol H₂O8.75 x 10³² molecules C₆H₁₂O₆ × 1 mol C₆H₁₂O₆/6.023 × 10²³ molecules = 1.45 × 10⁹ mol C₆H₁₂O₆The number of moles in each compound is:
2.46 x 10²¹ molecules CO₂ = 0.00408 mol CO₂10,000 molecules H₂O = 1.66 × 10⁻²⁰ mol H₂O8.75 x 10³² molecules C₆H₁₂O₆ = 1.45 × 10⁹ mol C₆H₁₂O₆Learn more about Avogadro's number here: https://brainly.com/question/8946174
Final answer:
To find the moles for CO2, H2O, and C6H12O6, we divide the number of molecules by Avogadro's number, yielding 4.09 × 10^-3 mol for CO2, 1.66 × 10^-20 mol for H2O, and 1.45 × 10^9 mol for C6H12O6.
Explanation:
To calculate the number of moles of each compound given the number of molecules, we will use Avogadro's number (6.022 × 10^23), which represents the number of particles in one mole of a substance. The formula to convert molecules to moles is:
Number of moles = (Number of molecules) / (Avogadro's number)
For CO2 (carbon dioxide):
Number of moles = (2.46 × 10^21 molecules) / (6.022 × 10^23 molecules/mol) ≈ 4.09 × 10^-3 mol
For H2O (water):
Number of moles = (10,000 molecules) / (6.022 × 10^23 molecules/mol) ≈ 1.66 × 10^-20 mol
For C6H12O6 (glucose):
Number of moles = (8.75 × 10^32 molecules) / (6.022 × 10^23 molecules/mol) ≈ 1.45 × 10^9 mol
Two hydraulic cylinders are connected. If the diameter of one piston is twice the other, the how does the pressure experienced by the smaller piston compare to the pressure experienced by the larger piston?
Answer:
They experience the same pressure
Explanation:
To answer this question, we recall Pascal's, Law Pascal's law states that an increase in pressure at a point in a confined cylinder containing a fluid, there is also an equal increase at all other points in that cylinder.
According to Pascal's law the pressure if the pressure expereienced by the larger diameter piston increases, the pressure experienced by the smaller diameter piston also increases by the same amount
However considering that pressure = Force/area F1/A1 =F2/A2
thus where A1 = πD²÷4 and A2 = πD²÷ 16 we have
we have F1×4/πD² = F2×16/πD² or F1 = 4× F2
They experience the same pressure but the larger cylinder delivers four times the force transmitted from he outside to the smaller cylinder
A K+ ion and a Cl− ion are directly across from each other on opposite sides of a membrane 7.700 nm thick. What is the electric force on the K+ ion due to the Cl− ion?
Answer:
[tex]-3.896\times 10^{-12} N[/tex] is an electric force on the potassium ion due to the chloride ion.
Explanation:
Charge on potassium ion = [tex]q_1=1.602\times 10^{-19} C[/tex]
Charge on chlorine ion = [tex]=q_2=-1.602\times 10^{-19} C[/tex]
Separation between these two charges = r = [tex]7.700 nm=7.700\times 10^{-9} m[/tex]
[tex]1 nm=10^{-9} m[/tex]
Electric force on the potassium ion due to the chloride ion = F
Coulomb's law is given as ;
[tex]F=K\times \frac{q_1\times q_2}{r^2}[/tex]
[tex]q_1,q_2[/tex] = Charges on both charges
r = distance between the charges
K = Coulomb constant =[tex]9\times 10^{9} N m^2/C^2[/tex]
[tex]F=9\times 10^{9} N m^2/C^2\times \frac{1.602\times 10^{-19} C\times (-1.602\times 10^{-19} C)}{(7.700\times 10^{-9} m)^2}[/tex]
[tex]F=-3.896\times 10^{-12} N[/tex]
(negative sign indicates that attractive force is exerting between two ions)
[tex]-3.896\times 10^{-12} N[/tex] is an electric force on the potassium ion due to the chloride ion.
Final answer:
To find the electric force on a K+ ion due to a Cl- ion, Coulomb's law is used, employing the values for Coulomb's constant, the charge of each ion, and the distance between the ions.
Explanation:
The question refers to calculating the electric force on a K+ ion due to a Cl- ion across a membrane using Coulomb's law. Coulomb's law is defined as F = k * |q1*q2| / r^2, where F is the force between the charges, k is the Coulomb's constant (8.987 x 10^9 N m^2/C^2), q1 and q2 are the magnitudes of the charges (for K+ and Cl-, it's 1.602 x 10^-19 C), and r is the distance between the charges (7.700 nm or 7.700 x 10^-9 m). Plugging these values into Coulomb's law:
F = (8.987 x 10^9) * (1.602 x 10^-19)^2 / (7.700 x 10^-9)^2
After calculating, you will find the electric force exerted on the K+ ion due to the Cl- ion. This principle is crucial in understanding the movement of ions across cell membranes, influencing cell behavior and function.
Magnesium reacts with a certain element to form a compound with the general formula MgX. What would the most likely formula be for the compound formed between potassium and element X?
Answer:
K2X
Explanation:
Valency can be defined as the combining power of an element. It is the valency that dictates the value an element will have when writing a chemical formula for its compound.
MgX is a compound of magnesium and an element X. The valency of magnesium in most of its compound is +2. Now for the 2 to have been absent in the chemical formula, this shows that the element X itself have a valency if -2 for the valencies of both to have canceled out.
Now considering the element potassium, it is an alkaline metal belonging to group 1 of the periodic table. Hence, it is expected that it has a valency of +1
Forming a compound with element X means there would be an exchange of valencies between the two. We have established that x has a valency of -2. The formula of the compound thus formed by exchanging the valencies of both element would be K2X
The most likely formula for the compound formed between potassium and element X would be [tex]K_2X[/tex].
Magnesium reacts with X to form MgX.
Magnesium has 2 valence electrons ([tex]Mg^2^+[/tex]), in order to form MgX with the element X, it means X must have the capacity to accept the 2 valence electrons from Mg. Thus, X would carry a deficit of 2 electrons in its valence shell ([tex]X^2^-[/tex]).
Potassium has one valence electron ([tex]K^+[/tex]). In order for [tex]X^2^-[/tex] to react with potassium, 2 atoms of potassium would be needed to donate their electrons each to [tex]X^2^-[/tex] in order for X to become stable. Thus
2[tex]K^+[/tex] + [tex]X^2^-[/tex] ---> [tex]K_2X[/tex]
More on forming compounds from atoms can be found here: https://brainly.com/question/1285376
Which of the following statements about noncovalent interactions are true? Charge-charge interactions (salt bridge, ionic bond) are electrostatic interactions between a pair of ions. The energies of dipolar interactions depend on the relative orientation of the dipole. Van der Waals interactions have the shortest interaction range of noncovalent interactions. Hydrogen bonds are not directional.
Answer:
Charge-charge interactions (salt bridge, ionic bond) are electrostatic interactions between a pair of ions is True.
Explanation:
Electrostatic interaction between pairs of ions involves the transfer of ion/charges from two bonding elements in their ionic state
A stock solution is prepared by dissolving 12.5 g of NaCI in enough water to prepare 150.0 mL of solution. What volume of this stock solution will be used to prepare a diluted solution that is 250.0 mL of a 0.500 M solution of NaCI?
Answer:
8.75 mL
Explanation:
First, we calculate the molar mass of NaCl = molar mass of Na + molar mass of Cl. Molar mass of Na = 23 g/mol, molar mass of Cl = 35.5 g/mol.
So molar mass NaCl = (23 + 35.5) g/mol = 58.5 g/mol. The number of moles ,n of NaCl in 12.5g is n = mass of NaCl/ molar mass NaCl = 12.5 g / 58.5 g/mol = 0.214 mol.
The molarity, M of 150 mL M = number of moles/ volume = 0.214 mol / 150 mL = 1.427 M.
We now calculate the number of moles of NaCl in 250 mL of 0.500 M.
Number of moles, n = molarity × volume. molarity = 0.500 M, volume = 250 mL. So n = 0.500 × 250 = 0.125 moles. Since we have 0.125 moles in the dilute 250 mL solution, the volume of the 150 mL 1.43 M solution required is number of moles in 250 mL solution/molarity of 150 mL solution = 0.125 mol / 1.427 M = 0.0875 L = 8.75 mL
When calculating the wattage for a power supply by estimating its needs, how much wattage would you allow for a fan?
Answer:
A fan is a common house appliance which is attached to the ceiling and uses an electric motor to rotate blades or paddles in a circular motion. Ceiling fans help cool a room by moving air which causes evaporative cooling. Fans range in size from 36 inches to 56 inches using 55 to 100 watts, a typical 48 inch ceiling fan will use 75 watts.
where you have
Hours Used Per Day:5
Power Use (Watts): 75
Price (kWh): 0.01
then you have
Cost Per Hour=0.0075
Cost Per Day= 0.0375
Cost Per Month=1.14
Cost Per Year=13.69
kWh Per Day: 0.38
Answer:
5W
Explanation: