A woman exerts a horizontal force of 4 pounds on a box as she pushes it up a ramp that is 10 feet long and inclined at an angle of 30 degrees above the horizontal.Find the work done on the box.

Answers

Answer 1

Answer:

W = 34.64 ft-lbs

Explanation:

given,

Horizontal force = 4 lb

distance of push, d = 10 ft

angle of ramp, θ = 30°

Work done on the box = ?

We know,

W = F.d cos θ

W = 4 x 10 x cos 30°

W = 40 x 0.8660

W = 34.64 ft-lbs

Hence, work done on the box is equal to W = 34.64 ft-lbs

Answer 2

Final answer:

The work done on the box by the woman as she pushes it up the ramp with a horizontal force of 4 pounds is 34.64 foot-pounds, using the work calculation with the cosine of the ramp's angle. So, the final answer is 34.64 foot-pounds.

Explanation:

To calculate the work done on a box by a woman pushing it up a ramp, we need to use the formula Work = Force  * Distance *cos(Ф), where Ф is the angle of the applied force relative to the direction of motion. Since the woman is exerting a horizontal force and the ramp is inclined at a 30-degree angle, the work done is the horizontal component of the force times the distance moved up the ramp.

In this scenario, the force is 4 pounds and the distance is 10 feet. The angle Ф the force makes with the displacement is 30 degrees as the ramp is inclined at this angle to the horizontal, and the force is horizontal. Therefore, the work done is calculated as:

Work = 4 lbs*10 ft *cos(30 degrees)

Using the cosine of 30 degrees (approximately 0.866), the calculation simplifies to:

Work = 4 lbs*10 ft*0.866

Work = 34.64 foot-pounds


Related Questions

A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help." When she has fallen for 3.0 s, she hears the echo of her shout from the valley floor below. The speed of sound is 340 m/s. (a) How tall is the cliff? (b) If we ignore air resistance, how fast will she be moving just before she hits the ground? (Her actual speed will be less than this, due to air resistance.)

Answers

Answer:

532.0725 m

102.17270893 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s² = g

H = Height of cliff

Distance traveled in 3 seconds

[tex]s=ut+\dfrac{1}{2}at^2\\\Rightarrow s=0\times t+\dfrac{1}{2}\times 9.81\times 3^2\\\Rightarrow s=44.145\ m[/tex]

Distance traveled by sound = 2H-44.145 m

[tex]2H-44.145=ut+\dfrac{1}{2}at^2\\\Rightarrow 2H-44.145=340\times 3\\\Rightarrow H=\dfrac{340\times 3+44.145}{2}\\\Rightarrow H=532.0725\ m[/tex]

The height of the cliff is 532.0725 m

[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 532.0725+0^2}\\\Rightarrow v=102.17270893\ m/s[/tex]

Her speed just before she hits the ground is 102.17270893 m/s

A ball is tossed with a velocity of 10 m/s directed vertically upward from a window located 20 m above the ground. Determine the following: (a) The velocity v and elevation y of the ball above the ground at any time t. (b) The highest elevation reached by the ball and its corresponding time t. (c) The time when the ball will hit the ground and the impact velocity.

Answers

Answer:

Explanation:

Given

Initial velocity of ball [tex]u=10\ m/s[/tex]

height of window [tex]h=20\ m[/tex]

Using Equation of motion

[tex]y=ut+\frac{1}{2}at^2[/tex]

where u=initial velocity

t=time

a=acceleration

As ball is already is at a height of 20 m so

[tex]Y=ut+\frac{1}{2}at^2+20[/tex]

[tex]Y=10\times t+0.5\times (-9.8)t^2+20[/tex]

[tex]Y=-4.9t^2+10t+20[/tex]

(b)highest point is obtained at v=0

[tex]v^2-u^2=2as[/tex]

where

v=final velocity

u=initial velocity

a=acceleration

s=displacement

[tex](0)-10^2=2\times (-9.8)\times s[/tex]

[tex]s=\frac{100}{19.6}[/tex]

[tex]s=5.102\ m[/tex]

Highest Point will be [tex]s+20=25.102\ m[/tex]

(c)Time taken when the ball hit the ground i.e. at Y=0

[tex]-4.9t^2+10t+20=0[/tex]

[tex]t=3.28\ s[/tex]

impact velocity [tex]v=\sqrt{2\times 9.8\times 25.102}[/tex]

[tex]v=22.181\ m/s[/tex]

(a) The equation be "Y = -4.9t² + 10t + 20".

(b) The highest point be "25.102 m".

(c) The impact velocity be "22.181 m/s"

Equation of motion

According to the question,

Ball's initial velocity, u = 10 m/s

Window's height, h = 20 m

(a) By using equation of motion,

Y = ut + [tex]\frac{1}{2}[/tex]at²

By substituting the values,

  = ut + [tex]\frac{1}{2}[/tex]at² + 20

  = 10 × t + 0.5 × (9.8)t² + 20

  = -4.9t² + 10t + 20

(b) We know that,

→ v² - u² = 2as

here, Final velocity, v = 0

0 - (10)² = 2 × (-9.8) × s

          s = [tex]\frac{100}{19.6}[/tex]

             = 5.102 m

(c) Time taken will be:

→ -4.9t² + 10t + 20 = 0

                            t = 3.28 s

hence,

The impact velocity,

v = [tex]\sqrt{2\times 9.8\times 25.102}[/tex]

  = 22.181 m/s

Thus the above response is correct.

Find out more information about velocity here:

https://brainly.com/question/6504879

What is a constellation as astronomers define it today? What does it mean when an astronomer says, "I saw a comet in Capricorn last night?"

Answers

A constellation, in astronomy, is a conventional grouping of stars, whose position in the night sky is apparently invariable. The peoples, generally of ancient civilizations, decided to link them through imaginary strokes, thus creating virtual silhouettes on the celestial sphere. From 1928, the International Astronomical Union (UAI) decided to officially regroup the celestial sphere into 88 constellations with precise limits, such that every point in the sky would be within the limits of a figure. When an astronomer says he saw a comet in Capricorn last night, it means that he saw a comet in the direction of the constellation of Capricorn.

If the car has the same initial velocity, and if the driver slams on the brakes at the same distance from the tree, then what would the acceleration need to be (in m/s2) so that the car narrowly avoids a collision?

Answers

Final answer:

Using the physics equation of motion and the given initial velocity, reaction time, and deceleration, one can determine whether a truck can stop in time to avoid a collision.

Explanation:

The question focuses on stopping distance and acceleration required to avoid a collision, indicating its base in Physics. If we have a truck moving at a constant velocity and it brakes at a certain distance from an obstacle, the minimum acceleration needed to avoid a collision can be calculated using the equation of motion v^2 = u^2 + 2as. Here, 'v' is the final velocity (0 m/s as the truck needs to stop), 'u' is the initial velocity, 'a' is the acceleration, and 's' is the distance over which the truck needs to stop.

To determine if the truck will hit the child, we must account for the driver's reaction time as well. During this reaction time, the truck continues to travel at its initial speed. After the reaction time, the truck will begin decelerating until it comes to a stop. The total stopping distance is the distance covered during the reaction time plus the distance covered during deceleration. The latter can be found using the deceleration rate and the formula mentioned above.

For the given scenario of the truck with an initial velocity of 10 m/s, a braking distance of 50 m, reaction time of 0.5 seconds, and deceleration of -1.25 m/s^2, we can calculate whether or not the truck will be able to stop in time to avoid hitting the child.

The falling object in Example 2 satisfies the initial value problem dv/dt =9.8−(v/5), v(0) =0. (a) Find the time that must elapse for the object to reach 98% of its limiting velocity. (b) How far does the object fall in the time found in part (a)?

Answers

Answer:

a. [tex]t=19.56 s[/tex]

b.[tex]d=718.34[/tex]

Explanation:

The solution to the differential equation

[tex]\dfrac{dv}{dt}=9.8-\dfrac{v}{5}[/tex]

is the exponential function

[tex]v(t)=ce^{-0.2t}+49[/tex]

and we find [tex]c[/tex] from the initial condition [tex]v(0)=0:[/tex]

[tex]0=ce^{-0.2*0}+49\\\\0=c+49\\\\c=-49[/tex]

Therefore, we have

[tex]v(t)=-49e^{-0.2t}+49[/tex]

[tex]\boxed{ v(t)=49(1-e^{-0.2t})}[/tex]

Part A:

The maximum velocity that the object can reach is 49 (which the maximum value [tex]v(t)[/tex] can have).

Now, 98% of 49 is 48.02; therefore,

[tex]48.02=49(1-e^{-0.2t})[/tex]

[tex]0.98=1-e^{-0.2t}[/tex]

[tex]e^{-0.2t}=0.02[/tex]

[tex]\boxed{t=19.56 s}[/tex]

Part B:

The distance traveled is the integral of the speed:

[tex]d=\int_0^{19.56}v(t)*dt[/tex]

[tex]d=\int^{19.56}_0 {49(1-e^{-0.2t})} \, dt[/tex]

[tex]d=49[t+5e^{-0.2t}]_0^{19.56}[/tex]

[tex]\boxed{d=718.34}[/tex]

Final answer:

To find the time that must elapse for the object to reach 98% of its limiting velocity, we need to solve the differential equation. We can then find the distance the object falls by integrating the velocity function with respect to time.

Explanation:(a) Finding the time to reach 98% of the limiting velocity

To find the time it takes for the object to reach 98% of its limiting velocity, we need to solve the differential equation. First, we separate the variables by writing it as:

dv / (9.8 - (v/5)) = dt

Next, we integrate both sides:

∫ (1 / (9.8 - (v/5))) dv = ∫ dt

After evaluating the integrals, we can solve for v:

v = 49 - 49e^(-t/5)

Substituting v with 0.98 times the limiting velocity (which is 49), we can solve for t:

49 - 49e^(-t/5) = 0.98 * 49

Solving this equation will give us the time it takes for the object to reach 98% of its limiting velocity.

(b) Finding the distance the object falls

To find the distance the object falls, we need to integrate the velocity function, v, with respect to time:

∫ v dt

By evaluating the integral, we can calculate the distance the object falls in the time found in part (a).

Learn more about Differential equations here:

https://brainly.com/question/33814182

#SPJ3

Henrietta is jogging on the side-walk at 3.05 m/s on the way to her physics class. Bruce realizes that she forgot her bag of bagels, so he runs to the window, which is 38.0 m above the street level and directly above the sidewalk, to throw the bag to her. He throws it horizontally 9.00 s after she has passed below the window, and she catches it on the run. Ignore air resistance. (a) With what initial speed must Bruce throw the bagels so that Henrietta can catch the bag just before it hits the ground? (b) Where is Henrietta when she catches the bagels?

Answers

Answer:

12.9121148614 m/s

35.9393048982 m

Explanation:

t = Time taken

u = Initial velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s² = a

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 38=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{38\times 2}{9.81}}\\\Rightarrow t=2.78337865516\ s[/tex]

Time taken for the bag to fall is 2.78337865516 seconds

Time she has been jogging for

9+2.78337865516 = 11.78337865516 seconds

Total distance traveled by her

[tex]s=vt\\\Rightarrow s=3.05\times 11.78337865516=35.9393048982\ m[/tex]

Henrietta is 35.9393048982 m away

Velocity of throwing

[tex]\dfrac{35.9393048982}{2.78337865516}=12.9121148614\ m/s[/tex]

The velocity of throwing is 12.9121148614 m/s

Final answer:

Bruce must throw the bagels at an initial speed of 12.92 m/s for Henrietta to catch them, and Henrietta will be 35.93 m from the point directly below Bruce's window when she catches the bagels.

Explanation:

Projectile Motion and Kinematics Problem

To find the initial speed Bruce must throw the bagels, we need to consider two aspects of projectile motion: the horizontal motion, which is constant because air resistance is neglected, and the vertical motion, which is influenced by gravity.

Firstly, we need to calculate the time it takes for the bagels to fall from the window to the ground. Using the equation for free fall h =
1/2 g t², where h is the height (38.0 m), and g is the acceleration due to gravity (9.81 m/s²), we can solve for t, the time to fall:

38.0 m = 1/2 * 9.81 m/s² * t²

t = sqrt(2 * 38.0 m / 9.81 m/s²) = sqrt(7.74) ≈ 2.78 s

Bruce throws the bagels 9.00 s after Henrietta has passed below the window. In this time, Henrietta has jogged a distance of d = speed * time = 3.05 m/s * 9.00 s = 27.45 m horizontally.

Since Henrietta is already past the point directly below the window, we need to add the distance she will cover in the time it takes for the bagels to fall. This distance is additional distance = jogging speed * fall time = 3.05 m/s * 2.78 s ≈ 8.48 m.

Overall, Henrietta will be approximately 27.45 m + 8.48 m = 35.93 m from the point directly below the window when she catches the bagels.

To find the initial speed with which Bruce throws the bagels, we use the horizontal motion formula initial speed = distance / time, which gives us an initial speed of approximately 35.93 m / 2.78 s ≈ 12.92 m/s.

Bruce must throw the bagels horizontally at an initial speed of approximately 12.92 m/s for Henrietta to catch them just before they hit the ground, at a distance of approximately 35.93 m from the point directly below Bruce's window.

If instead the distance between the moon and the planet were 7 times as large (no change in mass), what would the magnitude of the force be?

Answers

Answer:

Reduced by 49 times

Explanation:

We have Newton formula for attraction force between 2 objects with mass and a distance between them:

[tex]F_G = G\frac{M_1M_2}{R^2}[/tex]

where G is the gravitational constant. [tex]M = M_1 = M_2[/tex] are the masses of the 2 objects. and R is the distance between them.

Since R squared is in the denominator of the formula, if we make it 7 times as large with no change in mass, gravitational force would be dropped by 7*7 = 49 times

To solve the problem we should know about Newton's Law of gravity.

What is Newton's Law of gravity?

According to Newton's law of gravity, there is an attractive force between any two-particle carrying mass, such that the force is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

[tex]F \propto m_1m_2\\\\F \propto \dfrac{1}{R^2}[/tex]

[tex]F = G\dfrac{m_1m_2}{R^2}[/tex]

Where G is the proportionality constant and the value of G is 6.67 x 10-11 N m² / kg².

The force between the two will be [tex]\dfrac{1}{49}[/tex] time of the force before.

Given to us,

Mass of the planet = [tex]m_1[/tex]Mass of the earth = [tex]m_2[/tex]distance between the moon and the planet is 7 times

Assumption

Let's assume that the distance between the moon and the planet is d.

Values

As it is given that there is no change in the mass of the moon or the planet, therefore,

Mass of the planet = [tex]m_1[/tex]Mass of the earth = [tex]m_2[/tex]

Also, it is given that the distance between them changes to 7 times, therefore,

distance between the moon and the planet =7d

Newton's Law of gravity

Substitute the value Newton's Law of gravity,

[tex]F = G\dfrac{m_1m_2}{(7d)^2}\\\\\\F = G\dfrac{m_1m_2}{49d^2}[/tex]

Thus, the force between the two will be [tex]\dfrac{1}{49}[/tex] time of the force before.

Learn more about Newton's Law of gravity:

https://brainly.com/question/1017661

In an experiment to measure the acceleration due to gravity g, two independent equally reliable measurements gave 9.67 m/s2 and 9.88 m/s2. Determine (i) the percent difference of the measurements (ii) the percent error of their mean. [Take the theoretical value of g to be 9.81 m/s

Answers

Answer:

i. +/- 1.43% and +/- 0.71% ii. +/- 0.33%

Explanation:

[tex]% Error = \frac{Error}{Measurement}* 100%\\[/tex]

If Earth were completely blanketed with clouds and we couldn’t see the sky, could we learn about the realm beyond the clouds? What forms of radiation might penetrate the clouds and reach the ground?

Answers

The definition of waves that propagate through electric fields is called electromagnetic waves. The earth, despite being covered with clouds, can be 'affected' because waves such as sunlight or the moon have the ability to penetrate and be visible to the inhabitants of the earth. Microwaves and radio waves would be less affected by the clouds that cover the Earth.

Through these waves, you can know that there is beyond the clouds.

Ultraviolet light, microwaves and radio waves are the radiations that penetrate through the clouds and reach the Earth's surface.

Therefore, the answer is Yes, ultraviolet light, microwaves and radio waves are the forms of radiation that penetrate and reach the ground.

Final answer:

It is indeed possible to learn about the universe beyond the clouds due to other non-visual forms of radiation, mainly radio waves and gamma rays, which can penetrate through the clouds and reach the earth's surface.

Explanation:

Yes, even if Earth were completely blanketed with clouds and we could not see the sky, we could still learn about the universe beyond the clouds. This is because, in addition to visible light which would be blocked by the clouds, the universe also emits various other forms of radiation that can penetrate the clouds and reach the ground.

Two major types of radiation that could penetrate the dense clouds are radio waves and gamma rays. Radio waves are a form of electromagnetic radiation used in many areas of science and technology, while gamma rays are highly energetic forms of radiation and are used in fields such as astronomy to get valuable information about distant celestial bodies.

Learn more about radiation here:

https://brainly.com/question/4075566

#SPJ3

An orange loses 1.2 kJ of heat as it cools per °C drop in its temperature. What is the amount of heat loss from the orange per °F drop in its temperature?

Answers

To solve this problem we will apply the conversion rate between Celcius and Fahrenheit degrees. We will use the direct relationship clearly and not the added degrees of scale conversion. We know from the statement that the orange loses heat at the rate of

[tex]Q = 1.2kJ/\°C[/tex]

We have the conversion to °F is given as

[tex]T (\°F) = 1.8T+32[/tex]

Calculate the amount of heat loss from orange per °F

[tex]Q = \frac{1.2}{1.8}[/tex]

[tex]Q = 0.667kJ/\°F[/tex]

Therefore the amount of heat loss from the orange per °F drop in its temperature is 0.667kJ/°F

Final answer:

The heat loss from an orange per °F drop is 0.67 kJ, calculated by taking 1.2 kJ per °C drop and dividing it by 1.8 to convert it to Fahrenheit,

Explanation:

The heat loss from the orange per °F drop in its temperature can be found by converting 1.2 kJ lost per 1 °C drop in temperature to kJ lost per 1 °F drop. This can be achieved using the formula that 1 °C equals 1.8 °F.

Therefore, the heat loss per degree Fahrenheit will be less than the heat loss per degree Celsius. We calculate this as follows:
(1.2 kJ / °C) / 1.8 = 0.67 kJ per °F.

So for every degree Fahrenheit that the orange cools, it will lose 0.67 kilojoules of heat.

Learn more about Heat loss here:

https://brainly.com/question/31857421

#SPJ3

What length of tube would be required to produce a second tone under the same experimental conditions? Explain your answer.

Answers

To produce a second tone or the first overtone in a tube closed at one end, the length of the tube required is three times the length used for the fundamental frequency, resulting in a length of 1.008 m.

To understand the length required to produce a second tone or the first overtone in a tube closed at one end, it's essential to grasp the concept of harmonics in sound resonance. In such a tube, the resonant frequencies occur in odd multiples of the fundamental frequency. The first resonance the students observed, with the fundamental frequency of 256 Hz at a length of 0.336 m, corresponds to a quarter wavelength of the sound wave in the tube.

For the first overtone (second resonance), the air column in the tube must accommodate three-quarters of a wavelength, meaning the effective length will be three times larger than that of the fundamental. Thus, if the fundamental resonance occurs at a length of 0.336 m, the length for the second resonance will be:

0.336 m x 3 = 1.008 m.

This calculation is based on the understanding that the second tone or first overtone in a closed tube happens at three times the length necessary for the fundamental frequency, leading to the described increase in the length of the air column.

Final answer:

To find the length of tube for the second resonance, halve the initial length where the first resonance occurred at a fundamental frequency of 256 Hz.

Explanation:

The length required to produce a second tone under the same experimental conditions can be calculated based on the concept of resonance in a closed tube.

To find the length for the second resonance (first overtone), we know that the first resonance occurs at 0.336m for a fundamental frequency of 256 Hz. The second resonance, in this case, would occur at half the wavelength of the fundamental frequency, so the length would be half of the initial length: 0.168m.

How many kWh of energy does a 550-W toaster use in the morning if it is in operation for a total of 5.0 min? At a cost of 9.0 cents/k Wh, estimate how much this would add to your monthly electric energy bill if you made toast four mornings per week.

Answers

Answer:

0.0458 kWh

6.5736 cents

Explanation:

The formula for electric energy is given as

E = Pt................. Equation 1

Where E = Electric energy, P = Electric power, t = time.

Given; P = 550 W, t = 5 min = (5/60) h = 0.083 h.

Substituting into equation 1

E = 550(0.083)

E = 45.83 Wh

E = (45.83/1000) kWh

E = 0.0458 kWh.

Hence the kWh = 0.0458 kWh.

If the makes a toast four morning per week, and the are Four weeks in a month.

Total number days he makes toast in a month = 4×4 = 16 days.

t = 16×0.083 h = 1.328 h.

Total energy used in a month = 550(1.328)

E = 730.4 Wh

E = 0.7304 kWh.

If the cost of energy is 9.0 cents per kWh,

Then for 0.7304 kWh  the cost will be 9.0(0.7304) = 6.5736 cents.

Hence this would add 6.5736 cents to his monthly electric bill

Final answer:

A 550-W toaster in operation for 5.0 minutes uses 2.75 kWh of energy. If you make toast four mornings per week, it would add an estimated cost of $4.30 to your monthly electric energy bill.

Explanation:

To calculate the energy used by the toaster, we can use the formula E = Pt, where P is the power and t is the time. In this case, the power of the toaster is 550 watts and the time it is in operation is 5.0 minutes. Plugging these values into the formula, we get E = (550 W)(5.0 min) = 2750 W.min. To convert this to kilowatt-hours (kWh), we need to divide by 1000, so the energy used by the toaster is 2.75 kWh.

To estimate how much this would add to your monthly electric energy bill, we need to know how many times you use the toaster in a month. If you use it four mornings per week, that would be 4 days x 52 weeks / 12 months = 17.33 days per month. Multiplying the energy used by the toaster (2.75 kWh) by the number of days in a month (17.33), we get an estimate of 47.75 kWh per month. Finally, to find the cost, we multiply the energy (47.75 kWh) by the cost per kilowatt-hour (9.0 cents/kWh) and convert it to dollars, giving us an estimated cost of $4.30 per month.

Learn more about Calculating energy consumption of a toaster here:

https://brainly.com/question/15569623

#SPJ3

Calculate the molecular weight of a polyethylene molecule with n=750. Express your answer to three significant figures.

Answers

Final answer:

To calculate the molecular weight of a polyethylene molecule with n=750, multiply the molecular weight of the ethylene unit by n.

Explanation:

To calculate the molecular weight of a polyethylene molecule with n=750, we need to know the molecular formula and the atomic weights of the elements present in the molecule. Polyethylene is made up of repeating ethylene (C2H4) units, so we can calculate the molecular weight of the polyethylene molecule by multiplying the molecular weight of the ethylene unit (28.05 g/mol) by the value of n (750).

Calculation:
Molecular weight of polyethylene = Molecular weight of ethylene unit × n = 28.05 g/mol × 750 = 21,037.5 g/mol

Therefore, the molecular weight of the polyethylene molecule with n=750 is 21,037.5 g/mol, rounded to three significant figures.

Learn more about Calculating Molecular Weight of Polyethylene here:

https://brainly.com/question/32556274

#SPJ3

Suppose electrons in a TV tube are accelerated through a potential difference of 2.00 104 V from the heated cathode (negative electrode), where they are produced, toward the screen, which also serves as the anode (positive electrode), 25.0 cm away.At what speed would the electrons impact the phosphors on the screen? Assume they accelerate from rest, and ignore relativistic effects?

Answers

Answer:

83816746.4254 m/s

Explanation:

m = Mass of electron = [tex]9.11\times 10^{-31}\ kg[/tex]

q = Charge of electron = [tex]1.6\times 10^{-19}\ C[/tex]

V = Voltage = [tex]2\times 10^4\ V[/tex]

The kinetic energy of the electron is

[tex]K=\dfrac{1}{2}mv^2[/tex]

Energy is given by

[tex]E=qV[/tex]

Balancing the energy

[tex]qV=\dfrac{1}{2}mv^2\\\Rightarrow v=\sqrt{\dfrac{2qV}{m}}\\\Rightarrow v=\sqrt{\dfrac{2\times 1.6\times 10^{-19}\times 2\times 10^4}{9.11\times 10^{-31}}}\\\Rightarrow v=83816746.4254\ m/s[/tex]

The velocity of the electrons is 83816746.4254 m/s

A sly 1.5-kg monkey and a jungle veterinarian with a blow-gun loaded with a tranquilizer dart are 25 m above the ground in trees 70 m apart. Just as the veterinarian shoots horizontally at the monkey, the monkey drops from the tree in a vain attempt to escape being hit. What must the minimum muzzle velocity of the dart be for the dart to hit the monkey before the monkey reaches the ground?

Answers

Answer:

31 m/s

Explanation:

As both the monkey and the darts are subjected to constant gravitational acceleration g = 9.8 m/s2 and both start from rest (vertically speaking). Their vertical position will always be the same. For the dart to hit the monkey, its horizontal position must be the same as the monkey's, which is unchanged before reaching the ground. Therefore, the time it takes for the dart to travel across 70 m must be less than the time it takes for the monkey to drop 25m to the ground. We can find it out using the following equation of motion

[tex]s_m = gt_m^2/2[/tex]

[tex]25 = 9.8t_m^2/2[/tex]

[tex]t_m^2 = 50/9.8 = 5.1[/tex]

[tex]t_m = \sqrt{5.1} = 2.26 s[/tex]

For the dart to takes less that 2.26 s to travel 70m, its horizontal speed must at least be 70 / 2.26 = 31 m/s

The front of an aircraft hanger is being built in the shape of a parabola, which is 48 ft. wide, and has a maximum height of 18 ft., AND must have a rectangular doorway that is 8 ft. tall. What is the maximum width of the doorway? (Round your answer to one decimal place.)

Answers

Answer:

maximum width of the doorway = 35.77ft

Explanation:

The detailed calculation and derivation from first principle is as shown in the attachment

Answer:

the maximum width is x= 4√2 ft = 5.656 ft

Explanation:

for the parabola

y= a*x² + b*x + c

where y= height and x= width

an aircraft hangar should be symmetric with respect to the y axis , then

y(-x)=y(x) → a*x² + b*x + c = a*x² - b*x + c →-2*b*x =0 → b=0

it also should be pointing downwards → a is negative

, then the parabola would be

y= c- a*x²

since c= maximum height = 18 ft

then for y=0 , x= 48 ft/2 = 24 ft  →  0 = 18 ft - a*(24 ft)² → a= 1/32 ft⁻¹

then

y= 18 ft- 1/32 ft⁻¹ *x²

since the doorway cannot go beyond the parabola , the maximum possible doorway is obtained when the doorway touches the parabola.

then for a height y= 8 ft

8 ft = 18 ft- 1/32 ft⁻¹ *x²

x= 4√2 ft = 5.656 ft

By standard convention, both the electric potential and the the electric potential energy between two charges is taken to be zero in what configuration?

Answers

Answer: at when distance r = infinity.

Explanation: The formulae for the electric potential of an electric charge to an arbitrary point is given by the formulae below

V = q/4πεr

V = electric potential (volts)

q = magnitude of electric charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

In the equation above, it can be seen that only electric potential (v) and distance (r) is a variable, and there is an inverse relationship between them (an increase in one leads to a decrease in the other)

Thus to have zero value of electric potential (v= 0) we have to have the largest value of r ( r = infinity).

Same goes for electric potential energy between two charges, the formulae is given below as

W = q1 *q2/4πεr

W= electric potential energy

q1 = magnitude of first charge.

q2 = magnitude of second charge

ε = permittivity of free space

r = distance between arbitrary point and charge.

Also, all values are constant aside from electric potential energy (w) and distance (r) which have an inverse relationship.

Thus to have zero value of electric potential energy (w =0), we have to get an infinite value of distance ( r =infinity)

Asteroids, meteoroids, and comets are remnants of the early solar system. (T/F)

Answers

Answer: Asteroids, meteoroids, and comets are remnants of the early solar system. This Statement is TRUE.

Explanation:

METEOROID: these are small rocky or metallic objects found in outer space.

ASTEROIDS: these are also known as minor planets of the inner solar system. They are irregularly shaped object in space that orbits the Sun.

COMETS: these are dusty chunk of ice, that moves in a highly elliptical orbit about the sun.

Asteroids, meteoroids, and comets as remnants of the early solar system was further proved in nebular hypothesis

initially proposed in the eighteenth century by German philosopher Immanuel Kant and French mathematician Pierre-Simon Laplace. (The word nebula means a gaseous cloud.) According to the modern version of the theory, about 4.5 to 5 billion years ago the solar system developed out of a huge cloud of gases and dust floating through space. These materials were at first very thin and highly dispersed.

A prism-shaped closed surface is in a constant, uniform electric field E, filling all space, pointing right.The 3 rectangular faces of the prism are labeled A, B, and C. Face A is perpendicular to the E-field. The bottom face C is parallel to E. Face B is the leaning face. (The two triangular side faces are not labeled.)Which face has the largest magnitude electric flux through it?
a) A b) B c) C d) A and B have the same magnitude flux

Answers

Answer:

The correct answer is:

d) A and B have the same magnitude flux

Explanation:

Electric flux is the property of electric field that measures the electric field lines, passing through a surface and electric flux is also directly proportional to the number of electric field lines passing through a surface.  

The formula of electric flux is:

Φ = E A Cos θ

(where E is the electric field, A is the area of face and θ is the angle between the face and the electric field).

Since, faces A and B are perpendicular to the electric field and the electric field lines passing through face A also passes through face B therefore, both of these faces have larger and same magnitude of electric flux.

Since, face C is parallel to the electric field so, the electric flux is smaller at face C, because the magnitude of Cos 180 (when face is parallel) is smaller than the magnitude of Cos 90 (when face is perpendicular).

Final answer:

Face A, which is perpendicular to the uniform electric field, has the largest magnitude electric flux through it because the angle between the field lines and the normal to the surface is zero, maximizing the electric flux.

Explanation:

The question revolves around calculating the electric flux through different faces of a prism in a uniform electric field. Electric flux (Φ) is given by the equation Φ = E ⋅ A ⋅ cos(θ), where E is the magnitude of the electric field, A is the area through which the field lines pass, and θ is the angle between the field lines and the normal (perpendicular) to the surface.

Face A is perpendicular to the electric field, which means the angle θ is 0 degrees and cos(θ) is 1. Thus the flux through Face A is maximum. For Face B, the leaning face, θ is greater than 0 degrees but less than 90 degrees, thus cos(θ) will be less than 1. Hence, flux through Face B will be less than through Face A. Face C, being parallel to the electric field, has θ as 90 degrees, and cos(90) is 0, so the flux through Face C is zero. Therefore, in comparison, Face A has the largest magnitude electric flux through it.

A dripping water faucet steadily releases drops 1.0 s apart. As these drops fall, does the distance between them increase, decrease, or remain the same? Prove your answer.

Answers

Answer:

Distance between them increase

Explanation:

The position S of the water droplet can be determined  using equation of motion

[tex]S=ut+\frac{1}{2} at^2[/tex]

where [tex]u[/tex] is the initial velocity which is zero here

[tex]t[/tex] is time taken, [tex]a[/tex] is acceleration due to gravity

the position of  first drop after time [tex]t[/tex] is given by

[tex]S_{1} =0 \times t+ \frac{1}{2} at^2=\frac{1}{2} at^2............(1)[/tex]

the position of  next drop at same time is

[tex]S_{2} =\frac{1}{2} a(t-1)^2 = \frac{1}{2} a(t^2+1-2t)............(2)[/tex]

distance between them is [tex]S_{1} -S_{2}[/tex]  is [tex]a(t-1)[/tex]

from the above the difference will increase with the time

Final answer:

As the water drops fall, their velocity increases due to the force of gravity, which causes the distance between each subsequent drop to increase.

Explanation:

The response to the student's question deals with the notion of acceleration due to gravity. As the water drops fall, they are accelerated by gravity, which means their velocity (speed) increases over time. If we consider two subsequent droplets, the second drop begins its descent 1.0 seconds after the first. Therefore, when the second drop begins to fall, the first drop has already accelerated for 1.0 seconds. This causes the distance between the two drops to increase as they fall.

Learn more about acceleration due to gravity here:

https://brainly.com/question/33911719

#SPJ3

Which of the following statement(s) about energy and phase is/are correct? Select all that apply. Choose one or more: A. While only one phase is present, adding or removing energy changes PE but not KE. B. While only one phase is present, adding or removing energy changes KE but not PE. C. During a phase change, adding or removing energy changes KE but not PE. D. During a phase change, adding or removing energy changes PE but not KE.

Answers

Final answer:

In a single phase, the addition or removal of energy changes Kinetic Energy not Potential Energy. However, during a phase change, this energy addition or subtraction results in a change in Potential Energy, not Kinetic Energy.

Explanation:

The subject of this question is energy and phase, particularly in the context of Potential Energy (PE) and Kinetic Energy (KE). When only one phase is present, adding or removing energy will mainly change the KE, not the PE. This is because the energy is utilized to speed up or slow down the particles, thus changing their kinetic energy. However, during a phase change, adding or removing energy changes PE but not KE as it alters the state rather than the speed of the particles. Statement B is the one that is accurate while only one phase is present, whereas the correct option for the phase change scenario is option D.

Learn more about Energy and Phase Changes here:

https://brainly.com/question/32144084

#SPJ3

A phonograph record has an initial angular speed of 37 rev/min. The record slows to 14 rev/min in 1.6 s. What is the record’s average angular acceleration during this time interval? Answer in units of rad/s 2

Answers

Answer:

Acceleration will be [tex]\alpha =-1.50rad/sec^2[/tex]

Explanation:

We have given initial angular velocity [tex]\omega _i=37rpm[/tex]

In radian/sec initial angular velocity will be [tex]\omega _i=\frac{2\times \pi 37}{60}=3.873rad/sec[/tex]

Angular velocity after 1.6 sec is 14 rpm

So final angular velocity [tex]\omega _f=\frac{2\times \pi\times 14}{60}=1.465rad/sec[/tex]

Time t = 1.6 sec

We have to find the angular angular acceleration

From first equation of motion we know that

[tex]\omega _f=\omega _+\alpha t[/tex]

[tex]1.465=3.873+\alpha \times 1.6[/tex]

[tex]\alpha =-1.50rad/sec^2[/tex] here negative sign indicates that motion is deaccelerative in nature

A projectile is fired with an initial speed of 40 m/s at an angle of elevation of 30∘. Find the following: (Assume air resistance is negligible. Your answer should contain the gravitational constant ????.)

a. The time at which the maximum height is achieved is functionsequation editor s.
b. The maximum height achieved by the projectile is functionsequation editor m.
c. The time when the projectile hits the ground is functionsequation editor s.
d. The range of the projectile is functionsequation editor m.
e. The speed of the projectile on impact with the ground is functionsequation editor m/s.

Answers

Answer:

a. 2.0secs

b. 20.4m

c. 4.0secs

d. 141.2m

e. 40m/s, ∅= -30°

Explanation:

The following Data are giving

Initial speed U=40m/s

angle of elevation,∅=30°

a. the expression for the time to attain the maximum height is expressed as

[tex]t=\frac{usin\alpha }{g}[/tex]

where g is the acceleration due to gravity, and the value is 9.81m/s if we substitute values we arrive at

[tex]t=40sin30/9.81\\t=2.0secs[/tex]

b. the expression for the maximum height is expressed as

[tex]H=\frac{u^{2}sin^{2}\alpha }{2g} \\H=\frac{40^{2}0.25 }{2*9.81} \\H=20.4m[/tex]

c. The time to hit the ground is the total time of flight which is twice the time to reach the maximum height ,

Hence T=2t

T=2*2.0

T=4.0secs

d. The range of the projectile is expressed as

[tex]R=\frac{U^{2}sin2\alpha}{g}\\R=\frac{40^{2}sin60}{9.81}\\R=141.2m[/tex]

e. The landing speed is the same as the initial projected speed but in opposite direction

Hence the landing speed is 40m/s at angle of -30°

A rock is thrown straight up into the air with an initial speed of 55 m/s at time t = 0. Ignore air resistance in this problem. At what times does it move with a speed of 36 m/s? Note: There are two answers to this problem.

Answers

Answer:

After 1.938 sec velocity of rock will be 36 m/sec

Explanation:

We have given initial velocity at which rock is thrown u = 55 m/sec

Final velocity v = 36 m/sec

Acceleration due to gravity [tex]g=9.8m/sec^2[/tex]

According to first equation of motion we know that [tex]v=u+gt[/tex], here v is final velocity, u is initial velocity, g is acceleration due to gravity and t is time

So [tex]36=55-9.8t[/tex] ( Negative sign is due to rock is thrown upward )

So [tex]9.8t=19[/tex]

t = 1.938 sec

So after 1.938 sec velocity of rock will be 36 m/sec

A straight wire 0.280 m in length carries a current of 3.40 A. What are the two angles between the direction of the current and the direction of a uniform 0.0400 T magnetic field for which the magnetic force on the wire has magnitude 0.0250 N?

Answers

Answer:

The angle θ between the direction of the current and the direction of the uniform magnetic field is 41° or 139°.

Explanation:

The force on a current carrying wire is given by the following equation:

[tex]\vec{F} = I\vec{L}\times \vec{B}[/tex]

The cross-product can be written with a sine term:

[tex]F = ILB\sin(\theta)\\0.025 = (3.4)(0.28)(0.04)\sin(\theta)\\\sin(\theta) = 0.6565[/tex]

Therefore, the angle θ is 41.03° and 138.97°

The angles can be calculated using the formula sin(θ) = F / (I L B), giving two symmetrical values about 90° in the first and second quadrants because the sine function is periodic.

The question is asking for the angles at which the force on a current-carrying wire in a magnetic field is a specific magnitude. The magnitude of the force exerted on a current-carrying wire placed in a magnetic field is given by the formula F = I L B sin(θ), where F is the force, I is the current, L is the length of the wire, B is the magnetic field strength, and θ is the angle between the direction of the current and the direction of the magnetic field.

By rearranging for θ, we get the equation sin(θ) = F / (I L B). Plugging in the values from the question, we find sin(θ) = 0.0250 N / (3.40 A  imes 0.280 m  imes 0.0400 T). This gives us θ values that correspond to the sine of this ratio.

There are two angles that will produce the same sine value because sine is a periodic function, which are θ and 180°-θ. Therefore, the two angles between the direction of the current and the direction of the uniform magnetic field for which the force on the wire has a magnitude of 0.0250 N will be symmetrical about 90° in the first and second quadrants.

A used car is pushed off an 87-ft-high sheer seaside cliff with a speed of 8 ft/s. Find the speed at which the car hits the water.

Answers

Final Answer:

The speed at which the car hits the water is approximately 75.2 feet per second.

Explanation:

To find the speed at which the car hits the water, we can use one of the kinematic equations that relates the initial velocity, acceleration due to gravity, the height it fell from, and the final velocity. The kinematic equation that we need is:


[tex]\[ v^2 = u^2 + 2gh \][/tex]


Where:
-  v  is the final velocity,
-  u  is the initial velocity,
-  g  is the acceleration due to gravity (which we will use  [tex]\( 32.174 \, \text{ft/s}^2 \)[/tex] for since we are dealing with feet),
-  h  is the height.

Here, we are given:
-  [tex]\( u = 8 \, \text{ft/s} \)[/tex] (initial velocity)
- [tex]\( h = 87 \, \text{ft} \)[/tex] (height)
- [tex]\( g = 32.174 \, \text{ft/s}^2 \)[/tex] (acceleration due to gravity)

Let's find the final velocity \( v \) using these values.

[tex]\[ v^2 = u^2 + 2gh \][/tex]

[tex]\[ v^2 = (8 \, \text{ft/s})^2 + 2 \cdot 32.174 \, \text{ft/s}^2 \cdot 87 \, \text{ft} \][/tex]

[tex]\[ v^2 = 64 \, \text{ft}^2/\text{s}^2 + 2 \cdot 32.174 \, \text{ft/s}^2 \cdot 87 \, \text{ft} \][/tex]
[tex]\[ v^2 = 64 \, \text{ft}^2/\text{s}^2 + 5591.148 \, \text{ft}^2/\text{s}^2 \][/tex]
[tex]\[ v^2 = 5655.148 \, \text{ft}^2/\text{s}^2 \][/tex]



Now we take the square root of both sides to solve for the final velocity \( v \):

[tex]\[ v = \sqrt{5655.148} \, \text{ft/s} \][/tex]

Performing the square root calculation, we get:

[tex]\[ v \approx 75.2 \, \text{ft/s} \][/tex]

So, the speed at which the car hits the water is approximately 75.2 feet per second.

A load consists of a 70-Ω resistor in parallel with a 90-μF capacitor. If the load is connected to a voltage source vs(t) = 160cos 2000t, find the average power delivered to the load.

Answers

Answer:

Power delivered by the source will be 182.912 watt

Explanation:

We have given a load is consist of a resistor of 70 ohm in parallel with [tex]90\mu F[/tex] capacitance

Voltage source is given [tex]v_s(t)=160cos(2000t)[/tex]

So maximum value of voltage source is 160 volt

So rms value [tex]v_{r}=\frac{v_m}{\sqrt{2}}=\frac{160}{1.414}=113.154volt[/tex]

We know that average power delivered by the source will be equal to average power absorbed by the resistor

So power absorbed by the resistor [tex]P=\frac{v_r^2}{R}=\frac{113.154^2}{70}=182.912watt[/tex]

So power delivered by the source will be 182.912 watt

Arctic sea ice has declined over the past few decades causing water levels to increase. This is an interaction of which two spheres?

Biosphere and geosphere

Cryosphere and hydrosphere

Geosphere and atmosphere H

ydrosphere and geosphere

Answers

Answer:

Option (2)

Explanation:

The Cryosphere refers to the frozen water bodies on earth. This includes the glaciers, icebergs, ice sheets and the frozen water surrounding the Arctic as well as Antarctica.

The Hydrosphere refers to all the water bodies on earth including the rivers, streams, lakes, and ponds.

The given condition is based on the interaction between the cryosphere and the hydrosphere.

The frozen ice in the Antarctic and Arctic is melting rapidly due to the increase in the global warming effect. This declining ice in the polar region results in the rise in the global sea level. This can be catastrophic as many of the big cities will be flooded because of this increasing height of sea level.

Thus, the correct answer is option (2).

The decline of Arctic sea ice and its impact on water levels is an interaction between two Earth system spheres: the cryosphere and hydrosphere.

The interaction of Arctic sea ice decline and increasing water levels involves the cryosphere and hydrosphere spheres. The cryosphere refers to the frozen components of the Earth system, including ice caps, glaciers, and sea ice. The hydrosphere encompasses all the water on Earth, including oceans, lakes, and rivers.

Learn more about Interactions between Earth system spheres here:

https://brainly.com/question/33404282

#SPJ3

You are observing a spacecraft moving in a circular orbit of radius 100,000 km around a distant planet. You happen to be located in the plane of the spacecraft’s orbit. You find that the spacecraft’s radio signal varies periodically in wavelength between 2.99964 m and 3.00036 m. Assuming that the radio is broadcasting at a constant wavelength, what is the mass of the planet?

Answers

To solve this problem we will apply the concepts related to centripetal acceleration, which will be the same - by balance - to the force of gravity on the body. To find this acceleration we must first find the orbital velocity through the Doppler formulas for the given periodic signals. In this way:

[tex]v_{o} = c (\frac{\lambda_{max}-\bar{\lambda}}{\bar{\lambda}}})[/tex]

Here,

[tex]v_{o} =[/tex]  Orbital Velocity

[tex]\lambda_{max} =[/tex] Maximal Wavelength

[tex]\bar{\lambda}} =[/tex] Average Wavelength

c = Speed of light

Replacing with our values we have that,

[tex]v_{o} = (3*10^5) (\frac{3.00036-3}{3})[/tex]

Note that the average signal is 3.000000m

[tex]v_o = 36 km/s[/tex]

Now using the definition about centripetal acceleration we have,

[tex]a_c = \frac{v^2}{r}[/tex]

Here,

v = Orbit Velocity

r = Radius of Orbit

Replacing with our values,

[tex]a = \frac{(36km/s)^2}{100000km}[/tex]

[tex]a= 0.01296km/s^2[/tex]

[tex]a = 12.96m/s^2[/tex]

Applying Newton's equation for acceleration due to gravity,

[tex]a =\frac{GM}{r^2}[/tex]

Here,

G = Universal gravitational constant

M = Mass of the planet

r = Orbit

The acceleration due to gravity is the same as the previous centripetal acceleration by equilibrium, then rearranging to find the mass we have,

[tex]M = \frac{ar^2}{G}[/tex]

[tex]M = \frac{(12.96)(100000000)^2}{ 6.67*10^{-11}}[/tex]

[tex]M = 1.943028*10^{27}kg[/tex]

Therefore the mass of the planet is [tex]1.943028*10^{27}kg[/tex]

A certain carbon monoxide molecule consists of a carbon atom mc = 12 u and an oxygen atom mo = 17 u that are separated by a distance of d = 128 pm, where "u" is an atomic unit of mass.

Part (a) write a symbolic equation for the location of the center of mass of the carbon monoxide molecule relative to the position of the oxygen atom. This expression should be in terms of the masses of the atoms and the distance between them. 50%

Part (b) Calculate the numeric value for the center of mass of carbon monoxide in units of pm. Grade Summary Deductions Potential 0% 100%

Answers

Answer:

a)  x_{cm} = m₂/ (m₁ + m₂)   d , b)   x_{cm} = 52.97 pm

Explanation:

The expression for the center of mass is

                [tex]x_{cm}[/tex] = 1 / M  ∑ [tex]x_{i}[/tex] [tex]m_{i}[/tex]

Where M is the total masses, mI and xi are the mass and position of each element of the system.

Let's fix our reference system on the oxygen atom and the molecule aligned on the x-axis, let's use index 1 for oxygen and index 2 for carbon

              x_{cm} = 1 / (m₁ + m₂)   (0+ m₂ x₂)

Let's reduce the magnitudes to the SI system

             m₁ = 17 u = 17 1,661 10⁻²⁷ kg = 28,237 10⁻²⁷ kg

             m₂ = 12 u = 12 1,661 10⁻²⁷ kg = 19,932 10⁻²⁷ kg

             d = 128 pm = 128 10⁻¹² m

The equation for the center of mass is

               x_{cm} = m₂/ (m₁ + m₂)   d

b) let's calculate the value

            x_{cm} = 19.932 10⁻²⁷ /(19.932+ 28.237) 10⁻²⁷    128 10-12

            x_{cm} = 52.97 10⁻¹² m

            x_{cm} = 52.97 pm

(a) The expression for the center mass of these two atoms relative to oxygen atom is  [tex]X_{cm} = \frac{m_1 d_0 \ +\ m_2d}{m_1 + m_2}[/tex]

(b) The numeric value for the center of mass of carbon monoxide is 53 pm.

The given parameters;

mass of the carbon atom = 12umass of the oxygen atom, = 17 udistance between the atoms, = 128 pm

The center mass of these two atoms relative to oxygen atom is calculated as follows;

[tex]X_{cm} = \frac{m_1 d_0 \ +\ m_2d}{m_1 + m_2}[/tex]

where;

[tex]d_0[/tex] is distance of the atom in the fixed reference point (oxygen atom)

(b)

The numeric value for the center of mass of carbon monoxide in units of pm is calculated as follows;

[tex]X_{cm} = \frac{17u(0) \ +\ 12u(128 \ pm)}{(12u + 17u)}\\\\X_{cm} = \frac{(12 \times 128u) \ pm}{29u} \\\\X_{cm} = 53 \ pm[/tex]

Learn more here:https://brainly.com/question/13981379

Other Questions
At the end of the current year, the accountant for Navistar Graphics forgot to make an adjusting entry to accrue Wages payable to the company's employees for the last week in December. The wages will be paid to the employees in January. Which of the following is one of the effects of this error?A. Net income is overstated.B. Liabilities are overstated.C. Net income is understated.D. Expenses are overstated Drag the correct type of update to its definition.PRLPRIBasebandThe connection between a mobile device and radio towerThe chip that controls the radio frequency waves within a deviceA list of radio frequencies Pavlov's original Stimulus Substitution Theory does not fully account for classical conditioning because ____. There drew he forth the brand Excalibur, And oer him, drawing it, the winter moon, Brightening the skirts of a long cloud, ran forth And sparkled keen with frost against the hilt: For all the haft twinkled with diamond sparks, Myriads of topaz-lights, and jacinth-work Of subtlest jewellery. He gazed so long That both his eyes were dazzled, as he stood, This way and that dividing the swift mind, In act to throw: but at the last it seemd Better to leave Excalibur conceald "Morte dArthur," Alfred, Lord Tennyson What does the imagery in this passage help readers imagine? a. the cold winds that Bedivere withstands b. the moons light reflecting off the sword c. the jewelry that Bedivere is wearing d. the way that Bedivere hides the sword What frequencies (in Hz) will a 1.85 m long tube produce in the audible range (20 Hz - 20,000 Hz) at 18.0C for the following cases? What was the main goal of the Ku Klux Klan?OA. To prevent the education of African AmericansOB. To stop Republicans from taking control of state governmentsOC. To create a military force that could challenge the U.S. ArmyOD. All of the above What is x raised to the 1/2 power multiplied by x raised to the 1/5 Which statement best summarizes transportation in Iowa? U. s. recording studios are feeling the pinch in profits due to the fact that artists' music is copied and sold overseas within 24 hours of the music selling in the u. s. market. as a student who is now aware of the challenges businesses face in global trade, which of the following statements do you think is an accurate representation of this situation?a. the copying and selling of the artist's original music is illegal and enforceable by international copyright law.b. the copying and selling of the artist's music is legal due to the fact that the internet has changed copyright laws.c. u. s. copyright laws do not necessarily apply globally.d. copyright laws only protect the artist, but not the recording studios. Which chemical equation is properly balanced?A. 4Ba + S, 2BaSB. 4HgO + 4Hg + 30,C. 2FeO + 4C Fe + CO,D. Sil, + 2Mg Si + 2Mgl, "Electromagnetic radiation travels or propagates through space in the form of a wave but can interact with matter as a particle of energy called a photon. This dual nature is referred to as":____________ Regarding financial accounting for public companies, the role of the Securities and Exchange Commission (SEC) as currently practiced is to ___________.A. Regulate financial disclosures for corporate, state, and municipal reporting.B. Make rules and regulations pertaining more to disclosure of financial information than to the establishment of accounting recognition and measurement principles.C. Develop and promulgate most generally accepted accounting principles.D. Make rules and regulations regarding filings with the SEC but not to regulate annual or quarterly reports to shareholders. What can parents do to make it easier for children to learn to use language to express themselves? Value consists of: a. a product's performance characteristics and attributes for which customers are willing to pay. b. a product's proprietary characteristics and attributes for which customers are willing to pay. c. a product's proprietary characteristics and attributes for which customers consider paying. d. a product's performance characteristics and attributes for which customers consider paying. what is 5 1/2-1 2/7 in the simplest form What is the value of y 79 And 37 In January 1918, US President Woodrow Wilson presented his Fourteen Points, which outlined his vision for postwar peace. Which of these were some of those points? A rectangle is 5 times as longer than it is wide. Its width is three-sixteenths of its perimeter. Find its perimeter. A snail starts at the bottom of a well 20 feet deep and crawls up 4 feet each day. However, each night as it sleeps, the poor snail slips back 3 feet. How long will it take the snail to get out of the well? In the following list of magmas, only one is likely to explode - the others will produce lava flows or spatter to form small cinder cones or ooze out to form lava domes. Which one of the following magmas is most likely to produce an explosive volcanic eruption when it reaches the Earth's surface? a. A basaltic magma with gas. b. A basaltic magma without gas. c. An andesitic magma with gas. d. A rhyolitic magma without gas.