A 75-hp (shaft output) motor that has an efficiency of 91.0 percent is worn out and is replaced by a high-efficiency 75-hp motor that has an efficiency of 96.3 percent. Determine the reduction in the heat gain of the room due to higher efficiency under full-load conditions.

Answers

Answer 1

Answer:

4.536hp

Explanation:

The decrease in the heat gain of the room is determined from difference in electrical inputs:

[tex]Q = W_{shaft} (\frac{1}{n_{1} } - \frac{1}{n_{2} })\\Q = (75hp)*(\frac{1}{0.91 } - \frac{1}{0.963 })\\\\Q = 4.536 hp[/tex]


Related Questions

Create a C language program that can be used to construct any arbitrary Deterministic Finite Automaton corresponding to the FDA definition above. a. Create structs for the: automaton, a state, and a transition. For example, the automaton should have a "states" field, which captures its set of states as a linked list.

Answers

Answer:

see the explanation

Explanation:

/* C Program to construct Deterministic Finite Automaton */

#include <stdio.h>

#include <DFA.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <stdbool.h>

struct node{

struct node *initialStateID0;

struct node *presentStateID1;

};

printf("Please enter the total number of states:");

scanf("%d",&count);

//To create the Deterministic Finite Automata

DFA* create_dfa DFA(){

  q=(struct node *)malloc(sizeof(struct node)*count);

  dfa->initialStateID = -1;

  dfa->presentStateID = -1;

  dfa->totalNumOfStates = 0;

  return dfa;

}

//To make the next transition

void NextTransition(DFA* dfa, char c)

{

  int tID;

  for (tID = 0; tID < pPresentState->numOfTransitions; tID++){

       if (pPresentState->transitions[tID].condition(c))

      {

          dfa->presentStateID = pPresentState->transitions[tID].toStateID;

          return;

      }

  }

  dfa->presentStateID = pPresentState->defaultToStateID;

}

//To Add the state to DFA by using number of states

void State_add (DFA* pDFA, DFAState* newState)

{  

  newState->ID = pDFA->numOfStates;

  pDFA->states[pDFA->numOfStates] = newState;

  pDFA->numOfStates++;

}

void transition_Add (DFA* dfa, int fromStateID, int(*condition)(char), int toStateID)

{

  DFAState* state = dfa->states[fromStateID];

  state->transitions[state->numOfTransitions].toStateID = toStateID;

  state->numOfTransitions++;

}

void reset(DFA* dfa)

{

  dfa->presentStateID = dfa->initialStateID;

}

The atomic radii of Mg2+ and F- ions are 0.079 and 0.120 nm, respectively.

(a) Calculate the force of attraction between these two ions at their equilibrium inter-ionic separation (i.e., when the ions just touch each other).

(b) What is the force of repulsion at this same separation distance?

Answers

Answer:

a)  1.165 × 10⁻⁸ N b)- 1.165 × 10⁻⁸ N

Explanation:

Using Coulomb's law

F(attraction) = [tex]\frac{Z1Z2qelectron}{4piER^2}[/tex]

where

R = sum of the distance between the centers of charges = sum of ionic radii = 0.079 nm + 0.120nm = 0.199 nm = 0.199 × 10⁻⁹ m

Z₁ = valency of Mg²⁺ = 2

Z₂ = valency of F ⁻ = - 1

qelectron = charge on electron =1.062 × 10⁻19 C

E = permitivity of free space = 8.85 × 10 ⁻¹² C²/ Nm²

Fa= (1×2× (1.602 × 10⁻¹⁹)²) / (4× 3.142 × 8.85 × 10⁻¹² × (0.199 × 10⁻⁹)²) = 1.165 × 10⁻⁸ N

b) At equilibrium F of repulsion = - F of attraction = - 1.165 × 10⁻⁸ N

Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie. What else did he wear?

Answers

Answer:

He wore his black suit, another color of shirt (not purple) and shoes

Explanation:

Holmes owns two suits: one black and one tweed.

Whenever he wears his tweed suit and a purple shirt, he chooses not to wear a tie and whenever he wears sandals, he always wears a purple shirt.

So, if he wore a bow tie yesterday, it means he wore his black suit, another color of shirt (not purple) and shoes because the shirt color is not purple

A particle is moving along a circular path having a radius of 6 in. such that its position as a function of time is given by θ=cos2t, where θ is in radians and t is in seconds.

Determine the magnitude of the acceleration of the particle when θ= 35 ∘

Answers

Answer:

The angular acceleration is -2.44 rad/s², while the linear acceleration is -14.66 in/s².

Explanation:

First we need to find the time, at the given position. W e are given the position of particle to be:

θ = 35°

Converting it to radians because, the given equation is in radians:

θ = (35°) (π radians/180°)

θ = 0.611 radians

Now, we have the equation:

θ = Cos(2t)

2t = Arc Cos (θ)

2t = Arc Cos (0.611 radians)

t = 0.91/2

t = 0.457 sec

Now, to determine angular acceleration of the particle, we must derivate the equation twice with respect to 't'

Angular Velocity = ω = dθ/dt = -2Sin(2t)

Angular Acceleration = α = -4Cos(2t)

Now, we use the value of t:

α = -4Cos(2 x 0.457)

α = -2.44 rad/s² (negative sign shows decceleration)

Now for linear acceleration, we know that:

a = rα

a = (6 in)(-2.44 rad/s²)

a = -14.66 in/s² (negative sign shows decceleration)

For a short time a rocket travels up and to the left at a constant speed of v = 650 m/s along the parabolic path y=600−35x2m, where x isin m. The origin of polar coordinate system is the same as the origin of the rectangular coordinate system xy.

Part A

Determine the radial component of velocity of the rocket at the instant when its transverse coordinate θ = 60∘, where θ is measured counterclockwise from the x axis.

Express your answer to three significant figures and include the appropriate units.

Part B

Determine the transverse component of velocity of the rocket at the instant when its transverse coordinate θ = 60∘, where θ is measured counterclockwise from the x axis.

Express your answer to three significant figures and include the appropriate units.

Answers

Answer:

Detailed working is shown

Explanation:

The attached file shows a detailed step by step calculation..

Final answer:

The radial and transverse components of the rocket's velocity at an angle of 60 degrees from the x-axis are 325 m/s and 563 m/s, respectively.

Explanation:

Using Physics principles, we know that when a rocket moves along a parabolic path, its velocity can be decomposed into two components: the radial component (the component of velocity directly in line with the radial direction) and the transverse component (the component of velocity perpendicular to the radial direction).

Given that the absolute speed |v| of the rocket is 650 m/s and the angle θ that the velocity makes with respect to x-axis (measured counterclockwise) is 60°, we can use the trigonometric definitions of sine and cosine to compute the radial and transverse components respectively.

Part A:  The radial component of velocity (vr) at θ = 60° can be computed using the formula vr = v * cosθ. So, vr = 650 m/s * cos60° = 325 m/s.

Part B: The transverse component of velocity (vt) at θ = 60° can be computed using the formula vt = v * sinθ. So, vt = 650 m/s * sin60° = 563 m/s.

Learn more about Velocity Components here:

https://brainly.com/question/33537450

#SPJ3

Consider a cylinder of height h, diameter d, and wall thickness t pressurized to an internal pressure P_0 (gauge pressure, relative to the external atmospheric pressure). The cylinder consists of material with Young's modulus E, Poisson's ratio v, and density rho. Derive expressions for the axial and hoop strains of the cylinder wall in terms of the can dimensions, properties, and internal pressure. You may assume plane stress conditions.

Continuing on Problem 1, assume a strain gage is bonded to the cylinder wall surface in the direction of the axial strain. The strain gage has nominal resistance R_0 and a Gage Factor GF. It is connected in a Wheatstone bridge configuration where all resistors have the same nominal resistance: the bridge has an input voltage V_in. (The strain gage is bonded and the Wheatstone bridge balanced with the vessel already pressurized.) Develop an expression for the voltage change delta V across the bridge if the cylinder pressure changes by delta P.

Repeat Problem 2, but now assuming the strain gage is bonded to the cylinder wall surface in the direction of the hoop strain. Does the voltage change more when the strain gage is oriented in the axial or hoop direction?

Continuing on Problem 3 (strain gage in the hoop direction), calculate the voltage change delta V across the Wheatstone bridge when the cylinder pressure increases by 1 atm. Assume the vessel is made of aluminum 3004 with height h = 10.5 cm, diameter d = 5.5 cm, and thickness t = 50 mu m. The Gage Factor is GF = 2 and the Wheatstone bridge has V_in = 6 V. The strain gage has nominal resistance R_0 = R_4 = 120 ohm.

Answers

Explanation:

Note: For equations refer the attached document!

The net upward pressure force per unit height p*D must be balanced by the downward tensile force per unit height 2T, a force that can also be expressed as a stress, σhoop, times area 2t. Equating and solving for σh gives:

 Eq 1

Similarly, the axial stress σaxial can be calculated by dividing the total force on the end of the can, pA=pπ(D/2)2 by the cross sectional area of the wall, πDt, giving:

Eq 2

For a flat sheet in biaxial tension, the strain in a given direction such as the ‘hoop’ tangential direction is given by the following constitutive relation - with Young’s modulus E and Poisson’s ratio ν:

 Eq 3

 

Finally, solving for unknown pressure as a function of hoop strain:

 Eq 4

 

Resistance of a conductor of length L, cross-sectional area A, and resistivity ρ is

 Eq 5

Consequently, a small differential change in ΔR/R can be expressed as

 Eq 6

Where ΔL/L is longitudinal strain ε, and ΔA/A is –2νε where ν is the Poisson’s ratio of the resistive material. Substitution and factoring out ε from the right hand side leaves

 Eq 7

Where Δρ/ρε can be considered nearly constant, and thus the parenthetical term effectively becomes a single constant, the gage factor, GF

 Eq 8

For Wheat stone bridge:

 Eq 9

Given that R1=R3=R4=Ro, and R2 (the strain gage) = Ro + ΔR, substituting into equation above:

Eq9

Substituting e with respective stress-strain relation

Eq 10

 

part b

Since, axial strain(1-2v) < hoop strain (2-v). V out axial < V out hoop.

Hence, dV hoop < dV axial.

part c  

Given data:

P = 253313 Pa

D = d + 2t = 0.09013 m

t = 65 um

GF = 2

E = 75 GPa

v = 0.33

Use the data above and compute Vout using Eq3

Eq 11  

The density of a fluid is given by the empirical equation rho 70:5 exp 8:27 107 P where rho is density (lbm/ft3 ) and P is pressure (lbf/in2 ). (a) What are the units of 70:5 and 8:27 107?

Answers

Answer:

The unit of 70.5 is lbm/ft^3

The unit of 8.27×10^7 is in^2/lbf

Explanation:

The unit of 70.5 has the same unit as density which is lbm/ft^3 because exponential is found of constant values (unitless values)

The unit of 8.27×10^7 (in^2/lbf) is the inverse of the unit of pressure P (lbf/in^2) because the units have to cancel out so a unitless value can be obtained. Exponential is found of figures with no unit

Consider a thin suspended hotplate that measures 0.25 m × 0.25 m. The isothermal plate has a mass of 3.75 kg, a specific heat of 2770 J/kg·K, and a temperature of 250°C. The ambient air temperature is 25°C and the surroundings temperature is 25°C. If the convection coefficient is 6.4 W/m2·K and the emissivity of the plate is 0.42, determine the time rate of change of the plate temperature, , when the plate temperature is 250°C. Evaluate the magnitude of the heat losses by convection and by radiation.

Answers

Answer:

Heat losses by convection, Qconv = 90W

Heat losses by radiation, Qrad = 5.814W

Explanation:

Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:

1. Radiation

2. Conduction

3. Convection

Convection is defined as the transfer of heat through the actual movement of the molecules.

Qconv = hA(Temp.final - Temp.surr)

Where h = 6.4KW/m2K

A, area of a square = L2

= (0.25)2

= 0.0625m2

Temp.final = 250°C

Temp.surr = 25°C

Q = 64 * 0.0625 * (250 - 25)

= 90W

Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.

Qrad = E*S*(Temp.final4 - Temp.surr4)

Where E = emissivity of the surface

S = boltzmann constant

= 5.6703 x 10-8 W/m2K4

Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)

= 5.814 W

Final answer:

The time rate of change of the hotplate's temperature is 0.0062 K/s. The magnitude of the heat losses by convection and radiation is 64.23 W.

Explanation:

The question is asking for the time rate of change of the plate temperature when it is at 250°C and the magnitude of the heat losses by convection and by radiation.

First, transform the initial plate temperature from Celsius to Kelvin, so 250°C = 523.15 K.

The air temperature is also given in Celsius, which is 25°C = 298.15 K.

Next, we calculate the heat loss due to convection using the formula Q_conv = h * A * (T_plate - T_air), where h is the convection coefficient, A is the surface area of the plate, and T_plate and T_air are the temperatures of the plate and the air, respectively.

Substituting the given values, we get: Q_conv = 6.4 W/m^2.k * 0.25 m * 0.25 m * (523.15 K - 298.15 K) = 1.80 W.

The heat loss due to radiation can be calculated using the Stefan-Boltzmann law: Q_rad = ε * σ * A * (T_plate^4 - T_surrounding^4), where ε is the emissivity, σ is the Stefan-Boltzmann constant (5.67 * 10^-8 W/m^2.K^4), and T_surrounding is the surrounding temperature.

Again plugging in the given values, we get the heat loss due to radiation as Q_rad = 0.42 * 5.67 * 10^-8 W/m^2.K^4 * 0.25 m * 0.25 m * (523.15 K^4 - 298.15 K^4) = 62.43 W.

So, the total heat loss Q = Q_conv + Q_rad = 1.80 W + 62.43 W = 64.23 W.

To find the time rate of change of the temperature, we use the formula: dT/dt = Q / (m*C), where dT/dt is the time rate of change of the plate temperature, m is the mass, and C is the specific heat. Substituting the values, we get: dT/dt = 64.23 W / (3.75 kg * 2770 J/kg.K) = 0.0062 K/s.

Learn more about Heat Transfer here:

https://brainly.com/question/34419089

#SPJ3

BJP4 Self-Check 7.16a: countStrings Language/Type: Java arrays Strings Author:Marty Stepp (on 2016/09/08) Write a method countStrings that takes an array of Strings and a target String and returns the number of occurences target appears in the array.

Answers

Answer

//countStrings Method

public class countStrings {

public int Arraycount(String[] arrray, String target) {

int count = 0;

for(String elem : arrray) {

if (elem.equals(target)) {

count++;

}

}

return count;

}

// Body

public static void main(String args [] ) {

countStrings ccount = new countStrings();

int kount = ccount.Arraycount(new String[]{"Sick", "Health", "Hospital","Strength","Health"}, " Health"

System.out.println(kount);

}

}

The Program above is written in Java programming language.

It's Divided into two parts

The first is the method countStrings

While the second part of the program is the main method for the program execution

a) A total charge Q = 23.6 μC is deposited uniformly on the surface of a hollow sphere with radius R = 26.1 cm. Use ε0 = 8.85419 X 10−12 C2/Nm2. What is the magnitude of the electric field at the center of the sphere? b) What is the magnitude of the electric field at a distance R/2 from the center of the sphere? c) What is the magnitude of the electric field at a distance 52.2 cm from the center of the sphere?

Answers

Answer:

(a) E = 0 N/C

(b) E = 0 N/C

(c) E = 7.78 x10^5 N/C

Explanation:

We are given a hollow sphere with following parameters:

Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C

R = radius of sphere = 26.1 cm = 0.261 m

Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²

The formula for the electric field intensity is:

E = (1/4πεo)(Q/r²)

where, r = the distance from center of sphere where the intensity is to be found.

(a)

At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.

E = 0 N/C

(b)

Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).

E = 0 N/C

(c)

Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:

E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]

E = 7.78 x10^5 N/C

Wheel diameter = 150 mm, and infeed = 0.06 mm in a surface grinding operation. Wheel speed = 1600 m/min, work speed = 0.30 m/s, and crossfeed = 5 mm. The number of active grits per area of wheel surface = 50 grits/cm2. Determine (a) average length per chip, (b) metal removal rate, and (c) number of chips formed per unit time for the portion of the operation when the wheel is engaged in the work.

Answers

Answer: a) 3mm

b) 5400mm^3/min

c) 4000000chips/min

Explanation:

Wheel diameter(D) =150mm

Infeed(W)=0.06mm

Wheel speed(V)=1600m/min

Work speed(Vw)=0.3m/s

Cross feed(d)=5mm

Number of active grits per area of wheel surface =50grits/cm^2

Average length per chip(Lc)=?

Metal removal rate(Rmr)=?

Number of chips formed per unit time(nc)=?

a) Lc=(Dd)^0.5

Lc=(150*0.06)^0.5

Lc=3mm

b) Rmr=VwWd

Rmr=(0.3m/s)*(10^3mm/m)*(5mm)*(0.06mm)

Rmr=5400mm^3/min

c) nc=VWc

nc=(1600m/min)(10^3)(5mm)(50grits/cm^2)(10^-2)

nc=4,000,000chips/min.

Two capacitors with capacitances of 16 nF and 24 nF, respectively, are connected in parallel. This combination is then connected to a battery. If the charge on the 16 nF capacitor is 56 nC, what is the charge on the 24 nF capacitor

Answers

Answer:

charge on the 24 nF capacitor is 84 nC

Explanation:

given data

capacitance Q1 = 16 nF

capacitance Q2 = 24 nF

charge on the 16 nF capacitor C1 = 56 nC

solution

we get here capacitor in parallel have same voltage

V1 = V2   ...............1

here voltage V1 = [tex]\frac{Q1}{C1}[/tex]

[tex]\frac{Q1}{C1}[/tex] = [tex]\frac{Q2}{C2}[/tex]    .....................2

put here value we get

[tex]\frac{56}{16} = \frac{Q2}{24}[/tex]

Q = 84 nC

so charge on the 24 nF capacitor is 84 nC

Final answer:

The charge on the 24 nF capacitor, when paired in parallel with a 16 nF capacitor connected to the same battery, is determined to be 84 nC.

Explanation:

When two capacitors are connected in parallel and then to a battery, they both will have the same voltage across them. Given that the charge (Q) on a capacitor is equal to the product of its capacitance (C) and the voltage (V), and assuming the 16 nF capacitor has a charge of 56 nC, the charge on the 24 nF capacitor can be determined using the formula Q = CV.

First, find the voltage using the 16 nF capacitor:

V = Q/C = 56 nC / 16 nFV = 3.5 V

Since the capacitors are in parallel, the voltage across the 24 nF capacitor is also 3.5 V. Therefore, the charge on the 24 nF capacitor is:

Q = CV = 24 nF × 3.5 VQ= 84 nC

The charge on the 24 nF capacitor is 84 nC.

In a Major scale the half-steps always fall between SUPERTONIC and SUBDOMINANT, and between LEADING TONE and TONIC.
True/False

Answers

Answer:

False

Explanation: Half-steps are two keys that are adjacent. A major scale have half step between 3 and 4,7 and 8. The fourth note- subdominant, and the second note- SUPERTONIC. 7th note-leading tonic, and first note-tonic.

Final answer:

The student's statement is incorrect. In a Major scale, half-steps always fall between the MEDIAN and the SUBDOMINANT, and the LEADING TONE and TONIC

Explanation:

The statement in your question - 'In a Major scale the half-steps always fall between SUPERTONIC and SUBDOMINANT, and between LEADING TONE and TONIC' is False. In a Major scale, the half steps always occur between the 3rd and 4th steps (i.e., MEDIAN and SUBDOMINANT) and between the 7th and 8th steps (i.e., LEADING TONE and TONIC). The SUPERTONIC is the second step of the scale, not directly involved in the half steps of a Major scale. Therefore, the correct sequence of half steps in a Major scale falls between the MEDIAN and the SUBDOMINANT, and the LEADING TONE and TONIC.

Learn more about Major scale here:

https://brainly.com/question/35147965

#SPJ3

Consider a pond that initially contains 10 million gallons of fresh water. Water containing a chemical pollutant flows into the pond at the rate of 5 million gallons per year (gal/yr), and the mixture in the pond flows out at the same rate. The concentration c=c(t) of the chemical in the incoming water varies periodically with time to the expression c(t) = 2 + sin(2t) grams per gallon (g/gal).

Construct a mathematical model of this flow process and determine the amount of chemical in the pond at any time t. Then, plot the solution using Maple and describe in words the effect of the variation in the incoming chemical.

Answers

Answer:

kindly find attachment for detailed answer

Explanation

Consider a pond that initially contains 10 million gallons of fresh water. Water containing a chemical pollutant flows into the pond at the rate of 5 million gallons per year (gal/yr), and the mixture in the pond flows out at the same rate. The concentration c=c(t) of the chemical in the incoming water varies periodically with time to the expression c(t) = 2 + sin(2t) grams per gallon (g/gal).

Construct a mathematical model of this flow process and determine the amount of chemical in the pond at any time t. Then, plot the solution using Maple and describe in words the effect of the variation in the incoming chemical.

Consider the base plate of an 800-W household iron with a thickness of L 5 0.6 cm, base area of A 5 160 cm2, and thermal conductivity of k 5 60 W/m·K. The inner surface of the base plate is subjected to uniform heat flux generated by the resistance heaters inside. When steady operating conditions are reached, the outer surface temperature of the plate is measured to be 112°C. Disregarding any heat loss through the upper part of the iron, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the plate, (b) obtain a relation for the variation of temperature in the base plate by solving the differential equation, and (c) evaluate the inner surface temperature. Answer: (c) 117°C

Answers

Answer:

a. [tex]\frac{-kdT(0)}{dx} =q_{0}[/tex]=5000W/m^2

b.833.3(0.006-x)+112

c. 117 deg C

Explanation:

Consider the base plate of an 800-W household iron with a thickness of L 5 0.6 cm, base area of A 5 160 cm2, and thermal conductivity of k 5 60 W/m·K. The inner surface of the base plate is subjected to uniform heat flux generated by the resistance heaters inside. When steady operating conditions are reached, the outer surface temperature of the plate is measured to be 112°C. Disregarding any heat loss through the upper part of the iron,

Assumption

Heat conduction is steady state and unidimensional  2. thermal conductivity is constant. Heat supplied is not in the plate

4. we disregard heat loss

Heat flux=heat/area

[tex]\alpha[/tex]/A=800W/160*10^-4

with direction to the surface been in the x direction,

the mathematical expression will be

[tex]\frac{d^2T}{dx^2}[/tex]=0..............1

and [tex]\frac{-kdT(0)}{dx} =q_{0}[/tex]=5000W/m^2

from fourier law, for conductivity

T(L)=T2=112C

b. integrating equation 1 twice we have\dT/dx=c1

T(x)=C1x+C2

C1 and C2 are arbitrary constant

at x=0 the boundary conditions become

-kC1=qo

C1=-(qo/k)

at x=L          

=T(L)=C1L+C2=T2

C2=T2-cL1

C2=T2+qoL/k

Juxtaposing C1 and C2 into the general equation , we have

T(x)=-qo/k+T2+qoL/k=qo(L-k)/k+T2

50000*(0.006-x)/60+112

833.3(0.006-x)+112

c. inner surface plate temperature is

T(0)=833.33(0.006-0)+112 ( using the derivation in answer b)

117 deg C

A batch chemical reactor achieves a reduction in concentration of compound A from 90 mg/l to 10 mg/L in one hour. if the reaction is known to follow zero order kinetics, determine the value of the rate constant in (mg/L.hr) unit.

Answers

Answer:

value of the rate constant is 80 mg/L-hr

Explanation:

given data

concentration of compound Cao = 90 mg/l

Ca = 10 mg/L

time = 1 hour

solution

we use here  zero order reaction rate flow

-rA = K Ca

[tex]\frac{-dCa}{dt}[/tex] = K

-d Ca = k dt

now we will integrate it on the both side by Cao to ca we get

[tex]- \int\limits^{Ca}_{Cao} {dCa} \, = K \int\limits^4_0 {dt} \,[/tex]  

solve it we get

cao - Ca = K t

put here value  and we get K

90 - 10 = K 1

K = 80 mg/L-hr

so value of the rate constant is 80 mg/L-hr

DMZ stands for "data-mining zombie," and it is a type of zombie that uses targeted algorithms to steal important, private data from computers connected to the botnet.
True/False

Answers

Answer:

False

Explanation:

DMZ stand for DeMilitarized Zone(perimeter network).

It is a sub-network(physical or logical) that contains external facing services to untrusted network. Not only that it contains it also exposes this kind of services.

Adding another layer of security is the main purpose of DMZ

DMZ is positioned in between the Internet and private network

1. A group of 45 tests on a given type of concrete had a mean strength of 4780 psi and a standard deviation of 525 psi. Does this concrete satisfy the requirements of ACI code for 4000 psi concrete

Answers

Answer:

Yes, because both design compressive stress is greater than 4000 psi

Explanation:

To design a concrete that satisfy the requirements of ACI code for 4000 psi concrete

Step 1: design the compressive stress, using the two equations below

[tex]f_{c} =f_{cr}-1.34*s[/tex] -------equation 1

where;

[tex]f_{c}[/tex] is the design compressive stress

[tex]f_{cr}[/tex] is the critical stress = 4780 psi mean strength

s is the standard deviation = 525 psi

[tex]f_{c} = 4780 -1.34*525[/tex] = 4076.5 psi

Step 2: design the compressive stress, using the second design equation

[tex]f_{c} =f_{cr}-2.33*s + 500[/tex] -------equation 2

[tex]f_{c} =4780-2.33*525 + 500[/tex] = 4056.75 psi

Therefore, since both compressive stress is greater than 4000 psi, the concrete satisfies the requirements of ACI code for 4000 psi concrete

Consider an aircraft traveling at high speed. At a point on its wing, the local shear stress is 312 N/m2, and the local conductive heat transfer to the wing is 450 kW/m2. Calculate the air velocity and temperature gradients normal to the surface assuming that the surface has a temperature of 330 K.

Answers

Answer:

The air velocity is 1442.3m/s

The temperature gradient is 0.00311K/m

Explanation:

Rate of heat transfer = local conductive heat transfer × area

Rate of heat transfer = force × distance/time (distance/time = velocity)

Therefore, rate of heat transfer = force × velocity

Force (F) × velocity (v) = local conductive heat transfer coefficient (k) × Area (A)

F/A × v = k

Shear stress = F/A = 312N/m^2

k = 450kW/m^2 = 450×1000W/m^2 = 450000W/m^2

312 × v = 450000

v = 450000/312 = 1442.3m/s

Air velocity (v) = 1442.3m/s

Temperature gradient = Temperature (T)/distance (s)

From equations of motion

v^2 = u^2 + 2gs

u = 0m/s, v = 1442.3m/s, g = 9.8m/s^2

1442.3^2 = 2×9.8×s

s = 2080229.29/19.6 = 106134.15m

Temperature gradient = 330K/106134.15m = 0.00311K/m

Answer:

The solution is shown in the images attached with the answer.

Explanation:

Other Questions
The expected outcome for a client with a new diagnosis of diabetes mellitus (DM) is: client will describe appropriate actions when implementing the prescribed medication routine. Which statement by the client indicates the outcome expectation has been met? if i have 15.7g of sulfur, how do i work out how much iron is needed to make iron sulfide Parents of a child with cystic fibrosis demonstrate knowledge of the effects of hot weather on their child when they state that hot weather is hazardous because the child has which problem? Solve log812 = x 2 . Round your answer to four decimal places. May runs around a 4 m track at a consistent speed of 250 m/min. how many minutes does it take me to complete for lapse of the track explain o Which of the following instruments has the least important rhythmic role in abluegrass band?OOOOA. mandolinB. banjoc. fiddleD. bassSUBMIT A stone initially moving at 8.0 m/s on a level surface comes to rest due to friction after it travels 11 m. What is the coefficient of kinetic friction between the stone and the surface? what is the supreme court? In psychoanalytic theory, the basic defense mechanism that banishes from consciousness anxiety-arousing thoughts, feelings, and memories is called _____. What type of object is a GUI widget the user can click to select an option, and allows for any number of these objects to be selected at the same time? A square picture with side length 30 cm is scaled by 60% on a photocopier the copy is then scaled by 60% again. What is the side length of the second copy of the picture A chemist determines by measurements that .070 moles of hydrogen gas participate in a chemical reaction. Calculate the mass of hydrogen gas that participates. Round your answer to significant digits. Provide a short introduction of yourself to your peers and instructor. What personal or professional experiences have you encountered that are related to the general topics of this course? According to the following reaction, how many grams of water are produced in the complete reaction of grams of sulfuric acid? Scoring Scheme: 3-3-2-1 Part I. For each trial, enter the amount of heat gained by the cool water, qcool water. The specific heat of water is 4.184 J/goC. Report your answer to 4 digits. Note: You should always carry 1 or 2 extra digits beyond the number of significant figures until your final calculation. The zone of proximal development refers to the gap between the actual developmental level of a child versus the potential developmental level that the child is capable of with some assistance by more knowledgeable others.a) trueb) false The duck pond games at the carnival has a pool with 75 toy ducks twenty five of these ducks are marked underneath as winners. To play you pick up a duck do not replace it then pick up another what is the probability that both ducks picked are winners? A nurse overhears another nurse make a statement that indicates racism. The nurse makes this determination based on which characteristic indicative of social value?A. Skin colorB. LanguageC. DressD. Size If the total fixed costs increase, does this change average (total) costs? How about average variable costs? Using this information together with the standard enthalpies of formation of O2(g), CO2(g), and H2O(l) from Appendix C, calculate the standard enthalpy of formation of acetone. Steam Workshop Downloader