A stadium has 10500 seats and 8 VIP boxes. The stadium is divided into 12 equal sections: 2 premium sections and 10 standard sections. A seat at the premium section costs $48 per game. A seat at the standard section costs $27 per game.

Answers

Answer 1

Answer:

1). 875 seats

2). 25 rows in each section

3). $8400

4). Saving of $360

5). 2105 tickets remained unsold

6). x = 16

Step-by-step explanation:

This question is incomplete; here is the complete question.

A stadium has 10,500 seats and 8 VIP boxes. The stadium is divided into 12 equal  sections: 2 premium sections and 10 standard sections. A seat at the premium section  costs $48 per game. A seat at the standard section costs $27 per game.

1. How many seats are there in each section?

2. If there are 35 seats in each row, how many rows are in each section?

3. If all the seats in the premium section are sold out for a game, how much will the  stadium get from those ticket sales?

4. There are 50 games in each season. A season pass costs $2,040. A season pass  holder can go to all the games and have a seat in the premium section. How much can a fan save by buying the season pass?

5. For the night game on Tuesday, 8,395 tickets were sold. How many tickets were  left?

6. Write an equation using “x” and then solve  the equation. Each VIP boxes can seat X  people. If all the seats and VIP boxes are  filled up, there are 10,628 audience in the stadium.

1). Number of seats in the stadium = 10500

Number of sections = 2 premium + 10 standard = 12

Number of seats in each section = [tex]\frac{10500}{12}=875[/tex]

2). If the number of seats in each row = 35

Then number of rows in each section = [tex]\frac{875}{35}=25[/tex]

3). Number of seats in 2 premium sections = 2×875 = 1750

Cost of 1750 seats at the rate of $48 per game = 1750 × 48 = $84000

4). Cost of one ticket in premium section = $48 per game

If the games planned in one season = 50

Then cost of the tickets = 48×50 = $2400

Cost of the season ticket = $2040

Saving on the purchase of one season ticket = 2400 - 2040 = $360

5). For a night game number of tickets sold = 8395

Total number of seats in the stadium = 10500

Tickets remained unsold = 10500 - 8395 = 2105

6). Number of seats in each VIP box = x

Number of VIP boxes = 8

Number of seats in 8 VIP boxes = 8x

Total number of tickets sold = 10500 + 8x

Total number of audience in the stadium = 10628

Then the equation will be

8x + 10500 = 10628

8x = 10628 - 10500

x = [tex]\frac{128}{8}=16[/tex]

Answer 2
Final answer:

The subject of this question is Mathematics, specifically dealing with seating capacity and pricing in a stadium. To determine the maximum seating capacity of the stadium, add up the number of seats in each section. To calculate the total revenue from a single game, multiply the number of seats in each section by the corresponding ticket price, and then sum up the results.

Explanation:

The subject of this question is Mathematics, specifically dealing with the concepts of seating capacity and pricing in a stadium.

To determine the maximum seating capacity of the stadium, we add up the number of seats in each section: 2 premium sections with 48 seats each, 10 standard sections with 900 seats each, and 8 VIP boxes with a capacity of 12 seats each. This gives us a total of 1116 seats.

To calculate the total revenue from a single game, we multiply the number of seats in each section by the corresponding ticket price, and then sum up the results. For the premium sections, the revenue is $48 per seat multiplied by 96 seats, and for the standard sections, the revenue is $27 per seat multiplied by 900 seats. Adding up these two amounts gives us the total revenue from a single game.

Learn more about Mathematics here:

https://brainly.com/question/27235369

#SPJ3


Related Questions

Javon, Sam, and Antoine are baking cookies. Javon has 3/2 cup of flour, Sam has 4 1/3 cups of flour, and Antoine has 3 4/6 cups of flour. How many cups of flour do they have altogether?

Answers

Answer:

They have [tex]9\frac{3}{6}\ cups[/tex] of flour altogether.

Step-by-step explanation:

Given:

Amount of flour Javon has = [tex]\frac{3}{2}\ cup[/tex]

Amount of flour Sam has = [tex]4\frac{1}{3}\ cups[/tex]

[tex]4\frac{1}{3}\ cups[/tex] can be Rewritten as [tex]\frac{13}{3}\ cups[/tex]

Amount of flour Sam has = [tex]\frac{13}{3}\ cups[/tex]

Amount of flour Antoine has = [tex]3\frac{4}{6}\ cups[/tex]

[tex]3\frac{4}{6}\ cups[/tex] can Rewritten as [tex]\frac{22}{6}\ cups[/tex]

Amount of flour Antoine has = [tex]\frac{22}{6}\ cups[/tex]

We need to find the amount of cups of flour they have altogether.

Solution:

Now we can say that;

the amount of cups of flour they have altogether can be calculated by sum of Amount of flour Javon has and Amount of flour Sam has and Amount of flour Antoine has.

framing in equation form we get;

amount of cups of flour they have altogether = [tex]\frac{3}{2}+\frac{13}{3}+\frac{22}{6}[/tex]

Now to solve we need to make the denominator common by using L.C.M we get;

amount of cups of flour they have altogether = [tex]\frac{3\times3}{2\times3}+\frac{13\times2}{3\times2}+\frac{22\times1}{6\times1}=\frac{9}{6}+\frac{26}{6}+\frac{22}{6}[/tex]

Now Denominators are common so we will add the numerators we get;

amount of cups of flour they have altogether = [tex]\frac{9+26+22}{6}= \frac{57}{6}\ cups\ \ OR \ \ 9\frac{3}{6}\ cups[/tex]

Hence They have [tex]9\frac{3}{6}\ cups[/tex] of flour altogether.

geometry 7.2 puzzle time where did columbus land when he found america

Answers

Final answer:

Christopher Columbus landed on an island in the Bahamas, which he named San Salvador, on October 12, 1492, mistakenly believing he had reached Asia. This event is considered a pivotal moment in history, marking the beginning of European exploration and colonization of the Americas.

Explanation:

Christopher Columbus, an Italian explorer sponsored by Spain, embarked on his voyage to find a direct sea route to Asia by sailing west. Contrary to his expectations, he landed in the Americas on October 12, 1492. Columbus made landfall on an island in the Bahamas, which the native Lucayans called Guanahani. He renamed it San Salvador. Following this, Columbus explored other islands in the Caribbean, including an island he named Hispaniola (present-day Dominican Republic and Haiti), still believing he had reached the East Indies.

Columbus’ mistaken belief that he had landed in Asia led to the indigenous peoples he encountered being called “Indios”, which is the origin of the term “Indian” for native peoples of the Americas. Despite his error, Columbus's voyages are considered a pivotal moment in history, marking the beginning of widespread European exploration and colonization of the Americas.

Learn more about Christopher Columbus here:

https://brainly.com/question/36688873

#SPJ11

A swimming pool is filled with water by using two taps A and B. Alone, it takes tap A 3 hours less than B to fill the same pool. Together, they take 2 hours to fill the pool. How many hours does it take each tap to fill the swimming pools separately?

Answers

Answer:

Tap A 3hrs

Tap B 6hrs

Step-by-step explanation:

Let the volume of the swimming pool be Xm^3.

Now, to get the appropriate volume, we know we need to multiply the rate by the time. Let the rate of the taps be R1 and R2 respectively, while the time taken to fill the swimming pool be Ta and Tb respectively.

x/Ta= Ra

x/Tb= Rb

X/(Ra + Rb)= 2

Ta = Tb - 3

From equation 2:

X = 2( Ra + Rb)

Substituting the values of Ra and Rb Using the first set of equations

X = 2( x/Ta + x/Tb)

But Ta = Tb - 3

1/2 = 1/(Tb - 3)+ 1/Tb

0.5 = (Tb + Tb-3)/Tb(Tb - 3)

At this juncture let’s say Tb = y

0.5 = (2y - 3)/y(y - 3)

y(y-3 ) = 4y - 6

y^2 -3y - 4y + 6 = 0

y^2 -7y + 6= 0

Solving the quadratic equation, we get y =

y = Tb = 6hrs or 1hr

We remove one hour as we know that Tap A takes 3hrs left than tap B and there is nothing like negative hours

Now, we get Ta by Tb -3 = 6 - 3 = 3hrs

A college’s data about the incoming freshmen indicates that the mean of their high school GPAs was 3.4, with a standard deviation of 0.35; the distribution was roughly mound-shaped and only slightly skewed. The students are randomly assigned to freshman writing seminars in groups of 25. What might the mean GPA of one of these seminar groups be? Describe the appropriate sampling distribution model—shape, center, and spread— with attention to assumptions and conditions. Make a sketch using the 68–95–99.7 Rule.

Answers

Answer:

Step-by-step explanation:

u = 3.4

stdev = 0.35

n = 25

E = u = 3.4

SD = [tex]\frac{stdev}{\sqrt{n} } =\frac{0.35}{\sqrt{25} }[/tex] = 0.07

The calculation of the 68% population covers with 1 standard deviation is as follows:

u - SD = 3.4 - 0.07 = 3.33

u + SD = 3.4 + 0.07 = 3.47

Range = (3.33, 3.47)

The calculation of the 95% population covers within 2 standard deviations is as follows:

u - 2SD = 3.4 - 2(0.07) = 3.26

u + 2SD = 3.4 + 2(0.07) = 3.54

Range = (3.26, 3.54)

The calculation of the 99.7% population covers within 3 standard deviations is as follows:

u - 3SD = 3.4 - 3(0.07) = 3.19

u + 3SD = 3.4 + 3(0.07) = 3.61

Range = (3.19, 3.61)

From the information, observe that the shape of the distribution is symmetrical.

Therefore, the graph is as shows the attached image.

This shows that approximately:

68% of the observations will have mean between 3.33 and 3.47

95% of the observations will have mean between 3.26 and 3.54

99.7% of the observations will have mean between 3.19 and 3.61

PLZ HELP WORTH 50 PTS, WILL MARK BRANLIEST!!!!!

Answer the following questions about the problem above. Write in complete sentences to get full credit.

1. What is the slope for section "d" of Mrs. Washington's commute.

2. What does it mean that the slope is negative in context of the problem?

3. Why are the slopes different over different intervals?

4. How long does it take Mrs. Washington to get home? How did you know this?

Answers

Step-by-step explanation:

[tex]slope \: of \: section \: d \: = gradient = \frac{y2 - y1}{x2 - x1} \\slope = \frac{6 - 0}{32 - 20} = \frac{6}{12} = \frac{1}{2} = 0.5 [/tex]The slope is negative because it moves downward from the left.If it were to move upwards from the left it would be a positive slope.The slope intervals are different because;the factors responsible for slope are not constant during the journey. i.e the time taken and the distance covered for each part of the journey are differentThe speed for each part of the journey is different.

For a : Speed = distance / time

Distance covered = y2 - y1 = 20 - 15 = 5

Time taken = x2 - x1 = 8 - 0 = 8

Speed in part a : 5/8 = 0.625

4. It takes her 32 minutes to get home. We can see from the graph that it is the total time taken throughout the whole journey.

Need help on geometry

Answers

Answer:

[tex]2\sqrt {10}[/tex]

Step-by-step explanation:

Given:

[tex]x=3\sqrt 5[/tex]

[tex]y=\sqrt 5[/tex]

As seen from the triangle, the triangle is a right angled triangle. Two sides of the triangle are given and we are asked to find the third side.

'x' is the hypotenuse as this side is opposite side to the right angled.

'y' and 'z' are the two legs of the triangle.

Now, using pythagoras theorem,

[tex]x^2=y^2+z^2\\\\(3\sqrt 5)^2=(\sqrt 5)^2+z^2\\\\9\times 5=5+z^2\\\\45-5=z^2\\\\40=z^2\\\\z=\sqrt {40}\\\\z=2\sqrt {10}[/tex]

Therefore, the measure of the side 'z' is [tex]2\sqrt {10}[/tex].

Hence, the third option is correct.

A poster is 8 in taller than it is wide. It is mounted on a backing board that provides a 2 in border on each side of the poster. If the area of the backing board is 308 in2 what are the dimensions of the poster

Answers

Answer:

The dimensions of poster are 32.5 in wide and 40.5 in tall.

Step-by-step explanation:

Given:

A poster is 8 in taller than it is wide.

It is mounted on a backing board that provides a 2 in border on each side of the poster.

The area of the backing board is 308 in².

Now, to find the dimensions of the poster.

Let [tex]x[/tex] be the length of the poster.

And [tex]y[/tex] be the width of the poster.

As given, poster is 8 in taller than it is wide.

So,

[tex]x=y+8[/tex]   ......(1)

Area = 308 in².

So, it is mounted on a backing board that provides a 2 in border on each side of the poster.

According to question:

[tex]2\times (2(y+4))+2\times (2\times x)=308[/tex]

Now. substituting the value from equation (1) in the place of [tex]x[/tex] we get:

[tex]2\times (2y+8)+2(2\times (y+8))=308[/tex]

[tex]2\times (2y+8)+2(2y+16)=308[/tex]

[tex]4y+16+4y+32=308[/tex]

[tex]8y+48=308[/tex]

Subtracting both sides by 48 we get:

[tex]8y=260[/tex]

Dividing both sides by 8 we get:

[tex]y=32.5\ in.[/tex]

The width of the poster = 32.5 in.

Now, substituting the value of [tex]y[/tex] in equation (1):

[tex]x=y+8[/tex]

[tex]x=32.5+8[/tex]

[tex]x=40.5\ in.[/tex]

Length of the poster = 40.5 in.

Therefore, the dimensions of poster are 32.5 in wide and 40.5 in tall.

The amounts below represent the last twelve transactions made to Juan's checking account.Positive numbers represent deposits and negative numbers represent debits from his account. $28 -$20 $67 -$22 -$15 $17 -$38 $41 $53 -$13 $30 $75A) $75B) $113C) $37D) -$113

Answers

Answer:

Option B. Range of the given sample data is 113.

Step-by-step explanation:

The given question is incomplete; here is the complete question.

Find the range for the given sample data.

The amounts below represent the last twelve transactions made to Juan's checking account.  Positive numbers represent deposits and negative numbers represent debits from his account.

$28   -$20   $67   -$22   -$15   $17  -$38  $41   $53   -$13   $30   $75

Option A. $75

Option B. $113

Option C. $37

Option D. -$113

Transaction done by Juan can be arrange from lowest to highest

-38   -22   -20    - 15    -13    17   28    30   41   53    67    75    

Now we know rage of the sample data = Highest value - Lowest value

= 75 - (-38)

= 113

Therefore, range of the given sample data is 113.

Option B is the answer.

Mrs. King gets a 15% discount on merchandise bought in the store where she works. Last week she bought several items that totaled $57.25 before the discount. How much did she have to pay using her discount? Round off the amount to the nearest cent.

Answers

Answer:

48.6625 before rounding, I'm sure the instruction told you where it preferred you to round.

Step-by-step explanation:

1. Convert percent value to a decimal.

The way to do this is by moving the period at 15.00 two places to the left.

2. Now that you have the decimal .15, multiply it by Mrs. King's subtotal (57.25).

you should get 8.5875.

3. Subtract the discount amnt. (8.5875) from the subtotal (57.25).

You should get 48.6625.

The number of lacrosse sticks sold at a sporting goods store in November decreases by 35% from the number sold in October. In October, 80 sticks were sold. How many lacrosse sticks were sold in November?

Answers

Answer:the number of lacrosse sticks that were sold in November is 52

Step-by-step explanation:

The number of lacrosse sticks sold at a sporting goods store in November decreases by 35% from the number sold in October. If the number of lacrosse sticks sold in October is 80, then the amount by which it decreased would be

35/100 × 80 = 0.35 × 80 = 28

Therefore, the number of lacrosse sticks that were sold in November would be

80 - 28 = 52

Matt wants to build a rectangular enclosure for this animal. One wide of the pen will be against the barn, so he needs no fence on that side. The other three sides will be enclosed with wire fencing. If Matt has 1000 feet of fencing. You can find the dimensions that maximize the area of the enclosed.

Answers

Answer:

500 feet by 250 feet.

Step-by-step explanation:

Let the length be x and the width y feet.

As we have 1000 feet of wire:

x + 2y = 1000

2y = 1000 - x

y = 500 - 0.5x

So the area =   x(500 - 0.5x)

A =  500x - 0.5x^2

For a maximum  area the derivative

A' =  500 -x = 0

x = 500 feet.

2y = 1000 - 500

y = 250 feet.

Keisha bought cups of coffee and bagels for the people in her office. Each bagel cost $2 and each cup of coffee cost $1.50. Keisha spent a total of $40 to buy 23 items. Let x represent the number of bagels and y represent the number of cups of coffee.

Answers

Answer:

The number of bagels is 11 and the cups of coffee is 12.

Step-by-step explanation:

Given:

Keisha bought cups of coffee and bagels for the people in her office. Each bagel cost $2 and each cup of coffee cost $1.50.

Keisha spent a total of $40 to buy 23 items.

Now, to find the number of cups of bagels and coffee.

As given in question:

Let [tex]x[/tex] represent the number of bagels.

And [tex]y[/tex] represent the number of cups of coffee.

So, the total number of items:

[tex]x+y=23[/tex]

[tex]x=23-y[/tex]    ......(1)

Now, the total money spent on items:

[tex]2x+1.50y=40[/tex]

Substituting the value of [tex]x[/tex] from equation (1):

[tex]2(23-y)+1.50y=40[/tex]

[tex]46-2y+1.50y=40[/tex]

[tex]46-0.50y=40[/tex]

Subtracting both sides by 46 we get:

[tex]-0.50y=-6[/tex]

Dividing both sides by -0.50 we get:

[tex]y=12.[/tex]

The number of cups of coffee = 12.

Now, to get the number of bagel we substitute the value of [tex]y[/tex] in equation (1):

[tex]x=23-y[/tex]

[tex]x=23-12[/tex]

[tex]x=11.[/tex]

The number of bagels = 11.

Therefore, the number of bagels is 11 and the cups of coffee is 12.

Consider the two functions. Which statement is true? A) Function 1 has a greater rate of change by 2 B) Function 2 has a greater rate of change by 2 C) Function 1 has a greater rate of change by 3 2 D) Function 2 has a greater rate of change by 3 2

Answers

The answer to the question would be “C”

Answer:

D.  Function 2 has a greater rate of change by  

3

2

Step-by-step explanation:

Function 2 has a greater rate of change by  

3

2

m =  

y2 − y1

x2 − x1

Function 1 has a slope of  

1

2

.

x-int = (−4, 0)

y-int = (0, 2)

m =  

2 − 0

0 − (−4)

=  

2

4

=  

1

2

Function 2 has a slope of 2.

m =  

5 − 3

3 − 2

=  

2

1

= 2

thus,

2 −  

1

2

=  

4

2

−  

1

2

=  

3

2

An isosceles triangle has two sides of equal length, a, and a base, b. The perimeter of the triangle is 15.7 inches, so the equation to solve is 2a + b = 15.7. If we recall that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side, which lengths make sense for possible values of b? Select two options

Answers

Final answer:

To find the possible values of b in the equation 2a + b = 15.7 in an isosceles triangle, we can assume different values for a and solve for b. Two lengths that make sense for possible values of b are 5.7 and 3.7.

Explanation:

To determine which lengths make sense for possible values of b in the equation 2a + b = 15.7, we need to consider the fact that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. Since the triangle is isosceles, two sides have the same length, which is represented by a. Let's assume that a = 5 (one possible value) and substitute it into the equation: 2(5) + b = 15.7. Solving for b, we get b = 5.7. This means that a possible value for b is 5.7. Another option is when a = 6, which gives us b = 3.7. Therefore, the two lengths that make sense for possible values of b are 5.7 and 3.7.

A random sample of 225 measurements is selected from a population, and the sample mean and standard deviation are x =32.5 and s = 30.0, respectively. It is claimed that the population mean exceeds 30. State the null and an appropriate alternative hypothesis, and perform a test at 5% significance level.

Answers

Answer:

[tex]t=\frac{32.5-30}{\frac{30}{\sqrt{225}}}=1.25[/tex]    

[tex]p_v =P(t_{(224)}>1.25)=0.106[/tex]  

If we compare the p value and the significance level given [tex]\alpha=0.05[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, so we can't conclude that the true mean is actually its significantly higher than 30.

Step-by-step explanation:

Data given and notation  

[tex]\bar X=32.5[/tex] represent the sample mean  

[tex]s=30[/tex] represent the sample standard deviation

[tex]n=225[/tex] sample size  

[tex]\mu_o =30[/tex] represent the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the mean exceeds 30, the system of hypothesis would be:  

Null hypothesis:[tex]\mu \leq 30[/tex]  

Alternative hypothesis:[tex]\mu > 30[/tex]  

If we analyze the size for the sample is > 30 but we don't know the population deviation so is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic

We can replace in formula (1) the info given like this:  

[tex]t=\frac{32.5-30}{\frac{30}{\sqrt{225}}}=1.25[/tex]    

P-value

The first step is calculate the degrees of freedom, on this case:  

[tex]df=n-1=225-1=224[/tex]  

Since is a one side rigth tailed test the p value would be:  

[tex]p_v =P(t_{(224)}>1.25)=0.106[/tex]  

Conclusion  

If we compare the p value and the significance level given [tex]\alpha=0.05[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, so we can't conclude that the true mean is actually its significantly higher than 30.  

Fred’s company is planning a new logo. The diagrams show two similar versions of the planned logo.
A) calculate the lengths of the sides marked a and b.
B) the smaller of the two versions of the logo costs £4.48 to paint with gold paint. Calculate the cost of the logo with the same gold paint.

Answers

Answer:

a=7.2*1.5=10.8 cm

b=6.3/1.5=4.2 cm

[tex]\pounds 4.48*2.25=\pounds 10.08[/tex]

Step-by-step explanation:

Proportional Geometric Shapes

A) We are given two similar shapes of a logo. They are to be proportional. We only need to find the proportion ratio of two of them to find the rest of the lengths.

The upper sides have 7.5 cm and 5 cm respectively. This gives us the ratio

[tex]\displaystyle r=\frac{7.5}{5}=1.5[/tex]

Which means all the measures of the smaller logo are 1.5 smaller than those of the larger. This means  

b=6.3/1.5=4.2 cm

a=7.2*1.5=10.8 cm

B) To paint the logos, we need to cover its surface, so the ratio of the surface is 1.5*1.5=2.25

This means the cost to paint the larger logo is  

[tex]\pounds 4.48*2.25=\pounds 10.08[/tex]

Answer:

A) a = 10.8, b = 4.2

B) £10.08

Step-by-step explanation:

A) 7.5/5 = 1.5

a = 7.2 x 1.5 = 10.8

5/7.5 = 2/3

b = 6.3 x 2/3 = 4.2

B) 1.5 x 1.5 = 2.25

£4.48 x 2.25 = £10.08

For his phone service, Ivan pays a monthly fee of $14, and he pays an additional $0.05 per minute of use. The least he has been charged in a month is $74.75.What are the possible numbers of minutes he has used his phone in a month?

Answers

Answer:

1215 minutes are the possible numbers he has used his phone in a month.

Step-by-step explanation:

He has a monthly fee of 14$ then to the least that he has been charged we need to substract the monthly fee as follows:

Monthly charged = 74,75-14

Monthly charged= 60,75$

Then he pays an additional 0,05 $/minute of use, to know the consume:

Minutes= [tex]\frac{60,75}{0,05}[/tex]

Minutes= 1215 possible numbers of minutes he has used his phone.

HELP PLZ, WORTH 50 PTS!!! WILL GIVE BRANLIEST!!!

Consider the following piece-wise function. Which of the below correctly describes the graph shown?

Answers

Answer:

The 3th answer is correct.

for x<2, form graph we know that if x=0 than y=-3.

For x<2 in 3th we have y=1/2x-3, so for x=0, y=(1/2)*0-3=0-3=-3. It fits.

For x=2, from graph we have that y=-2.

For x>=2 in 3th we have y=3x-8, so for x=2, y=3*2-8=-2. It fits.

These answer fit also i for first, but breakpoint for y from graph is point 2 not point -2, so the answer is 3th.

the third one is the answer

In an experiment, college students were given either four quarters or a $1 bill and they could either keep the money or spend it on gum. The results are summarized in the table. Complete parts (a) through (c) below. Purchased Gum Kept the Money Students Given Four Quarters 25 15 14 Students Given a $1 Bill 29 a. find the probability of randomly selecting a student who spent the money, given that the student was given a $1 bill. The probability is (Round to three decimal places as needed.) b. find the probability of randomly selecting a student who kept the money, given that the student was given a $1 bill. The probability is (Round to three decimal places as needed.) c. what do the preceding results suggest? A. A student given a $1 bill is more likely to have kept the money. B. A student given a $1 bill is more likely to have spent the money than a student given four quarters. C. A student given a $1 bill is more likely to have kept the money than a student given four quarters. D. A student given a $1 bill is more likely to have spent the money.

Answers

Answer:

a) [tex] P(A|B) = \frac{15/83}{44/83} =\frac{15}{44}=0.341[/tex]

b) [tex] P(B|A) = \frac{29/83}{44/83} =\frac{29}{44}=0.659[/tex]

c)  A. A student given a $1 bill is more likely to have kept the money.

Because the probability 0.659 is atmoslt two times greater than 0.341

Step-by-step explanation:

Assuming the following table:

                                                     Purchased Gum      Kept the Money   Total

Students Given 4 Quarters              25                              14                      39

Students Given $1 Bill                       15                               29                    44

Total                                                   40                              43                     83

a. find the probability of randomly selecting a student who spent the money, given that the student was given a $1 bill.

For this case let's define the following events

B= "student was given $1 Bill"

A="The student spent the money"

For this case we want this conditional probability:

[tex] P(A|B) =\frac{P(A and B)}{P(B)}[/tex]

We have that [tex] P(A)= \frac{40}{83} , P(B)= \frac{44}{83}, P(A and B)= \frac{15}{83}[/tex]

And if we replace we got:

[tex] P(A|B) = \frac{15/83}{44/83} =\frac{15}{44}=0.341[/tex]

b. find the probability of randomly selecting a student who kept the money, given that the student was given a $1 bill.

For this case let's define the following events

B= "student was given $1 Bill"

A="The student kept the money"

For this case we want this conditional probability:

[tex] P(A|B) =\frac{P(A and B)}{P(B)}[/tex]

We have that [tex] P(A)= \frac{43}{83} , P(B)= \frac{44}{83}, P(A and B)= \frac{29}{83}[/tex]

And if we replace we got:

[tex] P(B|A) = \frac{29/83}{44/83} =\frac{29}{44}=0.659[/tex]

c. what do the preceding results suggest?

For this case the best solution is:

A. A student given a $1 bill is more likely to have kept the money.

Because the probability 0.659 is atmoslt two times greater than 0.341

Final answer:

Using the principles of conditional probability, we find that a student given a $1 bill is more likely to spend the money (probability approximately 0.641) than keep it (probability approximately 0.359). Therefore, option B is the correct interpretation of these results.

Explanation:

To answer this question, we should first understand that this problem is fundamentally about conditional probability, the probability of an event given that another event has occurred. Let's take this step by step.

Part a: Here, we want to find the probability of selecting a student who spent the money, given that the student was given a $1 bill. This number would be the number of $1 bill students who bought gum divided by the total number of $1 bill students. This equates to 25/(25+14) = 0.641. So, the probability is approximately 0.641.

Part b: In this situation, we're looking for the probability of selecting a student who kept the money, given that the student was given a $1 bill. This would be the number of $1 bill students who kept the money divided by the total number of $1 bill students, or 14/(25+14) = 0.359. The probability is approximately 0.359.

Part c: These results suggest that the appropriate solution is B: 'A student given a $1 bill is more likely to have spent the money than a student given four quarters.'

Learn more about Conditional Probability here:

https://brainly.com/question/32171649

#SPJ11

What is the value of x
Help is needed.

Answers

Answer:

x = 27.2.

Step-by-step explanation:

As BD || CE   the triangles ABD and ACE are similar.

AB = 25 - 8 = 17.

AB / AC = AD / AE     ( similar triangles)

17 / 25 = x / 40

x = 17*40 / 25

= 27.2.

There are 25 white cars, 15 blue cars, 21 red cars, and 30 black cars on a dealership lot. What is the probability of selecting a red car off the lot? Round to three decimals.

Answers

Answer:

The probability of selecting a red car off the lot is 0.231.

Step-by-step explanation:

Given:

Number of white cars = 25

Number of blue cars = 15

Number of red cars = 21

Number of black cars = 30

We need to find the probability of selecting a red car off the lot.

Solution:

First we will find the Total number of cars in the lot.

Now we can say that;

Total number of cars in the lot is equal to sum of Number of white cars and Number of blue cars and Number of red cars and Number of black cars.

framing in equation form we get;

Total number of cars in the lot = [tex]25+15+21+30 = 91[/tex]

Now to find the probability of selecting a red car off the lot we will divide Number of red cars by Total number of cars in the lot.

framing in equation form we get;

P(red) = [tex]\frac{21}{91}=0.2307[/tex]

Rounding to three decimals we get;

P(red) = 0.231

Hence The probability of selecting a red car off the lot is 0.231.

The probability of selecting a red car off the lot, rounded to three decimals, is 0.231.

First, we need to find the total number of cars on the lot by adding up the number of cars of each color:

 Total number of cars = Number of white cars + Number of blue cars + Number of red cars + Number of black cars

Total number of cars = 25 + 15 + 21 + 30

Total number of cars = 91

 Next, we find the probability of selecting a red car by dividing the number of red cars by the total number of cars:

Probability of selecting a red car = Number of red cars / Total number of cars

Probability of selecting a red car = 21 / 91

To round to three decimals, we perform the division:

 Probability of selecting a red car = 0.2308

Rounded to three decimals, the probability is 0.231.

Sprinklers are being installed to water a lawn. Each sprinkler waters in a circle. Can the lawn be watered completely by 4 installed sprinklers?

(1) The lawn is rectangular and its area is 32 square yards.
(2) Each sprinkler can completely water a circular area of lawn with a maximum radius of 2 yards.

Answers

Answer:yes, the lawn can be watered completely by 4 installed sprinklers.

Step-by-step explanation:

The lawn is rectangular and its area is 32 square yards. Sprinklers are to be installed and each sprinkler waters in a circle. The formula for determining the area of a circle is expressed as

Area = πr²

Where

r represents the radius of the circle.

π is a constant whose value is 3.14

If each sprinkler can completely water a circular area of lawn with a maximum radius of 2 yards., the the maximum area that can be watered by each sprinkler would be

Area = 3.14 × 2² = 12.56 yards²

If 4 sprinklers are completely installed, then the total area that they can water would be

12.56 × 4 = 50.24 yards²

Therefore, the lawn can be watered completely by 4 installed sprinklers.

Let the universe be the set U = {1, 2, 3,..., 10}. Let A = {1, 4, 7, 10}, B = {1, 2, 3, 4, 5}, and C = {2, 4, 6, 8}. List the elements of each set.(a) \overline{A} \cap C =\\
|\overline{A} \cap C| =\\
(b) B - \overline{C} = \\
|B - \overline{C}| \\
(c) B \cup A = \\
|B \cup A| =\\
(d) \overline{B} \cap (A - C) = \\
|\overline{B} \cap (A - C)| =\\
(e) (A - B) \cap (B - C) =\\
|(A - B) \cap (B - C)|

Answers

Final answer:

In a universe of numbers 1 to 10, sets A, B, and C hold specific values. We explore intersections, differences, and unions. A's complement intersects C to give {2, 6, 8}, while B minus C's complement reveals {2, 4}. Their union boasts {1, 2, 3, 4, 5, 7, 10}, while B's complement meets A minus C in {7, 10}. Finally, (A minus B) and (B minus C) share no elements, resulting in an empty set.

Explanation:

Set Operations in U

Here's the breakdown of each set operation and the resulting sets:

(a) \overline{A} ∩ C:

\overline{A}: The complement of A, which includes all elements in U that are not in A. In this case, U \ A = {2, 3, 5, 6, 8, 9}.

\overline{A} ∩ C: The intersection of U \ A and C. This gives us {2, 6, 8}.

|\overline{A} ∩ C|: The cardinality (number of elements) of the intersection. Therefore, |\overline{A} ∩ C| = 3.

(b) B - \overline{C}:

\overline{C}: The complement of C, which includes all elements in U that are not in C. In this case, U \ C = {1, 3, 5, 7, 9, 10}.

B - \overline{C}: The difference between B and U \ C. This removes elements from B that are also in U \ C. Therefore, B - \overline{C} = {2, 4}.

|B - \overline{C}|: The cardinality of the difference. Hence, |B - \overline{C}| = 2.

(c) B ∪ A:

B ∪ A: The union of B and A, which includes all elements that are in either B or A or both. In this case, B ∪ A = {1, 2, 3, 4, 5, 7, 10}.

|B ∪ A|: The cardinality of the union. Therefore, |B ∪ A| = 7.

(d) \overline{B} ∩ (A - C):

\overline{B}: The complement of B, which includes all elements in U that are not in B. In this case, U \ B = {6, 7, 8, 9, 10}.

A - C: The difference between A and C. This removes elements from A that are also in C. Therefore, A - C = {1, 7, 10}.

\overline{B} ∩ (A - C): The intersection of U \ B and A - C. This gives us {7, 10}.

|\overline{B} ∩ (A - C)|: The cardinality of the intersection. Hence, |\overline{B} ∩ (A - C)| = 2.

(e) (A - B) ∩ (B - C):

A - B: The difference between A and B. This removes elements from A that are also in B. Therefore, A - B = {7, 10}.

B - C: The difference between B and C. As mentioned earlier, B - C = {2, 4}.

(A - B) ∩ (B - C)**: The intersection of A - B and B - C. Since no elements are shared between these sets, the intersection is empty.

|(A - B) ∩ (B - C)|**: The cardinality of the empty set is 0. Therefore, |(A - B) ∩ (B - C)| = 0.

(sum of interior angles = 180 (n-2) where n is the number of sides of the polygon)

1. if the sum of the interior angles of a polygon equals 1980, how many sides does the polygon have ?
2. how many degrees are there in the sum of the interior angles of a nine sides polygon ?
3. how many sides does a polygon have if the sum of its interior angles is 1620 ?
4. how many degrees are there in the sum of the interior angles of an eighteen sides polygon ?
5. how many degrees are there in the sum of the interior angles of a seventeen sides polygon ?
6. what is the sum of the interior angles of a quadrilateral ?

(i don't need an explanation, just the answers)

Answers

Answer:

Step-by-step explanation:

The sum of the interior angles = 180 (n-2)

where n is the number of sides of the polygon.

1) if the sum of the interior angles of a polygon equals 1980,

180(n - 2) = 1980

180n - 360 = 1980

180n = 1980 + 360 = 2340

n = 2340/180 = 13

2) if n = 9, the number of degrees would be

180(n - 2) = 180(9 - 2)

= 180 × 7 = 1260 degrees

3) 180(n - 2) = 1620

n - 2 = 1620/180 = 9

n = 9 + 2 = 11

4) n = 18

The number of degrees would be

180(n - 2) = 180(18 - 2) = 2880 degrees.

5) n = 17

The number of degrees would be

180(n - 2) = 180(17 - 2) = 2700 degrees.

6) the sum of the interior angles of a quadrilateral is 360 degrees.

A trains leaves Cincinnati at 2:00 pm.A second train leaves the same station in the same direction at 4:00 pm.The second train travels 24 mph faster than the first.If the second train overtakes the first at 7:00 pm, what is the speed of each train?

Answers

Answer:

Speed of first train = 36 mph

Speed of second train =  60 mph

Step-by-step explanation:

Given:

First train leaves Cincinnati at 2:00 PM

Second train leaves same station at 4:00 PM

Speed of second train is 24 mph faster than first train.

The second train overtakes the first at 7:00 PM

To find the speeds of each train.

Solution:

First train:

Let speed of first train be = [tex]x\ mph[/tex]

Time of travel between 2:00 PM to 7:00 PM = [tex]7-2=5\ h[/tex]

Distance traveled by 1st train in 5 hours in miles = [tex]Speed\times time = x\times 5 = 5x[/tex]

Second train:

Then, speed of second train will be = [tex](x+24)\ mph[/tex]

Time of travel between 4:00 PM to 7:00 PM =[tex]7-4 = 3\ h[/tex]

Distance traveled by second train in 3 hours in miles = [tex]Speed\times time = (x+24)\times 3=3x+72[/tex]

At 7:00 PM both trains meet as the second train overtakes the first. This means the distance traveled by both the trains is same at 7:00 PM as they both leave from same stations.

Thus, we have:

[tex]5x=3x+72[/tex]

Solving for [tex]x[/tex]

Subtracting both sides by [tex]3x[/tex]

[tex]5x-3x=3x-3x+72[/tex]

[tex]2x=72[/tex]

Dividing both sides by 2.

[tex]\frac{2x}{2}=\frac{72}{2}[/tex]

∴ [tex]x=36[/tex]

Speed of first train = 36 mph

Speed of second train = [tex]36+24=[/tex] 60 mph

Final answer:

The speed of the first train is 36 mph and the speed of the second train, which is 24 mph faster, is 60 mph. This was determined by setting up an equation based on the equal distances covered by both trains when the second overtakes the first.

Explanation:

The question involves solving a rate, time, and distance problem typically found in algebra or kinematics. To find the speeds of the two trains, we can set up an equation based on the fact that the distance covered by both trains is the same at the point where the second train overtakes the first. Let's define the speed of the first train as s (in mph). Therefore, the speed of the second train will be s + 24 mph. Since the first train leaves at 2:00 pm and is overtaken at 7:00 pm, it travels for 5 hours. The second train, leaving two hours later at 4:00 pm, travels for 3 hours.

The distance covered by each train can be expressed as their speed multiplied by the time traveled. For the first train, it's s 5 hours, and for the second train, it's (s + 24) 3 hours. Setting these two distances equal gives us:

s 5 = (s + 24)  imes 3

Solving for s gives:

s  imes 5 = 3s + 72
5s - 3s = 72
2s = 72
s = 36

So, the speed of the first train is 36 mph, and the speed of the second train is 60 mph (36 + 24).

Which of the following integrals cannot be evaluated using a simple substitution? (4 points) Select one:

a. the integral of the square root of the quantity x minus 1, dx
b. the integral of the quotient of 1 and the square root of the quantity 1 minus x squared, dx
c. the integral of the quotient of 1 and the square root of the quantity 1 minus x squared, dx
d. the integral of x times the square root of the quantity x squared minus 1, dx

Answers

Answer:

B. and C.

General Formulas and Concepts:

Calculus

Differentiation

DerivativesDerivative Notation

Integration

IntegralsIndefinite IntegralsIntegration Constant C

U-Substitution

Step-by-step explanation:

*Note:

It seems like B and C are both the same answer.

Let's define our answer choices:

a.  [tex]\displaystyle \int {\sqrt{x - 1}} \, dx[/tex]

b.  [tex]\displaystyle \int {\frac{1}{\sqrt{1 - x^2}}} \, dx[/tex]

c.  [tex]\displaystyle \int {\frac{1}{\sqrt{1 - x^2}}} \, dx[/tex]

d.  [tex]\displaystyle \int {x\sqrt{x^2 - 1}} \, dx[/tex]

Let's run u-substitution through each of the answer choices:

a.  [tex]\displaystyle u = x - 1 \rightarrow du = dx \ \checkmark[/tex]

∴ answer choice A can be evaluated with a simple substitution.

b.  [tex]\displaystyle u = 1 - x^2 \rightarrow du = -2x \ dx[/tex]

We can see that this integral cannot be evaluated with a simple substitution. In fact, this is a setup for an arctrig integral.

∴ answer choice B cannot be evaluated using a simple substitution.

C.  [tex]\displaystyle u = 1 - x^2 \rightarrow du = -2x \ dx[/tex]

We can see that this integral cannot be evaluated with a simple substitution. In fact, this is a setup for an arctrig integral.

∴ answer choice C cannot be evaluated using a simple substitution.

D.  [tex]\displaystyle u = x^2 - 1 \rightarrow du = 2x \ dx \ \checkmark[/tex]

Using a little rewriting and integration properties, this integral can be evaluated using a simple substitution.

∴ answer choice D can be evaluated using a simple substitution.

Out of all the choices, we see that B and C cannot be evaluated using a simple substitution.

∴ our answer choices should be B and C.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Show your work
What are the roots of the polynomial equation?
You can use any method you would like to solve.
0=x^4-3x^3+10x^2-24+16

Answers

Answer:

1, 2, and ±i√8

Step-by-step explanation:

0 = x⁴ − 3x³ + 10x² − 24x + 16

Using grouping:

0 = x⁴ − 3x³ + 2x² + 8x² − 24x + 16

0 = x² (x² − 3x + 2) + 8 (x² − 3x + 2)

0 = (x² + 8) (x² − 3x + 2)

0 = (x² + 8) (x − 1) (x − 2)

The roots are 1, 2, and ±i√8.

Lia is cooking.She needs 2 3/4 cups of flour and 4 3/4 cups of cornmeal.Lia wants to bake sure she has a bowl big enough to hold the flour and cornmeal.Which answer should Lia use to find the total amount of flour and cornmeal she needs??

Answers

Answer:

Lia needs [tex]7\frac{2}{4}\ cups[/tex] of flour and corn meal.

Step-by-step explanation:

Given:

Amount of flour needed = [tex]2\frac{3}{4} \ cups[/tex]

[tex]2\frac{3}{4} \ cups[/tex] can be Rewritten as [tex]\frac{11}{4}\ cups[/tex]

Amount of flour needed =  [tex]\frac{11}{4}\ cups[/tex]

Amount of Corn meal needed = [tex]4\frac{3}{4}\ cups[/tex]

[tex]4\frac{3}{4}\ cups[/tex] can be Rewritten as [tex]\frac{19}{4}\ cups[/tex]

Amount of Corn meal needed =  [tex]\frac{19}{4}\ cups[/tex]

We need to find the total amount of of flour and cornmeal she needs.

Solution:

Now we can say that;

the total amount of of flour and cornmeal she needs is equal to sum of Amount of flour needed and Amount of Corn meal needed.

framing in equation form we get;

the total amount of of flour and cornmeal she needs = [tex]\frac{11}{4}+\frac{19}{4}=\frac{11+19}{4}=\frac{30}{4}\ cups\ \ OR\ \ 7\frac{2}{4}\ cups[/tex]

Since Answers are not given:

Kindly chose the answer which contains below data.

Hence Lia needs [tex]7\frac{2}{4}\ cups[/tex] of flour and corn meal.

I like math because I get it done fast. And I get A's. And I made myself and my parents do it. I make my parents do it and myself. Thats why I love math

Answers

Answer:

proud of you keep ya head up

Step-by-step explanation:

Keep it up your parents would be more happier than you.go on buddy

Joaquin can send up to 250 to text messages each month so far this month he has sent 141 text messages let t represent the number of text messages Joaquin can send during the rest of the month

Answers

Question is Incomplete,Complete Question is given below;

Joaquin can send 250 text each month so far this month he has sent 141 text message let T represent the number of text messages Joaquin can send during the rest of the month. Write an inequality to model the situation. Solve the inequality for t.

Answer:

The Inequality modelling the situation is [tex]141+t\leq 250[/tex].

Joaquin can send at the most 109 messages for the remaining of the month.

Step-by-step explanation:

Given:

Number of messages already sent = 141

Total number of messages he can send = 250

We need to write the inequality to model the situation and solve for the same.

Solution:

Let remaining number of messages he can send be 't'.

Now we know that;

Number of messages already sent plus remaining number of messages he can send should be less than or equal to Total number of messages he can send.

framing in equation form we get;

[tex]141+t\leq 250[/tex]

Hence The Inequality modelling the situation is [tex]141+t\leq 250[/tex].

On Solving the above equality we will find the value of 't'.

Now we will subtract both side by 141 using subtraction property of inequality we get;

[tex]141+t-141\leq 250-141\\\\t\leq 109[/tex]

Hence Joaquin can send at the most 109 messages for the remaining of the month.

Other Questions
WILL GIVE BRAINLIEST!!! 20 POINTS!! HURRY!True or False? Although the Big Three met as allies, a major difference in the powers was that Great Britain and the United States believed in democracy and capitalism whereas the Soviet Union was a communist dictatorship. Question 2 options: True False A) Which name refers to the slaves who worked at hard labor in the city-state of Sparta?1. hoplites2. helots3.warriors4.phalanxB) Which country's fleet lost the Battle of Salamis?1. Persia2. Athens3. Sparta4. MacedoniaC) Who established rule by assembly and people's courts with juries in Athens?1. Aristotle2. Solon3. Leonidas4. TellusD) which title was Darius known to the Persian people?1. Lawgiver2. Father of Democracy3. Oracle of Delphi4. King of KingsE) For which achievement is the Athenian leader Pericles celebrated?1. He amassed an army of 200,000 soldiers and defeated the Spartans at Thermopylae.2. He ran from Marathon to Athens without stopping to announce the victory over the Persians.3. He rebuilt the shattered city into a great center of art, culture, and learning.4. He sowed the seeds of democracy by establishing a popularly-elected assembly.F) Which country's fleet lost the Battle of Salamis?1.Persia2.Athens3. Sparta4.Macedonia Simplify 8y + 4x - 2y + 5x In at least 150 words, discuss which of the themes developed in this story would most appeal to high-school studentstoday. Give reasons to support your answer. After he was spanked on several occasions for spilling his milk at a restaurant, Colin became afraid to go to the restaurant. In this case, spanking was a(n) ________ for Colin's fear.a. negative reinforcerb. conditioned stimulusc. secondary reinforcerd. unconditioned stimulus Nolan has some nickels and some dimes. He has no more than 19 coins worth no less than $1.30 combined. If Nolan has 5 nickels, determine all possible values for the number of dimes that he could have. Your answer should be a comma separated list of values. At a price of $1.94 per bushel, the supply of corn is 9,800 million bushels and the demand is 9,300 million bushels. At a price of $1.82 per bushel, the supply is 9,400 million bushels and the demand is 9,500 million bushels. a) Find a price-supply equation of the form p mx b, where p is the price in dollars and x is the corresponding supply in millions of bushels. b) Find a price-demand equation of the form p mxb, where p is the price in dollars and x is the corresponding supply in millions of bushels. c) Using Excel, graph the price-supply and price-demand equations in the same coordinate system and find their point of intersection (equilibrium point) The trial balance would automatically reveal the following error: Land was purchased for cash but instead of crediting cash, the credit was made to Accounts Receivable.a. Trueb. False Apertures for the diffraction studied in this chapter are __________. A. a single slit.B. a circle.C. a square.D. both A and B.E. both A and C. In ancient India a. were legally owned by their husbands and male children. b. were barred from even viewing the ritual of sati. c. were never permitted to study the Vedas or own land, but could often serve as gurus. d. were in theory required that a widow throw herself upon her dead husband's funeral pyre. e. never married before the age of twenty-one years.' Define and detail the following: - black figure painting - red figure painting In Statistical Process Control (SPC), if a sample of items is taken and the mean of the sample is outside the control limits, the process is: a. out of control and the cause should be established b. producing high quality products c. in control and capable of producing within the established control limits d. in control, there is no need for concern within the established control limits with only natural causes of variation Which shows how Supreme Court rulings have modified the fifth admendment digital photography:What is a camera? If one were to generalize from Sherif's study of conflict resolution between two groups of campers, the best way for the United States and China to improve their relationship would be to _________.a. hold highly publicized athletic contests between the two countries.b. minimize their trade and economic exchanges.c. conduct a joint space program designed to land humans on Mars.d. allow citizens of each country the right to freely immigrate to the other country. Eugene and Velma are married. For 2019 Eugene earned $25,000 and Velma earned $10,000. What are Eugene's and Velma's taxable income for 2019? A 0.12 kg body undergoes simple harmonic motion of amplitude 8.5 cm and period 0.20 s. (a) What is themagnitude of the maximum force acting on it? (b) If the oscillations are produced by a spring, what is the springconstant? Gourmet Shop purchased cash registers on April 1 for $12,000. If this asset has an estimated useful life of four years, what is the book value of the cash registers on May 31?a.$250.b.$3,000.c.$9,000.d.$11,500. Noor has gained twenty pounds over her optimal weight. We would expect her levels of leptin and insulin to _____ in order to _____ her feelings of hunger. Kenji, a Japanese man, and Amy, an European American woman, are in a committed relationship for several years. Amy is frustrated because Kenji never expresses his feelings with words, while Kenji thinks Amy is too expressive about her feelings. Which of the following describes their communication styles?a.Amy uses high-context communication, and Kenji uses low-context communication. b.Amy is too assertive and Kenji is too quiet. c.Kenji and Amy just cannot get along. d.Kenji uses high-context communication, and Amy uses low-context communication Steam Workshop Downloader