which metal cation has the greatest tendency to be reduced (a) Pb2+ (b) Cr3+ (c) Fe2+ (d) Sn2+

Answers

Answer 1

Answer:  (a) [tex]Pb^{2+}[/tex]

Explanation:

The metal with negative reduction potential will easily lose electrons and thus is oxidized and the one with positive reduction potential will easily gain electrons and thus is reduced.

Where both [tex]E^0[/tex] are standard reduction potentials.

[tex]E^0_{[Pb^{2+}/Pb]}=-0.126V[/tex]

[tex]E^0_{[Cr^{3+}/Cr]}=-0.74V[/tex]

[tex]E^0_{[Fe^{2+}/Fe]}=-0.44V[/tex]

[tex]E^0_{[Sn^{2+}/Sn]}=-0.13V[/tex]

Thus here [tex]Pb^{2+}[/tex] with negative reduction potential and least magnitude has the most tendency to gain electrons and thus can be most easily reduced.


Related Questions

Words to equation and balancing

Answers

Answer:

Pb(NO₃)₂ ₍aq₎ + 2 KI ₍aq₎  ------------> PbI₂ ₍s₎ + 2 KNO₃ ₍aq₎

Explanation:

Chemical Equation:

lead(II) nitrate: Pb(NO₃)₂

potassium iodide: KI

lead(II) iodide: PbI₂

Potassium nitrate: KNO₃

Pb(NO₃)₂ ₍aq₎ + KI ₍aq₎  ------------> PbI₂ ₍s₎ + KNO₃ ₍aq₎

Balancing the equation:

For balancing the equation all atoms of the elements on both sides of equation i.e reactants and products are equal.

So balancing the above equation we get:

Pb(NO₃)₂ ₍aq₎ + 2 KI ₍aq₎  ------------> PbI₂ ₍s₎ + 2 KNO₃ ₍aq₎

What element marks the boundary between using fusion and fission to release energy?

Answers

Answer:

matter

Explanation:

Iron marks the boundary between fusion and fission for energy release. Lighter elements than iron release energy through fusion, while heavier elements release energy through fission. Iron has the highest binding energy per nucleon, making it a turning point on the energy-mass curve.

The element that marks the boundary between using fusion and fission to release energy is iron (Fe). In the context of nuclear reactions, fusion occurs when two light nuclei combine to form a heavier nucleus, releasing energy because the combined nucleus has a higher binding energy per nucleon.

In contrast, fission is the process of splitting a heavy nucleus into smaller nuclei, releasing energy because the products have a higher binding energy per nucleon than the original heavy nucleus.

Iron possesses the highest binding energy per nucleon, which is why it is an energy-increasing process to fuse nuclei lighter than iron. For elements heavier than iron, fission becomes an energy-releasing process. Thus, iron is a unique marker in the periodic table where the more energy-efficient method of releasing nuclear energy switches from fusion to fission.

Fusion is responsible for powering stars and for the creation of elements in the universe through a process known as nucleosynthesis. Furthermore, while fission has been utilized in nuclear weapons and reactors, fusion promises to release far more energy per reaction, making it an attractive but technically challenging energy source. On an energy-mass curve, nuclei to the left of iron release energy through fusion while those to the right produce energy through fission.

A 100-w light bulb is about 16% efficient. how many joules of heat energy are siddipated by the bulb each second

Answers

Answer:

84 Joules are wasted per second.

Explanation:

An efficiency of 16% means 84% is wasted as heat energy.  

Therefore;

For a 100W bulb;

Heat wasted = 84/100 × 100 W

                      = 84 W

Therefore;

84 W or 84 joules are wasted as heat per second

A population of gray foxes lives in a forest ecosystem. These foxes prey mostly on a large population of mice. If a fatal disease infects the mouse population, which of these is most likely to happen to the fox population through time?

Answers

Answer and Explanation:

Answer: C. An increase in food availability increases the birth rate in the population.

Explanation:

The conveying limit of a biological system can be characterized as the greatest size of a populace of an animal types an environment can uphold based on accessibility of assets, for example, food, water, living space and different necessities.

An increase in food availability increases the birth rate in the population

is the right choice in light of the fact that to build the populace till the conveying limit there should be excess stock of food ought to be accessible to the populace which can uphold in expansion in birth rate so the populace can achieve a level at the conveying limit.

Assign oxidation numbers for the following:
P2O5
(SO4)2-
KClO3
NH4Cl
(NH4)2S

Show all the steps, please.

Answers

Answer:

1. P₂O₅      → oxidation number of phosphorous is +5 and Oxygen is -2.

2. (SO₄)²⁻ oxidation number of sulfur is +6 and Oxygen is -2.

3. KClO₃   → oxidation number of Potassium is +1, Chlorine is +5, and Oxygen is -2.

4. NH₄Cl  → oxidation number of Nitrogen is -3, Hydrogen is +1, and Chlorine is -1

5. (NH₄)₂S  → oxidation number of Nitrogen is -3, Hydrogen is +1, and Sulfur is -2

Explanation:

General Rules for assigning oxidation numbers

The oxidation number of a free element is always 0.

The oxidation number of a mono-atomic ion equals the charge of the ion.

The alkali metals (group I) always have an oxidation number of +1.

The alkaline earth metals (group II) are always assigned an oxidation number of +2.

Oxygen almost always has an oxidation number of -2, except in peroxides (H₂O₂) where it is -1 and in compounds with fluorine (OF₂) where it is +2.

Hydrogen has an oxidation number of +1 when combined with non-metals, but it has an oxidation number of -1 when combined with metals.

The algebraic sum of the oxidation numbers of elements in a compound is zero.

The algebraic sum of the oxidation states in an ion is equal to the charge on the ion.

Using the above rules:

1. P₂O₅

∵ it is a neutral compound its total charge is 0.

Also, we know that oxygen has an oxidation number of -2.

Let oxidation number of P be x

∴ 2(x)+5(-2)=0   →   2x=+10   →   x=+5  

∴oxidation number of phosphorous is +5.

2. SO₄²⁻:

∵ it is a charged ion its total charge is -2.

Also, we know that oxygen has an oxidation number of -2.

Let oxidation number of S be x

∴ (x)+4(-2)= -2   →   x=+6  

∴oxidation number of sulfur is +6.

3. KClO₃:

∵ it is a neutral compound its total charge is 0.

Also, we know that oxygen has an oxidation number of -2 and the  oxidation number of K (group I) is +1

Let oxidation number of Cl be x

∴ (+1) + (x) + 3(-2) = 0   →   x=+5  

∴oxidation number of Chlorine is +5.

4. NH₄Cl:

∵ it is a neutral compound its total charge is 0.

Also, we know that chloride has an oxidation number of -1

Hydrogen has an oxidation number of +1 when combined with non-metals

 Let oxidation number of N be x

∴ (x) + 4(+1) + (-1) = 0   →   x=-3  

∴oxidation number of Nitrogen is -3.

5. (NH₄)₂S:

∵ it is a neutral compound its total charge is 0.

Also, we know that chloride has an oxidation number of -1

Ammonium ion (NH₄⁺) has an oxidation number of +1

 Let oxidation number of N be x

∴ 2(+1) + (x) = 0   →   x= -2  

∴oxidation number of sulfur is -2.

How many moles of helium are 8.84×1024 atoms of He?

Answers

Answer:

14.68 moles of He

Explanation:

To do this, just remember Avogadro's Constant or Avogadro's number. This constant tells us how many units ( in this case atoms) there are in a mole of ANY type of substance.

Avogadro's constant is 6.022140857 × 10²³ units per mole.

Now that we know how many atoms there are in 1 mole, we can use this as our conversion factor.

8.84 x 10²⁴ atoms of He →  moles of He

[tex]8.84\times10^{24} atoms of He\times\dfrac{1moleofHe}{6.022140857\times10^{23}atomsofHe}=14.68molesofHe[/tex]

So the answer would be:

14.68 moles of He

Can someone explain what each of the answer choices will do to the equilibrium? Shiftwise?

Answers

Answer:

[tex]\boxed{\text{(B)}}[/tex]

Explanation:

CaF₂(s) ⇌ Ca²⁺(aq) + F⁻(aq); ΔH > 0

According to Le Châtelier's Principle, when a stress is applied to a system at equilibrium, the system will respond in a way that tends to relieve the stress.

Let's consider each of the stresses in turn.

(A) Evaporating some of the water

The concentrations of the ions will increase, so calcium fluoride will precipitate out to remove the stress (the Ca²⁺ and F⁻ ions). The position of equilibrium does not shift, and [Ca²⁺] stays the same.

(B) Adding HNO₃

HF is a weak acid, so F⁻ is a relatively strong base. The added HNO₃ will convert the F⁻ ions to HF, removing them from solution. More CaF₂ will dissolve to replace the F⁻ ions, and this will add more Ca²⁺ ions as well. The position of equilibrium will shift to the right, and [Ca²⁺] will increase.

(C) Adding NaNO₃(aq)

There is no common ion, so NaNO₃ will have no effect. The added water will dilute the solution and decrease the concentrations of the ions. However, more CaF₂ will dissolve to increase the concentrations. The position of equilibrium does not shift, and [Ca²⁺] stays the same.

(D) Adding NaF

This is the common ion effect. F⁻ is the common ion. The added NaF will dissolve, increasing the concentration of F⁻ ions. More CaF₂ will precipitate to remove the added F⁻ ions, but it removes Ca²⁺ ions at the same time. The position of equilibrium shifts to the left, and [Ca²⁺] decreases.

How many moles of NH3 DOES it take to make 8.0 moles of H2O according to the reaction shown, 4NH3 + 5O2 yields 4NO + 6H2O A)8.0 mol B) 3.5 mol C) 12.0 mol D) 5.3 mol

Answers

Answer:

The answer is 5.3 because when looking at the moles produced from the coefficient from the balanced equation all you have to do is make the 6 on the left equal 8.  IN order to do that you multiply by 1 and 1/3, then do that to the number 4 to get 5.3

Explanation:

Drag each tile to the correct location on the image.

Use the periodic table to write the electron configuration of selenium (Se).



s
p
d
1
2
3
4
6
10

Answers

Answer:

[Ar] 3d10 4s2 4p4

Explanation:

Answer: The electronic configuration of selenium is [tex][Ar]4s^23d^{10}4p^4[/tex]

Explanation:

Electronic configuration is the representation of electrons that are present in an element.

Selenium is the element which is present in Group 16 and has an atomic number of 34.

Atomic number is defined as the number of protons or number of electrons present in an atom.

The number of electrons present in this element is 34.

So, the electronic configuration of selenium = [tex]Se:[Ar]4s^23d^{10}4p^4[/tex]

In terms of bonds, what would the molecule C₃H₆ be classified as?

Inorganic compound

Alkene

Alkyne

Alkane

Answers

The molecule C3H6 is classified as a Alkene.

The answer is alkene

Fluorine-18, which has a half-life of 110 min, is used in PET scans.

a. If 100. mg of fluorine-18 is shipped at 8:00 a.m., how many milligrams of the radioisotope are still active after 110 min?
b. If 100. mg of fluorine-18 is shipped at 8:00 a.m., how many milligrams of the radioisotope are still active when the sample arrives at the radiology laboratory at 1:30 p.m.?

Answers

Answer:

Part a. 50.0 mg

Part b. 12.5 mg

Explanation:

For every hal-life time the amount of the radioisotope (fluorine-18) will be cut to half.

Part a.

Since the half-life of fluorine-18 is 110 min, ater this very time, half of the fluorine-18 is still alive, i.e 100. mg / 2 = 50.0 mg. ← answer

Part b.

Compute the time elapsed from 8:00 am, when the fluorine-18 is shipped, to 1:30 pm, when the sample arrives at teh radiology laboratory.

1:30 pm - 8:00 am = 5 hours and 30 minutes

Convert to minutes+ 5×60 + 30 = 330 min

Compute the number of half-lives in 330 min:

330 min / 110 min per half-life = 3 half-lives.

Conclusion:

the radiosotope has been reduced to half 3 times

100.0 mg × (1/2) × (1/2) × (1/2) = 100.0 mg × (1/2)³ = 100.0 mg / 8 = 12.5 mg

Hence, 12.5 mg of the radioisotope are still alive ← answer
Final answer:

After one half-life of 110 minutes, 50mg of the 100mg of Fluorine-18 would remain. After the time interval of 5 hours and 30 minutes or 330 minutes, which constitutes three half-lives, the remaining active Fluorine-18 would be 12.5mg.

Explanation:

In the case of Fluorine-18, the half-life is 110 minutes. This essentially means that half of the original amount of the radioisotope will decay and become inactive in 110 minutes.

a. If 100mg of Fluorine-18 is shipped at 8:00 a.m., after 110 minutes (or 1 hour and 50 minutes), at 9:50 a.m., half of the original amount, 50mg, will still be active.

b. If 100mg of Fluorine-18 is shipped at 8:00 a.m., and it arrives at the radiology laboratory at 1:30 p.m., this is 5 hours and 30 minutes, or 330 minutes later. As the half-life is 110 minutes, this period encompasses three half-lives (330/110). Starting with 100mg, after one half-life it would be 50mg, after the next it would be halved to 25mg, and after the third it would be 12.5mg remaining active.

Learn more about Half-life here:

https://brainly.com/question/24710827

#SPJ11

The main reason why H2CO has a higher vapor pressure at a given temperature when compared to CH3OH is that H2CO

Answers

Answer:

Cannot form hydrogen bonds to its neighbours.

Explanation:

The strongest intermolecular forces in H₂CO are dipole-dipole attractions between the polar C=O bonds in nearby molecules.

The strongest intermolecular forces in CH₃OH are strong hydrogen bonding attractions between the O-H group in one molecule and the O atom in a nearby molecule.

Since H₂CO molecules have weaker intermolecular forces than methanol, more of them can escape from the liquid to the vapour phase.

Thus, CH₂O has a higher vapour pressure than methanol.

Final answer:

Formaldehyde (H2CO) has a higher vapor pressure than methanol (CH3OH) due to weaker intermolecular forces, as methanol can form stronger hydrogen bonds which formaldehyde cannot, leading to a lower vapor pressure for methanol.

Explanation:

The main reason why H2CO (formaldehyde) has a higher vapor pressure at a given temperature compared to CH3OH (methanol) is because of the different types of intermolecular forces (IMFs) present in each compound. Methanol can form hydrogen bonds due to its -OH group, which are much stronger than the dipole-dipole interactions and London dispersion forces present in formaldehyde.

Despite methanol and formaldehyde having similar molar masses, the stronger hydrogen bonding in methanol means that more energy is needed to escape from the liquid phase, resulting in a lower vapor pressure for methanol compared to formaldehyde.

How many functional groups are in the compound?

Four

Two

Three

One

Answers

Answer:

Two functional groups

Explanation:

We have the carboxylic group and the amine group.

The COOH group to the left is the alkanoic acid/carboxylic acid group..

The NH₂ to the right is the amino functional group.

When production first began some eighty years ago, ammonia production relied upon the direct reaction between gaseous hydrogen and nitrogen called the Haber process: 3 H2(g) + N2(g) ⇀↽ 2 NH3(g) ∆H = −92.2 kJ Decreasing the temperature of an equilibrated reaction between hydrogen and nitrogen will 1. increase the velocity of the gas molecules. 2. produce more ammonia. 3. increase the kinetic energy of the gas molecules. 4. produce less ammonia. 5. have no effect.

Answers

Answer:

Option 2. Produce more ammonia.

Explanation:

The influence of temperature in equilibrium reactions can be predicted from the heat (enthalpy) information.

This is the chemical reaction:

3 H₂ (g) + N₂(g) ⇄ 2 NH₃(g) ∆H = −92.2 kJ

The information about the enthalpy of the reaction, ∆H = − 92.2 kJ,  indicates that energy (heat) has been released to the surroundings (the products of the forward reaction have less energy than the reactants), which is defined as an exothermic reaction.

Then, you can rewrite the equaition in the form:

3 H₂ (g) + N₂(g) ⇄ 2 NH₃(g) + 92.2 kJ

This is, the heat can be seen as a product of the direct reaction (or a reactant of the reverse reaction).

Now, it is quite straight to apply  Le Chatelier's principle:

a) Decreasing temperature is equivalent to extract heat or having less heat on the left side.

b) Then, the equilibrium must shift in a way that this lack of heat is compensated. Then, the reaction will shift to the right to produce more heat.

As conclusion, you can tell that in exothermic reactions, a decrase in temperature will cause the equilibrium to shift to the right.

This shift, of course, means the production of more ammonia.

The other choices are discarded following this brief reasoning:

1. increase the velocity of the gas molecules: the average velocity of the particles increases when the average kinetic energy increases, and the average kinetic energy will decrease if the temperature decreases. So, this statement is false.

3. increase the kinetic energy of the gas molecules: no, the average kinetic energy is proportional to the temperature, then reducing the temperature decreasese the average kinetic energy.

4. produce less ammonia: it was shown that reducing the temperature will produce more ammonia.

5. have no effect: no, it does have effect, as shown.

Final answer:

In the Haber process of ammonia production, when the reaction temperature is decreased, more ammonia is produced due to the exothermic nature of the reaction following Le Chatelier's Principle. The velocity and kinetic energy of the gas molecules decrease. Real-world ammonia production also accounts for pressure and catalyst factors.

Explanation:

The reaction of nitrogen and hydrogen to form ammonia, otherwise known as the Haber process, is an exothermic process, meaning it releases heat. As per Le Chatelier's principle, lowering the temperature of an exothermic reaction at equilibrium favors the production of more products. Therefore, decreasing the temperature of the hydrogen and nitrogen reaction will produce more ammonia (option 2).

Simultaneously, as we decrease the temperature, the average kinetic energy of the gas molecules decreases and, hence, the speed of the gas molecules also decreases. Therefore, the statement that decreasing the temperature will increase the velocity of the gas molecules (option 1) and increase the kinetic energy of the gas molecules (option 3) are incorrect. The option that decreasing the temperature will have no effect (option 5) is also incorrect in this scenario.

In real-world applications, the production of ammonia via the Haber process is influenced by pressure and temperature changes, and also by the usage of a catalyst to overcome the reaction's slow rate at lower temperatures.

Learn more about Haber Process here:

https://brainly.com/question/26667299

#SPJ3

More gas will dissolve in a liquid if you:
a. increase the size of the container opening
b. use a glass container rather than a metal container
c. decrease the pressure over the liquid
d. raise the temperature of the liquid
e. lower the temperature of the liquid

Answers

its c take the pressure away

The study of chemicals and bonds is called chemistry. There are different types of elements and these are metals and nonmetals.

The correct answer is option C which decreases the pressure over the liquid.

What is solubility?

The mixing of solute in the solvent is called solubility.

Solubility of solute depends on these factors and these are:-

PressureTemperature

According to the question, solubility increases when the pressure in liquid decreases.

For more information about the solubility, refer to the link:-

https://brainly.in/question/3403229

Would a solution with a pOH of 11 be acidic or basic?

Answers

Answer:

Its acidic.. With pH=3

Explanation:

pH + pOH =14

Let pH be x then

x + 11 = 14

x = 3

pH less than 7, solution is acidic.

Answer:

The solution with a pOH of 11 will be acidic in nature.

Explanation:

When the aqueous solution is dissociated based upon the ions released by them it is categorized as acids or bases. When the solution gives out [tex]H^+[/tex] ion it is called as acid, whereas if it gives out [tex]OH^-[/tex] ions it is called as bases.

The concentration of [tex]H^+[/tex] ions is represented by pH, whereas the concentration of [tex]OH^-[/tex] ion is represented by pOH. In pOH scale value seven refers to neutral, whereas value below seven shows that the substance is basic whereas the value above seven indicates the substance as acidic.

Thus, it can be inferred that the solution with a pOH of 11 will be acidic in nature.

Rutherford's model of the atom was similar to Bohr's model because they both thought that:

electrons were located in the nucleus of the atom

the nucleus of the atom was centrally located in the atom and was positively charged

the nucleus was negatively charged and that the electrons were positively charged

electrons were too small in size to affect the properties of atoms

Answers

Answer:

the nucleus of the atom was centrally located i n the atom and was positively charged

Explanation:t

Answer:

the nucleus of the atom was centrally located in the atom and was positively charged

Explanation:

Electrons orbit outside the nucleus. Option A is incorrect.

Nucleus is positive in charge and is located at the center of the atom. Option B is correct.

The nucleus is positively  charged and that the electrons are negatively charged. Option C is incorrect.

Electrons do affect the properties of atoms. Option D is incorrect.

Which solution will change red litmus to blue?
A: NaCl
B: CH3COOH
C: KOH
D: HCl

Answers

Probably D: HCl
























....................

The differences between two molecules include the type of sugar that forms a section of the molecules and the identity of one of the four nitrogenous bases that make up another section of the molecules. These two molecules are —

Answers

The answer is nucleic acids

A tank has a total pressure of 285 kPa and contains Hydrogen, Oxygen, Carbon dioxide, and Neon. If Neon has a partial pressure of 14 kPa, carbon dioxide is 13 kPa, and Oxygen has a partial pressure of 157 kPa, what is the partial pressure of Hydrogen?

Answers

Answer:

Lets the total pressure is Pt and the individual gases are designated as pH2, pCO2, pNe, pO2.

Pt =  pCO2+ pNe+pO2+ pH2

285KPa = 13 KPa+ 14 KPa + 157 KPa +pH2

Now add the partial pressure of CO2, Ne and O2 which is equal to 184 KPa.

285 KPa = 184 KPa + pH2  

Now subtract the individual pressure of each gas from thje total pressure.

285 KPa - 184 KPa = pH2

                101 KPa = pH2

The partial pressure of hydrogen is  101 KPa.

Now moles: _(1, 2, or 3)_moles of H2 + _(1, 2, or 3)_ moles of O2 → _(1, 2, or 3)_moles of H2O

Answers

Answer:

2H₂ + O₂ → 2H₂O.

Explanation:

For the reaction of water formation:

2H₂ + O₂ → 2H₂O.

It should apply the the law of conservation of mass that the no. of reactants atoms is equal to the no. of products atoms.

So, every 2.0 moles of H₂ react with 1.0 mole of O₂ to produce 2.0 moles of H₂O.

The balanced equation of the reaction is:

[tex]\underline{2}H_2\ +\ \underline{1}O_2\ \rightarrow \underline{2}H_2O\\[/tex]

How to balance the equation given?

A balanced equation must have equal numbers of moles of the various element on both sides of the equation.

Now, lets us analyze the given equation. This is show below:

[tex]\_H_2\ +\ \_O_2\ \rightarrow \_H_2O\\[/tex]

Reactants:

H = 2O = 2

Products:

H = 2O = 1

From the above, it is obviously clear that the equation is not balanced.

Therefore, the equation can be balanced by writing 2 before hydrogen gas, H₂ and 2 before water, H₂O as shown below:

[tex]\underline{2}H_2\ +\ \underline{1}O_2\ \rightarrow \underline{2}H_2O\\[/tex]

Now, we can say that the equation is balanced.

Learn more about balancing equation:

https://brainly.com/question/12192253

#SPJ3

In which set of elements would all members be expected to have very similar chemical properties?A) O, S, SeB) S, Se, SiC) N, O, FD) Ne, Na, MgE) Na, Mg, K

Answers

Answer:

A. O, S, Se

Explanation:

If you look up Oxygen (O), Sulfur (S) and Selenium (Se) in the periodic table, you will see that these three fall under the same column. In the periodic table, elements are arranged in rows and columns. Columns are called groups. The elements that fall under the same group share similar chemical properties.

The elements given above are all in Group VIA or group 16.

in which of the following cases will there be precipitation

A)QB)Q=Ksp
C)Q<D)Q>Ksp

Answers

Answer:

I think D

Explanation:

Q > Ksp,  there are more ions in solution than are necessary for saturation. This is a supersaturated solution (i.e There is a tendency for the extra solute to precipitate).

If a solid line represents a covalent bond and a dotted line represents intermolecular attraction, which of these choices shows a hydrogen bond? check all that apply

Answers

Answer:

the dotted line showing the intermolecular attraction

Explanation:

Which description correctly characterizes the acidity or basicity of a solution? The higher the pH is, the more the hydroxide ion concentration decreases and the more acidic the solution becomes. The higher the pH is, the more the hydroxide ion concentration increases and the more basic the solution becomes. The lower the pH is, the more the hydronium ion concentration decreases and the more acidic the solution becomes. The lower the pH is, the more the hydronium ion concentration increases and the more basic the solution becomes.

Answers

Answer:

The higher the pH is, the more the hydroxide ion concentration increases and the more basic the solution becomes.

Explanation:

When the pH of a solution is less than 7, then solution is called acidic and as the pH decreases the concentration of Hydronium ion increases.When the pH is about 7, then the  solution is said to be neutral. On the other hand, when  the pH is greater than 7, the solution is is said to be basic and as the pH increases the concentration of Hydroxide ions increases.Therefore, An acidic solution has a higher concentration of hydrogen ions compared to the concentration of hydroxide ions.

Answer:

B

Explanation:

Which type of reaction happens when a base is mixed with an acid

Answers

nutrition reaction or saline reaction because these reactions generate salts , such as:

HCl + NaOH==>NaCl + H2O

how does photosynthesis in the biosphere impact the atmosphere

Answers

Answer:The biosphere is all life on our planet. ... The impact on climate is mainly due to the connection between the biosphere and the atmosphere. Processes such as photosynthesis and respiration naturally affect the concentrations of gases such as oxygen and carbon dioxide in the atmosphere.

Explanation:

In photosynthesis, plants constantly absorb and release atmospheric gases in a way that creates sugar for food. Carbon dioxide goes in the plant's cells; oxygen comes out. Without sunlight and plants, the Earth would become an inhospitable place unable to support air-breathing animals and people.

How do atoms achieve noble-gas electron configurations in single covalent bonds?

Answers

Answer:

Noble gases are the only type of element that are chemically inert, that is, they do not normally undergo chemical reactions with other elements under normal circumstances, this is because they are chemically stable. Their stability is as a result of the eight valence electrons that they have in their outermost shells.

Other elements usually try to attain the stability found in noble gases by undergoing chemical reactions and by forming different types of bonds with other elements. One of the chemical bonds that are usually formed is covalent bond. In simple covalent bond, two elements usually donate one electron each, the two electrons donated are then shared equally by the two of them in order to ensure that each one has eight electrons in its outermost shell.

Final answer:

Atoms achieve noble-gas electron configurations in single covalent bonds through the sharing of electrons between atoms.

Explanation:

Atoms achieve noble-gas electron configurations in single covalent bonds through the sharing of electrons between atoms.

In a covalent bond, electrons are shared between atoms, and generally, each atom contributes one or more electrons to the bond. The shared electrons are attracted by the nuclei of both atoms, resulting in a stable electron configuration.

For example, in a double covalent bond between two oxygen atoms (O=O), each oxygen atom contributes two electrons, resulting in a shared configuration that resembles the noble gas, neon.

Learn more about achieving noble-gas electron configurations here:

https://brainly.com/question/27848059

#SPJ11

The first law of thermodynamics is a restatement of the

Answers

the law of thermodyanamic is the restatement of the law of conservation of energy

Identify which one is the oxidizing agent in this reaction:

2 KNO3 (s) → 2 KNO2 (s) + O2 (g)

Show ALL work.

Answers

Answer:

Nitrogen atom

Explanation:

Oxidation and reduction in a equation can be shown using oxidation numbers.Oxidation number of Oxygen in KNO3 is -2 while in O2 is 0; this indicates reduction.Oxidation number of Nitrogen (N) in KNO3 is + 5, while in KNO2 is +3 , this indicates oxidation.

Hence;

Nitrogen  has undergone reduction while oxygen has undergone oxidation and therefore, nitrogen is the oxidizing agent and oxygen is the reducing agent.

Other Questions
iSIS is a group that has a clear political objective. It wants to rid the Middle East of Western values and modern laws and bring back a way of life that it considers authentically . It wants to erase national borders of the Middle East and unite all Muslim-dominated nations under a where Sharia will be imposed and respected. Evaluate. 5^2+73+4 plz help ECONOMICSWhich of these describes the economic system of socialism?A)The government owns and forcibly controls all means of production.B)The government dictates which goods are produced and in what quantity.C) The citizens own and produce enough to meet the needs of their families.D)Consumer demand determines what and how much is to be produced. Add 5 and 14, triple the sum and then add 4/5 Which of the following is NOT a basic defensive driving skill? please show me how to do this, I need to show work Mattel wanted to determine if a new toy would appeal to preschoolers, so it put six 4-year-olds in a room with several toys and waited to see which ones they played with. what form of research is this? 4. About 30% of the U.S. population is under 20 years old. About 17% of the population is over 60, which of the following is the probability that a person chosen at random is under 20 or over 60?-17%-53%-47%-30% The perimeter of a quarter circle is 7.14 feet. What is the quarter circles radius 20 pts!what is the total volume of juice in a six-pack if each can is 6 inches tall and has a diameter of 3 inches?42.39in^3 or 254.3in^3PLEASE ANSWER WITH FULL DETAILS AND THE SOLUTION YOU MADE IN ORDER TO ANSWER! Write the explicit formula for the sequences3,9,27,81,... what is symbolized in wangeros rejection of her given name if UVW ~ RST ,what is the value of x? the number line shows the record low temperatures for four states Hawaii 12 degrees Fahrenheit North Carolina -38 degrees Fahrenheit South Dakota -58 degrees Fahrenheit and Montana -70 degrees farenhight enter the difference in degrees between the record low temperatures in Hawwaii and South Dakota You have 6 reindeer, Rudy, Jebediah, Ezekiel, Lancer, Gloopin, and Balthazar, and you want to have 5 fly your sleigh. You always have your reindeer fly in a single-file line.How many different ways can you arrange your reindeer? A company is selling two different sized medicine balls to a local colleges athletic department the ratio of the diameters 15:11 if the diameter of the smaller ball is 55cm what is the volume of the larger ball? Round the nearest tenth and use 3.14 for pi. A manufacturing plant has been found guilty of polluting the nearby river. This is _______ pollution. A. point source B. water-table C. open-field D. nonpoint source Sharon has $500 to use as an initial investment in a savings account or a CD account. The savings account pays 2.3% simple interest each year. The CD pays 1.8% annual interest compounded monthly.Write a function (model) that would give you the future value of the savings account in any number of years (use t for the unknown number of years).Write a function (model) that would give you the future value of the CD account in any number of years (use t for the unknown number of years). Find the future value of both accounts in 20 years. which account should she choose? Transferring information from a sphere, such as Earth, to a flat surface, such as a map, is known as A. projection. B. distortion. C. orientation. D. cartography. Compare and contrast sodium and fluorine?Compare and contrast oxygen and hydrogen?