At one SAT test site students taking the test for a second time volunteered to inhale supplemental oxygen for 10 minutes before the test. In fact, some received oxygen, but others (randomly assigned) were given just normal air. Test results showed that 42 of 66 students who breathed oxygen improved their SAT scores, compared to only 35 of 63 students who did not get the oxygen. Which procedure should we use to see if there is evidence that breathing extra oxygen can help test-takers think more clearly

Answers

Answer 1

the correct choice is:

E. 2-proportion Z-test

To determine if there is evidence that breathing extra oxygen can help test-takers think more clearly, we should use the 2-proportion Z-test.

This test is appropriate because we are comparing two proportions (the proportion of students who improved their SAT scores among those who breathed oxygen and those who did not) from two independent groups (students who received oxygen and those who did not).

Therefore, the correct choice is:

E. 2-proportion Z-test

The probable question maybe:

At one SAT test site students taking the test for a second time volunteered to inhale supplemental oxygen for 10 minutes before the test. In fact, some received oxygen but others (randomly assigned) were given just normal air. Test results showed that 42 of 66 students who breathed oxygen improved their SAT scores, compared to only 35 of 63 students who did not get the oxygen Which procedure should we use to see if there is evidence that breathing extra oxygen can help test-takers think more clearly?

A. 1-proportion 2-test

B matched pairs t-test

C 2-sample t-test

D. 1-sample t-test

E. 2-proportion Z-test

Answer 2

A chi-square test for independence should be used to analyze the effect of breathing extra oxygen on SAT score improvements, by comparing observed frequencies of score improvements with expected frequencies under the null hypothesis.

To determine if there is evidence that breathing extra oxygen can help test-takers think more clearly, a statistical test of significance is appropriate. In this scenario, you would typically use a chi-square test for independence to see if there is a significant association between the treatment (oxygen vs. normal air) and the outcome (improvement in SAT scores). The chi-square test compares the observed frequencies of events (here, the number of students who improved) with the frequencies we would expect to see if there were no association between the treatment and the outcome.

The procedure involves calculating a chi-square statistic, which reflects how far the observed frequencies are from the expected frequencies assuming the null hypothesis is true (no effect of breathing extra oxygen). If the resulting p-value is less than the chosen significance level (commonly 0.05), we can reject the null hypothesis and conclude that there is evidence to suggest a relationship between breathing extra oxygen and improved SAT scores.


Related Questions

MULTIPLE LINEAR REGRESSION What is the model for the multiple linear regression when weight gain is a dependent variable and the explanatory variables are hemoglobin change, tap water consumption, and age. Be sure to define all symbols and model assumptions.

Answers

Multiple linear regression can be said to be a statistical technique that uses several explanatory variables to predict the outcome of a response variable.

The Formula for Multiple Linear Regression Is

yi= β0+β1xi1+β2xi2+...+βpxip+ϵ

where, for i=n observations

yi​= Dependent variable

xi​= Expanatory variable

β0​= y - intercept (constant term)

βp​= Slope coefficients for each explanatory variable

ϵ= The model’s error term (also known as the residuals)​

From the question written above,

yi= weight gain which is dependent on the explanatory variables which are hemoglobin change, tap water consumption, and age. i.e. xi

Model assumptions

1. There is a linear relationship between the dependent variables and the independent variables.

2. The independent variables are not too highly correlated with each other.

3. yi observations are selected independently and randomly from the population.

4. Residuals should be normally distributed with a mean of 0 and variance σ.

(Investopedia, 2019)

As part of quality control, a pharmaceutical company tests a sample of manufacturer pills to see the amount of active drug they contain is consistent with the labelled amount. That is, they are interested in testing the following hypotheses:

H0:μ=100H0:μ=100 mg (the mean levels are as labelled)

H1:μ≠100H1:μ≠100 mg (the mean levels are not as labelled)

Assume that the population standard deviation of drug levels is 55 mg. For testing, they take a sample of 1010 pills randomly from the manufacturing lines and would like to use a significance level of α=0.05α=0.05.

They find that the sample mean is 104104 mg. Calculate the zz statistic.

−17.89−17.89

−8.00−8.00

−5.66−5.66

−2.53−2.53

−0.80−0.80

0.800.80

2.532.53

5.665.66

8.008.00

17.8917.89

Answers

Answer:

The z statistic is 0.23.

Step-by-step explanation:

Test statistic (z) = (sample mean - population mean) ÷ sd/√n

sample mean = 104 mg

population mean (mu) = 100 mg

sd = 55 mg

n = 10

z = (104 - 100) ÷ 55/√10 = 4 ÷ 17.393 = 0.23

Final answer:

The z-statistic for the given hypothesis test is calculated based on the sample mean, population standard deviation, and sample size.

Explanation:

The z-statistic for this hypothesis test can be calculated using the sample mean, population standard deviation, and sample size.

Given that the sample mean is 104 mg, population standard deviation is 55 mg, and sample size is 10 pills, the z-statistic is calculated as (104 - 100) / (55 / sqrt(10)), which equals 0.8.

Therefore, the correct z-statistic for this scenario is 0.80.

The number of defective components produced by a certain process in one day has a Poisson
distribution with mean of 20. Each defective component has probability of 0.60 of being
repairable.

(a) Find the probability that exactly 15 defective components are produced.
(b) Given that exactly 15 defective components are produced, find the probability that
exactly 10 of them are repairable.
(c) Let N be the number of defective components produced, and let X be the number of
them that are repairable. Given the value of N, what is the distribution of X?
(d) Find the probability that exactly 15 defective components are produced, with exactly 10
of them being repairable.

Answers

Final answer:

To find the probability of different scenarios involving defective components produced by a certain process, we can use the Poisson and binomial distributions.

Explanation:

(a) To find the probability that exactly 15 defective components are produced, we can use the formula for the Poisson distribution:

P(X=k) = (e^(-λ) * λ^k) / k!

Here, λ is the mean number of defective components produced in one day, which is 20. So, λ = 20. Substituting this value into the formula, we get:

P(X=15) = (e^(-20) * 20^15) / 15!

Calculating this expression will give us the probability.

(b) To find the probability that exactly 10 of the 15 defective components are repairable, we can use the binomial distribution since each defective component has a fixed probability of being repairable. Here, the number of trials is 15, and the probability of success (being repairable) is 0.60. Substituting these values into the binomial distribution formula, we can calculate the probability.

(c) Given the value of N, the number of defective components produced, X has a binomial distribution since X represents the number of repairable defective components. The probability of each component being repairable is constant, so it follows a binomial distribution.

(d) To find the probability that exactly 15 defective components are produced, with exactly 10 of them being repairable, we can multiply the probabilities obtained from parts (a) and (b) together, since these events are independent. Multiplying the results will give us the desired probability.

Learn more about Poisson and binomial distributions here:

https://brainly.com/question/7283210

#SPJ11

(a) The probability that exactly 15 defective components are produced is 0.0516

(b) Given that exactly 15 defective components are produced, the probability that exactly 10 of them are repairable is 0.1241.

(c) Given the value of N, X follows a binomial distribution

(d) The probability that exactly 15 defective components are produced, with exactly 10 of them being repairable is 0.0064.

(a) Probability of Exactly 15 Defective Components

A Poisson distribution with mean λ = 20 is used. The formula is:

[tex]P(X = k) = (e^{(-\lambda)} * \lambda^k) / k![/tex]

For k = 15 and λ = 20:

[tex]P(X = k) = (e^{(-20)} * 20^15) / 15! \approx 0.0516[/tex]

(b) Probability that Exactly 10 Out of 15 Defective Components are Repairable

This scenario uses a binomial distribution.

Given N = 15 defectives, the probability that exactly 10 are repairable (with p = 0.60) is:

[tex]P(X = 10 | N = 15) = C(15,10) * 0.6^{10} * 0.4^{5} \approx 0.1241[/tex]

(c) Distribution of X Given N

Given N = n

X (number of repairable components) follows a binomial distribution Bin(n, 0.60).

So, X | N = n follows Bin(n, 0.60).

(d) Probability of 15 Defective Components with Exactly 10 being Repairable

The joint probability is the product of the Poisson and binomial probabilities:

[tex]P(X = 15) * P(Y = 10 | X = 15)= 0.0516 * 0.1241 \approx 0.0064[/tex]

A sprint duathlon consists of a 5 km run, a 20 km bike ride, followed by another 5 km run. The mean finish time of all participants in a recent large duathlon was 1.67 hours with a standard deviation of 0.25 hours. Suppose a random sample of 30 participants was taken and the mean finishing time was found to be 1.59 hours with a standard deviation of 0.30 hours. What is the standard error for the mean finish time of 30 randomly selected participants

Answers

Answer:

The standard error for the mean finish time of 30 randomly selected participants is 0.055 hours

Step-by-step explanation:

Standard error = sample standard deviation ÷ sqrt (sample size)

sample standard deviation = 0.30 hours

sample size = 30

standard error = 0.30 ÷ sqrt(30) = 0.30 ÷ 5.477 = 0.055 hours

(1 point) Find the length L and width W (with W≤L) of the rectangle with perimeter 100 that has maximum area, and then find the maximum area.

Answers

Answer:

Width = 25

Length = 25

Area = 625

Step-by-step explanation:

The perimeter of a rectangle is given by the sum of its four sides (2L+2W) while the area is given by the product of the its length by its width (LW). It is possible to write the area as a function of width as follows:

[tex]100 = 2L+2W\\L = 50-W\\A=LW=W*(50-W)\\A=50W - W^2[/tex]

The value of W for which the derivate of the area function is zero is the width that yields the maximum area:

[tex]A=50W - W^2\\\frac{dA}{dW}=0=50 - 2W\\ W=25[/tex]

With the value of the width, the length (L) and the area (A) can be also be found:

[tex]L=50-25 = 25\\A=W*L=25*25\\A=625[/tex]

Since the values satisfy the condition W≤L, the answer is:

Width = 25

Length = 25

Area = 625

In order to complete the service line information on claims when units of measure are involved insurance math is required. For example this is the HCPCS description for an injection of the drug Eloxatin: J9263 oxaliplatain, 0.5 mg if the physician provided 50 mg infusion of the drug instead of an injection the service line is j9263 x 100 to report a unit of 50(100x 0.5 mg=50). What is the unit reported for service line information if a 150 mg infusion is provided?

Answers

Answer:

The service line is J9263 x 300 to report a unit of 150(300x 0.5 mg = 150).                    

Step-by-step explanation:

The drug J9263 Eloxatin contains 0.5 mg oxaliplatain.

For a infusion of 50 mg the unit reported for service line information is:

- Service line: J9263 x 100

- Unit reported for service line information: 50 = 100 x 0.5 mg

Hence, for a infusion of 150 mg, the unit reported for service line information is:

- Unit reported: 150(300 x 0.5 mg = 150)

- Service line information: J9263 x 300

Therefore, if the physician provided 150 mg infusion of the drug instead of an injection the service line is J9263 x 300 to report a unit of 150(300x 0.5 mg = 150).

I hope it helps you!                          

The unit reported for service line information for 150 mg infusion based on the injection description is :

150(300x 0.5mg = 150)

j9263 × 300

Given the injection description :

0.5 mg if physician provided 50 mg of infusion

Service line = j9263 × 100

For 150 mg infusion :

(150 mg ÷ 50 mg) = 3

Unit reported would be:

[50(100x 0.5mg = 150)] × 3 = 150(300x 0.5mg=150)

3(j9263 × 100) = j9263 × 300

Therefore, the service line information and the unit reported would be:

150(300x 0.5mg = 150)j9263 × 300

Learn more : https://brainly.com/question/11277823

In a data set with a minimum value of 54.5 and a maximum value of 98.6 with 300 observations, there are 186 points less than 81.2. Find the percentile for 81.2.

Answers

Answer:

81.2 is the 62th percentile

Step-by-step explanation:

What is the interpretation for a percentile?

When a value V is said to be in the xth percentile of a set, x% of the values in the set are lower than V and (100-x)% of the values in the set are higher than V.

300 observations, there are 186 points less than 81.2. Find the percentile for 81.2.

So

[tex]p = \frac{186}{300} = 0.62[/tex]

81.2 is the 62th percentile

Mary got 85% correct on her math test. Mary missed 6 questions. How many total questions were on her math final?

Answers

Mary had 40 questions on the test.

Answer: there were 40 questions on her math final.

Step-by-step explanation:

Let x represent the total number of questions in the math test.

Mary got 85% correct on her math test. This means that the number of questions that she got right is

85/100 × x = 0.85 × x = 0.85x

This also means that the number of questions that she missed would be

x - 0.85x = 0.15x

Therefore, if Mary missed 6 questions, it means that

0.15x = 6

Dividing both sides of the equation by 0.15, it becomes

0.15x/0.15 = 6/0.15

x = 40

Use the binomial theorem to find the coefficient of xayb in the expansion of (5x2 + 2y3)6, where a) a = 6, b = 9. b) a = 2, b = 15. c) a = 3, b = 12. d) a = 12, b = 0. e) a = 8, b = 9.

Answers

Answer:

Step-by-step explanation:

                    1

                1      1

            1      2      1

         1     3      3      1

      1    4     6       4       1

   1   5    10     10       5     1

 1    6   15   20      15    6     1

1    6   15   20      15    6     1

we use these for the expansion of (5x² + 2y³)⁶

1(5x²)⁶(2y³)⁰ + 6(5x²)⁵(2y³)¹ + 15(5x²)⁴(2y³)² + 20(5x²)³(2y³)³+  15(5x²)²(2y³)⁴+ 6(5x²)¹(2y³)⁵ + 1(5x²)⁰(2y³)⁶

78125ₓ¹²+187500ₓ¹⁰ y³ +37500ₓ⁸y⁶+20000ₓ⁶y⁹+6000x⁴y¹²+960x²y¹⁵+2y¹⁸

a.)a = 6, b = 9. the coefficient of xᵃyᵇ ( 20000ₓ⁶y⁹) = 20000

b) a = 2, b = 15. the coefficient of xᵃyᵇ ( 960x²y¹⁵) = 960

c) a = 3, b = 12. the coefficient of xᵃyᵇ is not present

d) a = 12, b = 0 the coefficient of xᵃyᵇ ( 78125ₓ¹²)  = 78125

e) a = 8, b = 9. the coefficient of xᵃyᵇ is not present

The coefficients of xᵃyᵇ for respective given values of a and b have been provided below.

We are given the expression;

(5x² + 2y³)⁶

Using online binomial expansion calculator gives us;

15625x¹² + 37500x¹⁰y³ + 37500x⁸y⁶ + 20000x⁶y⁹ + 6000x⁴y¹² + 960x²y¹⁵ + 64y¹⁸

We want to find the coefficient of xᵃyᵇ in the binomial expansion;

1) When a = 6 and b = 9, the coefficient is 20000

2) When a = 2, b = 15; the coefficient is 960

3) When a = 3 and b = 12; there is no coefficient

4) When a = 12 and b = 0; the coefficient is 15625

5) When a = 8 and b = 9; there is no coefficient.

Read more at; https://brainly.com/question/13672615

Given the following: zA = 20 - 3x zB = 18 - 2y, where z is marginal utility per dollar spent, x is the amount spent on product A, and y is the amount spent on product B. Assume that the consumer has $14 to spend on A and B—that is: x + y = $14.

Instructions: Enter your answers as whole numbers.

a. How is the $14 best allocated between A and B?

$ on A.

$ on B.

b. How much utility will the marginal dollar yield? utils.

Answers

Answer:

a. x= $6, y= $8

b. z= $2

Step-by-step explanation:

at equilibrium, the marginal utility per dollar spent will be equal i.e

zA=zB

20-3x=18-2y

upon simplification, we arrive at

[tex]x=\frac{2}{3} (1+y)\\[/tex]......equation 1

since the total amount to spend is $14, then

x+y=14

x=14-y..............equation 2

if we solve equation 1 and equation 2 simultaneously

[tex]14-y=\frac{2}{3} (1+y)\\42-3y=2+2y\\5y=40\\y=8[/tex]

Hence for y=8

x=14-y=14-8

x=6

Hence the amount spent on Product A is $6 and the amount spent on product B is $8

b. to determine the amount of utility the marginal dollar will yield, we substitute the values of y and x into the the given equation,

zA=20-3x=20-3(6)

zA=20-18=2

zB=18-2y=18-2(8)

zB=18-16=2

hence the amount spent on the marginal utility is $2

Show triangle XMZ is congruent to triangle YMZ. Support each part of your answer. Hint: mark the diagram.

Answers

Step-by-step explanation:

Let x be line xy.

y represents line zm.

z is line zx or line zy

The area of one of the smaller triangles is x/2* y.

same for the other triangle.

The perimeter for either one of the triangles is x/2+y+z.

Identify the rule of inference that is used to derive the conclusion "You do not eat tofu" from the statements "For all x, if x is healthy to eat, then x does not taste good," "Tofu is healthy to eat," and "You only eat what tastes good."

Answers

"You do not eat tofu" is derived using the Modus Tollens rule of inference.

The rule of inference that is used to derive the conclusion "You do not eat tofu" from the given statements is Modus Tollens.

Modus Tollens is a valid deductive argument form that follows this structure:

1. If P, then Q.

2. Not Q.

3. Therefore, not P.

The statements correspond to:

1. For all x, if x is healthy to eat, then x does not taste good.

2. Tofu is healthy to eat.

3. You only eat what tastes good.

Using these statements, we can infer:

1. If tofu is healthy to eat, then tofu does not taste good. (From statement 1)

2. Tofu does not taste good. (From statement 2 and the derived inference)

3. Therefore, you do not eat tofu. (Using Modus Tollens with statement 3 and the derived inference)

So, the conclusion "You do not eat tofu" is derived using the Modus Tollens rule of inference.

To learn more on Modus Tollens rule click here:

https://brainly.com/question/33164309

#SPJ12

Final answer:

The rule of inference used to derive the conclusion 'You do not eat tofu' is called Modus Tollens, which allows to deduce that if 'p implies q' is true and 'q' is false, then 'p' must also be false.

Explanation:

The student is asking about a logical inference rule used to derive a conclusion from a set of premises. Considering the provided statements, which can be summarized as:

For all x, if x is healthy to eat, then x does not taste good (All healthy foods taste bad).

Tofu is healthy to eat.

You only eat what tastes good.

We can see that the rule of inference used here is Modus Tollens. This rule of inference suggests that if we have a conditional statement (if p then q) and it is given that the consequent q is false (not q), then the antecedent p must also be false (not p).

To apply Modus Tollens:

Translate the given information into logical statements:
a) If something is healthy (p) then it does not taste good (q).
b) Tofu is healthy (p).
c) You do not eat what does not taste good (¬q).

Since tofu is healthy (p), it does not taste good as per the given rule (therefore, q is true). But the third statement says you do not eat what does not taste good, meaning (¬q). If (¬q) is valid, then by Modus Tollens, you do not eat tofu (¬p).

Thus, the usage of Modus Tollens allows us to infer that 'You do not eat tofu' from the given premises.

For example, the auctioneer has estimated that the likelihood that the second bidder will bid $2,000,000 is 90%. a) Use a decision tree to determine the optimal decision strategy for which bid to accept. b) Draw a risk profile for the optimal decision.

Answers

Answer:

See explanation to get answer.

Step-by-step explanation:

Solution

As per the data and information given in the question, there are three Bidders, one each on Monday, Tuesday and Wednesday.

Bidder 1 may bid on Monday either for $2,000,000 or $3,000,000 with probabilities 0.5 each

Therefore expected pay-off for Bidder 1 is $2,500,000 (2,000,000*.52 + 3,000,000*.5)

Bidder 2 may bid on Tuesday either for $2,000,000 with probability 0.9 or $4,000,000 with probability 0.1

Therefore expected pay-off for Bidder 2 is $2,200,000 (2,000,000*.9 + 4,000,000*.1)

Bidder 3 may bid on Wednesday either for $1,000,000 with probability 0.7 or for $4,000,000 with probability 0.3

Therefore expected pay-off for Bidder 3 is $1,900,000 (1,000,000*.7 + 4,000,000*.3)

Based on the comparison of the above mentioned calculations for the expected pay-off for the bidders, it is recommended that the optimal decision strategy among the bidders is to go for Bidder 1 with highest expected pay-off of $2,500,000 and accept the bid of Bidder 1.

Risk profile for the optimal solution is $2,000,000 with probability 0.5 and $3,000,000 with probability 0.5

Bid may be for $4,000,000 with probability of 0.1 by Bidder 2 or with probability 0.3 by Bidder 3

Lucy is using a one-sample t ‑test based on a simple random sample of size n = 22 to test the null hypothesis H 0 : μ = 16.000 cm against the alternative H 1 : μ < 16.000 cm. The sample has mean ¯¯¯ x = 16.218 cm and standard deviation is s = 0.764 cm. Determine the value of the t ‑statistic for this test. Give your answer to three decimal places.

Answers

Answer:

The value of test statistic is 1.338

Step-by-step explanation:

We are given the following in the question:  

Population mean, μ = 16.000

Sample mean, [tex]\bar{x}[/tex] = 16.218

Sample size, n = 22

Alpha, α = 0.05

Sample standard deviation, s = 0.764

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 16.000\text{ cm}\\H_A: \mu < 16.000\text{ cm}[/tex]

We use one-tailed t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{16.218 - 16.000}{\frac{0.764}{\sqrt{22}} } = 1.338[/tex]

Thus, the value of test statistic is 1.338

10) Thirty-seven percent of the American population has blood type O+. What is the probability that at least four of the next five Americans tested will have blood type O+?

Answers

Answer:

0.06597

Step-by-step explanation:

Given that thirty-seven percent of the American population has blood type O+

Five Americans are tested for blood group.

Assuming these five Americans are not related, we can say that each person is independent of the other to have O+ blood group.

Also probability of any one having this blood group = p = 0.37

So X no of Americans out of five who were having this blood group is binomial with p =0.37 and n =5

Required probability

=The probability that at least four of the next five Americans tested will have blood type O+

= [tex]P(X\geq 4)\\= P(X=4)+P(x=5)\\= 5C4 (0.37)^4 (1-0.37) + 5C5 (0.37)^5\\= 0.06597[/tex]

Answer:

Required probability = 0.066

Step-by-step explanation:

We are given that Thirty-seven percent of the American population has blood type O+.

Firstly, the binomial probability is given by;

[tex]P(X=r) =\binom{n}{r}p^{r}(1-p)^{n-r} for x = 0,1,2,3,....[/tex]

where, n = number of trails(samples) taken = 5 Americans

           r = number of successes = at least four

           p = probability of success and success in our question is % of

                 the American population having blood type O+ , i.e. 37%.

Let X = Number of people tested having blood type O+

So, X ~ [tex]Binom(n=5,p=0.37)[/tex]

So, probability that at least four of the next five Americans tested will have blood type O+ = P(X >= 4)

P(X >= 4) = P(X = 4) + P(X = 5)

                = [tex]\binom{5}{4}0.37^{4}(1-0.37)^{5-4} + \binom{5}{5}0.37^{5}(1-0.37)^{5-5}[/tex]

                = [tex]5*0.37^{4}*0.63^{1} +1*0.37^{5}*1[/tex] = 0.066.

State whether the data described below are discrete or continuous, and explain why. The volumes (in cubic feet) of dilferent rooms A. The data are discrete because the data can only take on specific values. B. The data are continuous because the data can only take on specific values. C. The data are discrete because the data can take on any value in an interval. D. The data are continuous because the data can take on any value in an interval

Answers

Answer:

Option D) The data are continuous because the data can take on any value in an interval          

Step-by-step explanation:

Discrete Data:

The value of discrete data can be expressed in whole numbers.They cannot take all the values within an interval.Discrete variables are usually counted not measured.

Continuous data:

The value of continuous data can be expressed in decimals.They can take all the values within an interval.Continuous variables are usually measured not counted.

The volumes (in cubic feet) of different rooms

Since the volume can be expressed in decimals, it can take all the values within an interval. Also volume is measured not counted. Hence, it is a continuous variable.

Thus, the correct answer is:

Option D) The data are continuous because the data can take on any value in an interval

Final answer:

The correct answer is D: The data are continuous because the data can take on any value in an interval.

Explanation:

The volumes (in cubic feet) of different rooms would be considered continuous data because they can take on any value within an interval.

Unlike discrete data, which can only take on specific counting numbers, continuous data includes an infinite number of potential values.

For instance, a room can have a volume of 500.5 cubic feet, 500.55 cubic feet, 500.555 cubic feet, and so forth.

This level of precision is due to the fact that volume is a measurable attribute that does not have to be a whole number and can include fractions or decimals as well.

Therefore, the correct answer is D: The data are continuous because the data can take on any value in an interval.

Listed below are body temperatures from five different subjects measured at 8 AM and again at 12 AM.
Find the values of d and s_d. In​ general, what does μ_d represent?
Temperature (°F)at 8 AM 97.5 99.3 97.8 97.5 97.4
Temperature (°F)at 12 AM 98.0 99.6 98.1 97.1 97.7

Answers

Answer:

The value of [tex]\bar d[/tex] is -0.2.

The value of [tex]s_{\bar d}[/tex] is 0.3464.

[tex]\mu_{d}[/tex] = mean difference in body temperatures.

Step-by-step explanation:

The data for body temperatures from five different subjects measured at 8 AM and again at 12 AM are provided.

The formula of [tex]\bar d[/tex] and [tex]s_{\bar d}[/tex] are:

[tex]\bar d=\frac{1}{n}\sum (x_{1}-x_{2})[/tex]

[tex]s_{\bar d}=\sqrt{\frac{1}{n-1}\sum (d_{i}-\bar d)^{2}}[/tex]

Consider the table below.

Compute the value of [tex]\bar d[/tex] as follows:

[tex]\bar d=\frac{1}{n}\sum (x_{1}-x_{2})=\frac{1}{5}\times-1=-0.2[/tex]

Thus, the value of [tex]\bar d[/tex] is -0.2.

Compute the value of [tex]s_{\bar d}[/tex] as follows:

[tex]s_{\bar d}=\sqrt{\frac{1}{n-1}\sum (d_{i}-\bar d)^{2}}=\sqrt{\frac{0.48}{4}}=0.3464[/tex]

Thus, the value of [tex]s_{\bar d}[/tex] is 0.3464.

The variable [tex]\mu_{d}[/tex] represents the mean difference in body temperatures  measured at 8 AM and again at 12 AM.

PLS HELP ASAP!!! WILL MARK BRAINLEST!!! Which statement best describes the relation (3, 4), (4, 3), (6, 3), (7, 8), (5, 4)? Question 2 options: The relation does not represent y as a function of x, because each value of x is associated with a single value of y. The relation does not represent y as a function of x, because each value of y is associated with two values of x. The relation represents y as a function of x, because one value of y is associated with two values of x. The relation represents y as a function of x, because each value of x is associated with a single value of y.

Answers

Answer:

The relation represents y as a function of x, because each value of x is associated with a single value of y.

Because all airline passengers do not show up for their reserved seat, an airline sells 125 tickets for a flight that holds only 120 passengers. The probability that a passenger does not show up is 0.10, and the passengers behave independently. a. What is the probability that every passenger who shows up can take the flight?b. What is the probability that the flight departs with empty seats?

Answers

Answer:

a) 0.9961

b) 0.9886          

Step-by-step explanation:

We are given the following information:

We treat passenger not showing up as a success.

P(passenger not showing up) = 0.10

Then the number of passengers follows a binomial distribution, where

[tex]P(X=x) = \binom{n}{x}.p^x.(1-p)^{n-x}[/tex]

where n is the total number of observations, x is the number of success, p is the probability of success.

Now, we are given n = 125

a) probability that every passenger who shows up can take the flight

[tex]P(x \geq 5) = 1- P(x = 0) - P(x = 1)-P(x = 2) - P(x = 3) - P(x = 4) \\= 1-\binom{125}{0}(0.10)^0(1-0.10)^{125} -...-\binom{125}{4}(0.10)^4(1-0.10)^{121}\\=0.9961[/tex]

b)  probability that the flight departs with empty seats

[tex]P(x > 5) =P(x\geq 5) - P(x = 5) \\= 0.9961 -\binom{125}{5}(0.10)^5(1-0.10)^{120}\\=0.9961-0.0075\\ = 0.9886[/tex]

According to some internet research, 85.2% of adult Americans have some form of medical insurance, and 75.9% of adult Americans have some form of dental insurance. If 89.4% of adult Americans have either medical or dental insurance, then what is the probability that a randomly selected adult American with have both medical and dental insurance

Answers

Answer:

0.717 or 71.7%

Step-by-step explanation:

P(M) = 0.852

P(D) = 0.759

P(M or D) = 0.894

The probability that a randomly selected American has both medical and dental insurance is given by the probability of having medical insurance, added to the probability of having dental insurance, minus the probability of having either insurance:

[tex]P(M\ and\ D) = P(M)+P(D)-P(M\ or\ D)\\P(M\ and\ D) =0.852+0.759-0.894\\P(M\ and\ D) =0.717=71.7\%[/tex]

The probability is 0.717 or 71.7%.

The result is a 71.7% probability of an adult American having both insurances.

The question revolves around finding the probability of a randomly selected adult American having both medical and dental insurance. To calculate this, we use the principle of inclusion-exclusion. According to the problem statement, the percentage of adults with medical insurance is 85.2%, with dental insurance is 75.9%, and with either of the two is 89.4%. The principle of inclusion-exclusion states that the probability of the union of two events (medical or dental insurance) is equal to the sum of the probabilities of each event minus the probability of their intersection (both insurances).

Let's denote the following:

P(Medical) = the probability of having medical insurance = 85.2%P(Dental) = the probability of having dental insurance = 75.9%P(Medical or Dental) = the probability of having either medical or dental insurance = 89.4%P(Medical and Dental) = the probability of having both medical and dental insurance

Using the principle of inclusion-exclusion, we find P(Medical and Dental) as follows:

P(Medical and Dental) = P(Medical) + P(Dental) - P(Medical or Dental)

P(Medical and Dental) = 85.2% + 75.9% - 89.4%

P(Medical and Dental) = 160.1% - 89.4%

P(Medical and Dental) = 71.7%

Therefore, the probability that a randomly selected adult American will have both medical and dental insurance is 71.7%.

3x^2+kx=-3 What is the value of K will result in exactly one solution to the equation?

Answers

Answer:

For k = 6 or k = -6, the equation will have exactly one solution.

Step-by-step explanation:

Given a second order polynomial expressed by the following equation:

[tex]ax^{2} + bx + c, a\neq0[/tex].

This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = (x - x_{1})*(x - x_{2})[/tex], given by the following formulas:

[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]

[tex]\bigtriangleup = b^{2} - 4ac[/tex]

If [tex]\bigtriangleup = 0[/tex], the equation has only one solution.

In this problem, we have that:

[tex]3x^{2} + kx + 3 = 0[/tex]

So

[tex]a = 3, b = k, c = 3[/tex]

[tex]\bigtriangleup = b^{2} - 4ac[/tex]

[tex]\bigtriangleup = k^{2} - 4*3*3[/tex]

[tex]\bigtriangleup = k^{2} - 36[/tex]

We will only have one solution if [tex]\bigtriangleup = 0[/tex]. So

[tex]\bigtriangleup = 0[/tex]

[tex]k^{2} - 36 = 0[/tex]

[tex]k^{2} = 36[/tex]

[tex]k = \pm \sqrt{36}[/tex]

[tex]k = \pm 6[/tex]

For k = 6 or k = -6, the equation will have exactly one solution.

The paraboloid z = 8 − x − x2 − 2y2 intersects the plane x = 3 in a parabola. Find parametric equations in terms of t for the tangent line to this parabola at the point (3, 2, −12). (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of t.)

Answers

When [tex]x=3[/tex], we get the parabola

[tex]z=-4-2y^2[/tex]

We can parameterize this parabola by

[tex]\vec r(t)=(3,t,-4-2t^2)[/tex]

Then the tangent vector to this parabola is

[tex]\vec T(t)=\dfrac{\mathrm d\vec r(t)}{\mathrm dt}=(0,1,-4t)[/tex]

We get the point (3, 2, -12) when [tex]t=2[/tex], for which the tangent vector is

[tex]\vec T(2)=(0,1,-8)[/tex]

Then the line tangent to the parabola at [tex]t=2[/tex] passing through the point (3, 2, -12) has vector equation

[tex]\ell(t)=(3,2,-12)+t(0,1,-8)=(3,2+t,-12-8t)[/tex]

which in parametric form is

[tex]\begin{cases}x(t)=3\\y(t)=2+t\\z(t)=-12-8t\end{cases}[/tex]

for [tex]t\in\Bbb R[/tex].

The parametric equation of the tangent line is [tex]L(t)=(3,2+t,-12-8t)[/tex]

Parabola :

The equation of Paraboloid is,

                 [tex]z =8-x-x^{2} -2y^{2}[/tex]

Equation of parabola when [tex]x = 3[/tex] is,

       [tex]z=8-3-3^{2} -2y^{2} \\\\z=-4-2y^{2}[/tex]

The parametric equation of parabola will be,

     [tex]r(t)=(3,t,-4-2t^{2} )[/tex]

Now, we have to find Tangent vector to this parabola is,

    [tex]T(t)=\frac{dr(t)}{dt}=(0,1,-4t)[/tex]

We get, the point [tex](3, 2, -12)[/tex] when [tex]t=2[/tex]

The tangent vector will be,

 [tex]T(2)=(0,1,-8)[/tex]

So that, the tangent line to this parabola at the point (3, 2, −12) will be,

     [tex]L(t)=(3,2,-12)+t(0,1,-8)\\\\L(t)=(3,2+t,-12-8t)[/tex]

Learn more about the Parametric equation here:

https://brainly.com/question/21845570

There is a 70 percent chance that an airline passenger will check bags. In the next 16 passengers that check in for their flight at Denver International Airport (a) Find the probability that all will check bags. (Round your answer to 4 decimal places.) P(X

Answers

Answer:

a) [tex]P(X=16)=(16C16)(0.7)^{16} (1-0.7)^{16-16}=0.00332[/tex]

b) [tex]P(X<10) = 1-P(X\geq 10) = 1- [P(X=10)+P(X=11)+P(X=12)+P(X=13)+P(X=14)+P(X=15)+P(X=16)][/tex]

And we can find the individual probabilities like this:

[tex]P(X=10)=(16C10)(0.7)^{10} (1-0.7)^{16-10}=0.1649[/tex]

[tex]P(X=11)=(16C11)(0.7)^{11} (1-0.7)^{16-11}=0.2099[/tex]

[tex]P(X=12)=(16C12)(0.7)^{12} (1-0.7)^{16-12}=0.2040[/tex]

[tex]P(X=13)=(16C13)(0.7)^{13} (1-0.7)^{16-13}=0.1465[/tex]

[tex]P(X=14)=(16C14)(0.7)^{14} (1-0.7)^{16-14}=0.0732[/tex]

[tex]P(X=15)=(16C15)(0.7)^{15} (1-0.7)^{16-15}=0.0228[/tex]

[tex]P(X=16)=(16C16)(0.7)^{16} (1-0.7)^{16-16}=0.0033[/tex]

And replacing we got:

[tex]P(X<10) = 1-P(X\geq 10) = 1- [P(X=10)+P(X=11)+P(X=12)+P(X=13)+P(X=14)+P(X=15)+P(X=16)] = 1-0.825=0.175 [/tex]

c) [tex] P(x \geq 10) = P(X=10)+P(X=11)+P(X=12)+P(X=13)+P(X=14)+P(X=15)+P(X=16)[/tex]

And replacing we got 0.825

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Solution to the problem

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=17, p=0.7)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

Part a

And we want to find this probability:

[tex]P(X=16)=(16C16)(0.7)^{16} (1-0.7)^{16-16}=0.00332[/tex]

Part b fewer than 10 will check bags

We want this probability:

[tex] P(X<10) [/tex]

We can use the complement rule and we have:

[tex]P(X<10) = 1-P(X\geq 10) = 1- [P(X=10)+P(X=11)+P(X=12)+P(X=13)+P(X=14)+P(X=15)+P(X=16)][/tex]

And we can find the individual probabilities like this:

[tex]P(X=10)=(16C10)(0.7)^{10} (1-0.7)^{16-10}=0.1649[/tex]

[tex]P(X=11)=(16C11)(0.7)^{11} (1-0.7)^{16-11}=0.2099[/tex]

[tex]P(X=12)=(16C12)(0.7)^{12} (1-0.7)^{16-12}=0.2040[/tex]

[tex]P(X=13)=(16C13)(0.7)^{13} (1-0.7)^{16-13}=0.1465[/tex]

[tex]P(X=14)=(16C14)(0.7)^{14} (1-0.7)^{16-14}=0.0732[/tex]

[tex]P(X=15)=(16C15)(0.7)^{15} (1-0.7)^{16-15}=0.0228[/tex]

[tex]P(X=16)=(16C16)(0.7)^{16} (1-0.7)^{16-16}=0.0033[/tex]

And replacing we got:

[tex]P(X<10) = 1-P(X\geq 10) = 1- [P(X=10)+P(X=11)+P(X=12)+P(X=13)+P(X=14)+P(X=15)+P(X=16)] = 1-0.825=0.175 [/tex]

Part c at least 10 bags

We can find this probability like this:

[tex] P(x \geq 10) = P(X=10)+P(X=11)+P(X=12)+P(X=13)+P(X=14)+P(X=15)+P(X=16)[/tex]

And replacing we got 0.825

Final answer:

The probability that all 16 passengers will check their bags given a 70% chance for each passenger is found using a binomial distribution, resulting in a probability of 0.0047 when rounded to four decimal places.

Explanation:

The question involves calculating the probability of passengers checking bags in a binomial distribution context. Since each passenger is an independent trial and has a 70 percent chance or probability (p=0.70) of checking bags, this indeed constitutes a binomial problem. Here, success is defined as a passenger checking their bags.

To find the probability that all 16 passengers will check their bags, we need to consider the binomial probability formula for exactly 'k' successes in 'n' trials: P(X = k) = (n choose k) * p^k * (1-p)^(n-k). For this case, every passenger checks their bags, meaning 'k' is 16 and 'n' is also 16.

The formula simplifies in this scenario to P(X = 16) = 0.70^16, as the combination of 16 choose 16 is 1. Following the calculation:

P(X = 16) = 0.70^16 = 0.0047 (rounded to four decimal places).

The states of Ohio, Iowa, and Idaho are often confused, probably because the names sound so similar. Each year, the State Tourism Directors of these three states drive to a meeting in one of the state capitals to discuss strategies for attracting tourists to their states so that the states will become better known. The location of the meeting is selected at random from the three state capitals. The shortest highway distance from Boise, Idaho to Columbus, Ohio passes through Des Moines, Iowa. The highway distance from Boise to Des Moines is 1350 miles, and the distance from Des Moines to Columbus is 650 miles. Let d1 represent the driving distance from Columbus to the meeting, with d2 and d3 representing the distances from Des Moines and Boise, respectively

a. Find the probability distribution of d1 and display it in a table.
b. What is the expected value of d1?
c. What is the value of the standard deviation of d1?
d. Consider the probability distributions of d2 and d3. Is either probability distribution the same as the probability distribution of d1? Justify your answer.
e. Define a new random variable t = d1 + d2. Find the probability distribution of t.

Answers

Answer:

The driving distance for meeting at the three centres can be written as

d1=columbus

d2=Des moines

d3=Boise

The distance from des moines to columbus to 650 miles

from Boise to des moines is 1350

Therefore the distance from columbus to Boise

if the meeting is holding at columbus

0+650+1350=2000

Pr(columbus)=1/3

Pr(Des moines)=1/3

Pr(Boise)=1/3

a. Probability distribution is

capital       c            DM         B

di               0            650        2000

Pr(di)           1/3           1/3         1/3

b. Expected value is multiplication of the probability of d1 and the outcome

E(x)=0*1/3=0

c. find the variance of d1 first

Var=(x-E(x))^2*Pr(d1)

Var=(0-0)^2*1/3

Var=0

the square root of var=standard deviation

S.D=0

d. probability distribution of d2 and d3 is equal to the probability distribution of d1 , because they all have a probability of 1/3(the likelihood that an event will occur is 1/3 for the meeting \location

e. d1=0

d2=650

d1+d2=650

pr(d1+d2)=1/3+1/3=2/3

Pr(d1+d2) will be on the vertical axis, while d1+d2 will be plotted on the horizontal axis of the probability distribution graph

Step-by-step explanation:

The driving distance for meeting at the three centres can be written as

d1=columbus

d2=Des moines

d3=Boise

The distance from des moines to columbus to 650 miles

from Boise to des moines is 1350

Therefore the distance from columbus to Boise

if the meeting is holding at columbus

0+650+1350=2000

Pr(columbus)=1/3

Pr(Des moines)=1/3

Pr(Boise)=1/3

a. Probability distribution is

capital       c            DM         B

di               0            650        2000

Pr(di)           1/3           1/3         1/3

b. Expected value is multiplication of the probability of d1 and the outcome

E(x)=0*1/3=0

c. find the variance of d1 first

Var=(x-E(x))^2*Pr(d1)

Var=(0-0)^2*1/3

Var=0

the square root of var=standard deviation

S.D=0

d. probability distribution of d2 and d3 is equal to the probability distribution of d1 , because they all have a probability of 1/3(the likelihood that an event will occur is 1/3 for the meeting \location

e. d1=0

d2=650

d1+d2=650

pr(d1+d2)=1/3+1/3=2/3

Pr(d1+d2) will be on the vertical axis, while d1+d2 will be plotted on the horizontal axis of the probability distribution graph

In a completely randomized experimental design involving five treatments, a total of 65 observations were recorded for each of the five treatments. The following information is provided. SSTR = 200 (Sum Square Between Treatments) SST = 800 (Total Sum Square) 9. Refer to Exhibit 1. The sum of squares within treatments (SSE) is a. 1,000 b. 600 c. 200 d. 1,600 10. Refer to Exhibit 1. The number of degrees of freedom corresponding to between treatments is

a. 60
b. 59
c. 5
d. 4

Answers

Answer:

5

Step-by-step explanation:

numerator degrees of freedom=[tex]Treatments-1[/tex]

[tex]N_d_f=5-1=4[/tex]

Total degrees of freedom=[tex]Treatments\times \ Observations Recorded-1[/tex]

[tex]T_d_f=5\times13-1=64[/tex]

Denominator Degrees of freedom=[tex]T_d_f-N_d_f=64-4=60[/tex]

Therefore, to calculate the degrees of freedom corressponding to treatments:

[tex]F=\frac{MSR}{MSE}\\MSR=200\div4=50\\MSE=(800-200)\div 60=10\\F=50\div10=5[/tex]

A telephone survey conducted by the Maritz Marketing Research company found that 43% of Americans expect to save more money next year than they saved last year. Forty-five percent of those surveyed plan to reduce debt next year. Of those who expect to save more money next year, 81% plan to reduce debt next year. An American is selected randomly. a. What is the probability that this person expects to save more money next year and plans to reduce debt next year? b. What is the probability that this person expects to save more money next year or plans to reduce debt next year? c. What is the probability that this person expects to save more money next year and does not plan to reduce debt next year? d. What is the probability that this person does not expect to save more money given that he/she does plan to reduce debt next year?

Answers

Answer:

A) P(A⋂B) = 0.35

B) P(A⋃B)= 0.53

C) P(A⋂B′) = 0.08

D) P(A|B) = 0.778

Step-by-step explanation:

We know the following from the question:

- Let Proportion of Americans who expect to save more money next year than they saved last year be

P(A) and its = 0.43

-Let proportion who plan to reduce debt next year be P(B) and it's =0.81

A) probability that this person expects to save more money next year and plans to reduce debt next year which is; P(A⋂B) = 0.43 x 0.81 = 0.348 approximately 0.35

B) probability that this person expects to save more money next year or plans to reduce debt next year which is;

P(A⋃B)= P(A) + P(B) − P(A⋂B)

So, P(A⋃B)= 0.43 + 0.45 − 0.35 = 0.53

C). Probability that this person expects to save more money next year and does not plan to reduce debt next year which is;

P(A⋂B′) = P(A) − P(A⋂B)

P(A⋂B′) =0.43 − 0.35 = 0.08

D) Probability that this person does not expect to save more money given that he/she does plan to reduce debt next year which is;

P(A|B) = [P(A⋂B)] / P(B)

So P(A|B) =0.35/0.45 = 0.778

Final answer:

The probabilities for the given scenarios are as follows: a. 34.93%, b. 53.07%, c. 8.07%, and d. 126.67%.

Explanation:

a. To find the probability that a person expects to save more money next year and plans to reduce debt next year, we need to multiply the probabilities of both events occurring. The probability that a person expects to save more money next year is 43%, and of those who expect to save more money next year, 81% plan to reduce debt. Therefore, the probability is 0.43  imes 0.81 = 0.3493, or 34.93%.

b. To find the probability that a person expects to save more money next year or plans to reduce debt next year, we can add the probabilities of both events occurring and subtract the probability of both events occurring at the same time (found in part a). The probability of expecting to save more money next year is 43%, and the probability of planning to reduce debt next year is 45%. Therefore, the probability is 0.43 + 0.45 - 0.3493 = 0.5307, or 53.07%.

c. To find the probability that a person expects to save more money next year and does not plan to reduce debt next year, we subtract the probability from part a from the probability of expecting to save more money next year. The probability of expecting to save more money next year is 43%, and the probability of both expecting to save more money and planning to reduce debt is 34.93%. Therefore, the probability is 0.43 - 0.3493 = 0.0807, or 8.07%.

d. To find the probability that a person does not expect to save more money given that he/she does plan to reduce debt next year, we need to divide the probability of not expecting to save more money by the probability of planning to reduce debt next year. The probability of not expecting to save more money is 1 - 0.43 = 0.57, and the probability of planning to reduce debt next year is 45%. Therefore, the probability is 0.57 / 0.45 = 1.2667, or 126.67%.

Learn more about Probability and Statistics here:

https://brainly.com/question/35203949

#SPJ3

Suppose that in a population of adults between the ages of 18 and 49, glucose follows a normal distribution with a mean of 93.5 and standard deviation of 19.8. What is the probability that glucose exceeds 120 in this population

Answers

Answer:

0.0904 or 9.04%

Step-by-step explanation:

Mean glucose (μ) = 93.5

Standard deviation (σ) = 19.8

In a normal distribution, the z-score for any glucose value, X, is given by:

[tex]Z= \frac{X-\mu}{\sigma}[/tex]

For X = 120, the z-score is:

[tex]Z= \frac{120-93.5}{19.8}\\ Z=1.3384[/tex]

A z-score of 1.3384 corresponds to the 90.96th percentile of a normal distribution. Therefore, the probability that glucose exceeds 120 in this population is:

[tex]P(X>120) = 1-0.9096=0.0904 = 9.04\%[/tex]

Answer:

Probability that glucose exceeds 120 in this population is 0.09012.

Step-by-step explanation:

We are given that in a population of adults between the ages of 18 and 49, glucose follows a normal distribution with a mean of 93.5 and standard deviation of 19.8, i.e.; [tex]\mu[/tex] = 93.5  and  [tex]\sigma[/tex] = 19.8 .

Let X = amount of glucose i.e. X ~ N([tex]\mu = 93.5 , \sigma^{2} = 19.8^{2}[/tex])

Now, the Z score probability is given by;

           Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)

So,Probability that glucose exceeds 120 in this population =P(X>120)

P(X > 120) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{120-93.5}{19.8}[/tex] ) = P(Z > 1.34) = 1 - P(Z <= 1.34)

                                                   = 1 - 0.90988 = 0.09012 .

4. Entry to a certain University is determined by a national test. The scores on this test are normally distributed with a mean of 500 and a standard deviation of 100. Tom wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test. Tom takes the test and scores 585. Will he be admitted to this university

Answers

Answer:

Yes, Tom must be admitted to this university.

Step-by-step explanation:

We are given that the scores on national test are normally distributed with a mean of 500 and a standard deviation of 100.

Also, we are provided with the condition that Tom wants to be admitted to this university and he knows that he must score better than at least 70% of the students who took the test.

Let, X = score in national test, so X ~ N([tex]\mu=500 , \sigma^{2} = 100^{2}[/tex])

The standard normal z distribution is given by;

              Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)

Now, z score of probability that tom scores 585 is;

             Z = [tex]\frac{585-500}{100}[/tex] = 0.85

Now, proportion of students scoring below 85% marks is given by;

P(Z < 0.85) = 0.80234

This shows that Tom scored 80.23% of the students who took test while he just have to score more than 70%.

So, it means that Tom must be admitted to this university.

                                                  

8. The distribution for the time it takes a student to complete the fall class registration has mean of 94 minutes and standard deviation of 10 minutes. For a random sample of 80 students, determine the mean and standard deviation (standard error) of the sample mean. What can you say about the sampling distribution of the sample mean and why

Answers

Answer:

Mean = 94

Standard deviation = 1.12

The sampling distribution of the sample mean is going to be normally distributed, beause the size of the samples are 80, which is larger than 30.

Step-by-step explanation:

The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sample means with size n of at least 30 can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation, which is also called standard error [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

In this problem, we have that:

[tex]\mu = 94, \sigma = 10[/tex]

By the Central Limit Theorem

The sampling distribution of the sample mean is going to be normally distributed, beause the size of the samples are 80, which is larger than 30.

Mean = 94

Standard deviation:

[tex]s = \frac{10}{\sqrt{80}} = 1.12[/tex]

Is the sequence {an} bounded above by a number? If yes, what number? Enter a number or enter DNE. Is the sequence {an} bounded below by a number? If yes, what number? Enter a number or enter DNE. Select all that apply: The sequence {an} is A. unbounded. B. bounded above. C. bounded. D. bounded below.

Answers

Answer:

The sequence {an} is A. unbounded

Step-by-step explanation:

The sequence {an} is unbounded.

we say a sequence is bounded if and only it is bounded both above and it is also bounded below. clearly the sequence {an} is an unbounded sequence.

The sequence {an} is bounded if there is a number M>0 such that |an|≤M for every positive n.Every unbounded sequence is divergent

The sequence{an}. is an unbounded sequence, because it has no a finite upper bound

Other Questions
Identify the dependent and independent variables in the following examples. a. Height of bean plants is recorded daily for 2 weeks growing in different fertilizers. 1. Select two categories of records that are exempt from public disclosure under the Freedom of Information Act.a. Environmental impact statementsb. National security documentsc. Documents with confidential informationd. Documents written by past presidentse. Bills that were rejected in congressional committees2. The Government in the Sunshine Act ______ all agency meetings to be ______ to the public unless they meet certain criteria. If a person is going to be ______, if ______ agency action would be frustrated, or if the meeting involves ______ litigation or rulemaking, then the meeting may be ______.3. Which law requires the government to reassess the impact on business and continue to look for less burdensome means of achieving a governmental goal?a. Government in the Sunshine Actb. Freedom of Information Actc. Regulatory Flexibility Actd. Small Business Regulatory Enforcement Fairness Act4. The Regulatory Flexibility Act relieved small businesses of certain record-keeping requirements under agency rules and federal statutes.True or False?5. The Small Business Regulatory Enforcement Fairness Act gives Congress days to review new federal regulations to be sure that they do not unduly burden small businesses.True or False? Variation in a trait is a required condition for natural selection to act on a population for that trait. Assuming a population of organisms started with only one form of a trait, what are two ways variation in the trait could be introduced into the population? Explain your answer. At the beginning of the period, the Fabricating Department budgeted direct labor of $51,000 and equipment depreciation of $59,000 for 3,400 hours of production. The department actually completed 4,100 hours of production. Determine the budget for the department, assuming that it uses flexible budgeting. $ 1. Find the inverse functions of the followinga. f (x) = 5x +3 For divorces after 1984 but before 2019, which of the following statements about alimony payments is not correct? a. Divorced or legally separated parties can be members of the same household at the time the payments are made. b. The payor must have no liability to make payments for any period following the death of the spouse receiving the payments. c. The payments must not be designated in the written agreement as anything other than alimony. d. The payments must be in cash and must be received by the spouse (or former spouse). Water is to be boiled at sea level in a 30-cm-diameter stainless steel pan placed on top of a 3-kW electric burner. If 60 percent of the heat generated by the burner is transferred to the water during boiling, determine the rate of evaporation of water. 2) Fovea is the point of accurate vision. Give reason.- Are the bones arranged in a similar way in each animal? A telephone survey conducted by the Maritz Marketing Research company found that 43% of Americans expect to save more money next year than they saved last year. Forty-five percent of those surveyed plan to reduce debt next year. Of those who expect to save more money next year, 81% plan to reduce debt next year. An American is selected randomly. a. What is the probability that this person expects to save more money next year and plans to reduce debt next year? b. What is the probability that this person expects to save more money next year or plans to reduce debt next year? c. What is the probability that this person expects to save more money next year and does not plan to reduce debt next year? d. What is the probability that this person does not expect to save more money given that he/she does plan to reduce debt next year? William is a single writer (age 35) who recently decided that he needs to save more for retirement. His 2019 AGI is $68,000 (all earned income). (Leave no answer blank. Enter zero if applicable.)If he does participate in an employer-sponsored plan, what is the maximum deductible IRA contribution William can make in 2019? Select the correct answer.What best defines the mode of narration in this excerpt from Daisy Miller by Henry James?The young lady inspected her flounces and smoothed her ribbons again; and Winterbourne presently risked an observation upon thebeauty of the view. He was ceasing to be embarassed, for he had begun to perceive that she was not in the least embarrassed herselt.There had not been the slightest alteration in her charming complexion; she was evidently neither offended nor flattered. If she lookedanother way when he spoke to her, and seemed not particularly to hear him, this was simply her habit, her manner. Yet, as he talked a littlemore and pointed out some of the objects of interest in the view, with which she appeared quite unacquainted, she gradually gave himmore of the benefit of her glance; and then he saw that this glance was perfectly direct and unshrinking. It was not, however, what wouldhave been called an immodest glance, for the young girl's eyes were singularly honest and fresh. They were wonderfully pretty eyes; and,indeed, Winterbourne had not seen for a long time anything prettier than his fair countrywoman's various features-her complexion, hernose, her ears, her teeth. He had a great relish for feminine beauty; he was addicted to observing and analyzing it, and as regards thisyoung lady's face he made several observations.O A. first personOB. third-person omniscientOC. second personOD. third-person limited Simplify the expression where possible.(t^9)^-8 Choose the expression that represents a cubic expression. 7x + 14 7x2 5x + 6 8x3 7x2 6x + 5 9x4 + 8x3 6x2 2x + 11 Explain the steps you could use to solve 3y+6=30 to find y. What percent of 320 is 64 45 percent of all customers who enter a store will make a purchase. Suppose that 6 customers enter the store and that these customers make independent purchase decisions. Sylvester has just learned how to pick up his cat named Chester, who likes to be picked up and does not put up any struggle. Later, Sylvester tries to pick up another cat named Thai, who scratches when held. The fact that Sylvester learns to leave Thai alone after he has been scratched provides a good example of EspaolAmy received a $90 gift card for a coffee store. She used it in buying some coffee that cost $8.64 per pound. After buying the coffee, she had $55.44 left on her card. How many pounds of coffee did she buy? Which statement is a theme of the load? A.justice always topples tyranny. B.seeking vengeance is cowardly and foolish C.great heroes never hesitate or falter D.no one, no matter how strong, is invulnerable