Answer:
Range of the given function is [ 5 , ∞ )
Step-by-step explanation:
Given function is [tex]y\:=\:\sqrt{x}+5[/tex]
We need to find Range of the given function.
The Range of function is the set of all possible values of the dependent variable ( here, y ) , after substituting the value of domain.
We know that square root can not have negative value. So, Domain of the given function is all non negative real number.
That is Domain = { x : x ∈ R and x ≥ 0 } = [ 0 , ∞ )
Now for range,
put x = 0 in given function,
[tex]y\:=\:\sqrt{0}+5=5[/tex]
⇒ Minimum value of range is 5
put x = ∞ in given function,
[tex]y\:=\:\sqrt{\infinity}+5=\infinity+5=\infinity[/tex]
⇒ Maximum value of range is ∞
Thus, Range = { y : y ∈ R and y ≥ 5 } = [ 5 , ∞ )
Therefore, Range of the given function is [ 5 , ∞ )
the sum of three consecutive natural numbers is 156 find the number which is the multiple of 13 out of these numbers
Answer:
52 is the multiple of 13
Step-by-step explanation:
3x+3=156
3x=153
x=52
Answer:
52 is the multiple of 13 out of 51 , 52, 53 numbers.
Step-by-step explanation:
Given: Sum of three consecutive integers 156
To find: Three consecutive integers .
Solution: We have given that
Let first consecutive number x ,
Second consecutive number= x+1
Third number = x+2
According to question :
Sum of three consecutive number
x + x+1 +x+2 = 156 .
Combine like term
3x+3 = 156
On subtracting by 3 both side
3x + 3 -3 = 156 - 3
3x = 153
On dividing by 3
x = 51.
X+1 = 51+1
x+1 = 52.
x +3 = 51+2 = 53.
We can see second number 52 is multiple of 13.
Therefore, 52 is the multiple of 13 out of 51 , 52, 53 numbers.
What is the completely factored form of d4 − 81?
(d + 3)(d − 3)(d + 3)(d − 3)
(d2 + 9)(d + 3)(d − 3)
(d2 + 9)(d − 3)(d − 3)
(d2 + 9)(d2 − 9)
For this case we must factor the following expression:
[tex]d ^ 4-81[/tex]
Rewriting the expression:
[tex](d ^ 2) ^ 2-9 ^ 2[/tex]
We factor using the formula of the square difference:
[tex]a ^ 2-b ^ 2 = (a + b) (a-b)[/tex]
Where:
[tex]a = d ^ 2\\b = 9[/tex]
So:
[tex](d ^ 2 + 9) (d ^ 2-9)[/tex]
From the second term we have:
[tex]d ^ 2-3 ^ 2 = (d-3) (d + 3)[/tex]
Finally, the factored expression is:
[tex](d ^ 2 + 9) (d-3) (d + 3)[/tex]
Answer:
[tex](d ^ 2 + 9) (d-3) (d + 3)[/tex]
The complete factorization of the term:
[tex]d^4-81[/tex] is:
[tex](d-3)(d+3)(d^2+9)[/tex]
Step-by-step explanation:To factor a term means to express is as a product of distinct factors i.e. multiples.
We are asked to factor the algebraic expression which is given by:
[tex]d^4-81[/tex]
We could write this expression as:
[tex](d^2)^2-(3^2)^2=(d^2)^2-(9)^2[/tex]
We know that:
[tex]a^2-b^2=(a-b)(a+b)[/tex]
i.e.
[tex]d^4-81=(d^2-9)(d^2+9)\\\\i.e.\\\\d^4-81=(d^2-3^2)(d^2+9)\\\\i.e.\\\\d^4-81=(d-3)(d+3)(d^2+9)[/tex]
Question 1
The number of laptop computers sold each month for one year was
recorded by an electronics store. The results were 14, 15, 15, 30, 29, 5, 9, 15,
21, 21, 26, and 15. Calculate the median number of laptop computers sold
per month.
The median number of laptop computers sold per month is 15, calculated by arranging the sales data in ascending order and averaging the two middle values in the even-numbered dataset.
Explanation:The median of laptop computers sold per month can be calculated by first arranging the given numbers in ascending order and then finding the middle value. If there is an even number of observations, the median is the average of the two middle numbers.
Arrange the sales numbers in ascending order: 5, 9, 14, 15, 15, 15, 15, 21, 21, 26, 29, 30.Since there are 12 months, we have an even number of observations, so we take the average of the 6th and 7th values which are both 15.The median number of laptop computers sold per month is 15.Can anyone answer this ?
For this case we have that by definition, the Pythagorean theorem states that:
[tex]c = \sqrt {a ^ 2 + b ^ 2}[/tex]
Where:
c: It is the hypotenuse of the triangle
a, b: They are the legs of the triangle
Then, we verify if the theorem for the given triangles is fulfilled:
Triangle 1:
[tex]\sqrt {13} = \sqrt {2 ^ 2 + 3 ^ 2}\\\sqrt {13} = \sqrt {4 + 9}\\\sqrt {13} = \sqrt {13}[/tex]
It is fulfilled!
Triangle 2:
[tex]25 = \sqrt {2 ^ 2 + (3 \sqrt {2}) ^ 2}\\25 = \sqrt {4+ (9 * 2)}\\25 = \sqrt {22}[/tex]
It is not fulfilled!
Triangle 3:
[tex]43 = \sqrt {2 ^ 2 + (3 \sqrt {3}) ^ 2}\\43 = \sqrt {4+ (9 * 3)}\\43 = \sqrt {4+ (9 * 3)}\\43 = \sqrt {31}[/tex]
It is not fulfilled!
ANswer:
Triangle A
4x(3x-7)-19x^2 simplify the expression below
Answer:
opening the bracket, the expression becomes
12x^2-28-19x^2
collect like terms
12x2-19x^2-28
-7x^2-28
-7(x^2+4)
What is the measure of A
Answer:
A. 60°
Step-by-step explanation:
From the diagram, in triangle ABC,
AB=BC=CA=15 units.
This means triangle ABC is an equilateral triangle.
All angles in equilateral triangle are congruent. The sum of all interior angles in triangle is always 180°, so one angle of equilateral triangle is equal to 60°. Thus,
∠A=∠B=∠C=60°
How to round 56 to the nearest ten
Answer:
The answer would be 60
Step-by-step explanation:
What you do is if the number if 5 or less (ex 55) you would round down to 50. However it is 56 so you would round up to the next highest tenth, 60.
Hope this helps! Have a great day!
[tex]\text{Hey there}[/tex]
[tex]\text{If you come across: 5, 6, 7 , 8 , \& 9 you're going}\uparrow\text{(up)}[/tex]
[tex]\text{If you come across 1 , 2 , 3 , \& 4 you're going}\downarrow\text{(down)}[/tex]
[tex]\text{In this equation we have a SIX (6) at the end of the equation so we're going UP!}[/tex]
[tex]\boxed{\boxed{\bf{Ansewr: 60}}}}\checkmark[/tex]
[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{LoveYourselfFirst:)}[/tex]
What are the x- and y-intercepts for the equation "2x + 3y = 6"?
(2,0) & (3,0)
(0, 2) & (3, 0)
(0,3) & (2,0)
(0,3) & (0,2)
Answer:
(0,2) & (3,0)
Step-by-step explanation:
Given the equation [tex]2x+3y=6[/tex]:
Step 1:
To find the y-intercept, you want to set the x value to zero. This will allow you to solve for y, and find where the equation intercepts why on the 0 line:
[tex]2(0)+3y=6 \\ 0+3y=6\\ 3y=6\\ y=\frac{6}{3} \\ y = 2[/tex]
So, at x=0, y=2. or (0,2)
Step 2:
Set y = 0 and solve for x:
[tex]2x+3(0)=6\\ 2x+0=6\\ 2x=6\\ x=\frac{6}{2}\\ x=3[/tex]
so at y=0, x=3. which is the same as saying: when x=3, y=0, or (3,0)
which of the following is equivalent to the expression i^88
Answer:
i^88 = 1
Step-by-step explanation:
i^88 = i^ 4*22 = 1 { i^4k = 1 ; i^4k+1 =i ; i^4k+2 = (-1); i^4k+3 = (-i) }
The equivalent expression for i^88 is 1 as the powers of i cycle every 4. Hence (i^4)^22 which is same as 1^22 ends up being 1.
Explanation:In complex numbers, i is the imaginary unit with the property i^2 = -1. The powers of i repeat in a cycle: i^1=i, i^2=-1, i^3=-i, and i^4=1. To find the equivalent expression for i^88, we will the fact that i^4=1 and i^88 would be equivalent to (i^4)^22, because 4*22 = 88.
Therefore, (i^4)^22 = 1^22. The equivalent expression for i^88 is 1.
Learn more about Imaginary Numbers here:https://brainly.com/question/13174285
#SPJ11
Which dot plot shows data that is skewed right?
I need this ASAP
Answer:
B
Step-by-step explanation:
A graph skewed right would have LESS dots on the right side
Hope this helped!
Answer:
The correct option is B.
Step-by-step explanation:
Consider the provided graph.
A skewed right: If the distribution has a long right tail then it is know as skewed right. It is also called the positive-skew distributions. Due to a lengthy tail on the number line in the positive direction. The mean is on the right of the peak as well. See figure 1.
Now, consider the provided graph.
Option A is skewed left, so it is not the correct option.
Option B is skewed right, which is the correct option.
Whereas C and D are neither skewed left or right.
Therefore, the correct option is B.
suppose you want to convert kilometers to miles. you use the conversion of 1 mile = 1.6 kilometers. when using this conversion, which unit should be in the denominator?
Answer:
The unit that should be in the denominator is kilometers
Step-by-step explanation:
we know that
[tex]1\ mile=1.6\ kilometers[/tex]
To convert x km to mi
[tex]x\ km*(\frac{1}{1.6})\frac{mi}{km}=\frac{x}{1.6}\ mi[/tex]
therefore
The unit that should be in the denominator is kilometers
14. Solve -4x2 - 7x = -5.
Answer:
x=−7/8±129/8
Step-by-step explanation:
Assuming that is a -4x^2, i'll solve it. So, -4x^2 - 7x = -5. This is a quadratic, so move all the numbers to one side (and variables). So, -4x^2 - 7x + 5 = 0. Divide everything by -1, to make the coefficient of the x squared positive. This leaves: 4x^2 + 7x -5 = 0. Now, factoring attempts: (2x-1)(2x+5). This does not work, sadly, so we must find other methods. Using the quadratic formula would be easier than factoring, so use the quadratic formula. This gives us the answers of -7 plus or minus sqrt(129) all over 8. The quadratic formula comes in handy!
1 and 3/4 + 2 and 3/8
Hello There!
1[tex]\frac{3}{4}[/tex] + 2[tex]\frac{3}{8}[/tex] = 4[tex]\frac{1}{8}[/tex]
First, when we are trying to find the sum of a mixed number, I always add the natural numbers first meaning that the numbers before the fraction so I would add 1 and 2 together so we get a sum of 3 and now we are left with just a plain fraction.
Next, I find the least common denominator which is the smallest number that can be a common denominator for a set of fractions. Our lowest common denominator is 8 because [tex]\frac{3}{4}[/tex] = [tex]\frac{6}{8}[/tex].
Then, we add our fractions with the denominator of 8 together and get a sum of 9/8 which we can turn into a mixed number because the numerator is bigger than our denominator.
Our mixed number turns into 1 and 1/8 and we add 4 to it because that was the sum of our natural numbers and get a sum of 4 and 1/8
ANSWER 4 1/8
6 x j = 42 ??????? Help
Answer:
j = 7
Step-by-step explanation:
flip the equation around: instead of using multiplication you use division to find out what j is.
1st step: 42 divided by 6 is 7
2nd step: (check your answer): 7 times 6 does equal 42, therefore j = 7 is correct.
Answer:
[tex]\huge \boxed{J=7}[/tex]
Step-by-step explanation:
Switch sides.
[tex]\displaystyle6j=42[/tex]
Divide by 6 from both sides.
[tex]\displaystyle \frac{6j}{6}=\frac{42}{6}[/tex]
Simplify, to find the answer.
[tex]\displaystyle 42\div6=7[/tex]
[tex]\huge \boxed{j=7}[/tex], which is our answer.
The first two steps in determining the solution set of the system of equations, y = x2 - 2x - 3 and y = -x +3, algebraically are
shown in the table.
Step
Equation
Step 1 XP-2x-3--x+3
Step 2
0=x2-X-6
Which represents the solution(s) of this system of equations?
(3.0) and (-2,5)
(-6, 9) and (1, 2)
(-3,6) and (2, 1)
(6.-3) and (-1.4)
Answer:
(3,0) and (-2,5)
Step-by-step explanation:
The solutions of the equations are A ( 3 , 0 ) and B ( -2 , 5 ) and the graph is plotted
What is an Equation?Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the equation be represented as C
Now , the value of C is
Substituting the values in the equation , we get
y = x² - 2x - 3 be equation (1)
y = -x + 3 be equation (2)
On simplifying , we get
-x + 3 = x² - 2x - 3
Adding x on both sides , we get
x² - 3 - x = 3
Subtracting 3 on both sides , we get
x² - x - 6 = 0
On factorizing , we get
( x - 3 ) ( x + 2 ) = 0
So , the two values of x are 3 and -2
Hence , the solutions of equations are A ( 3 , 0 ) and B ( -2 , 5 )
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ7
The values in the table represent an exponential function. What is the common ratio of the associated geometric sequence?
Answer:
D. 3Step-by-step explanation:
[tex]a_1,\ a_2,\ a_3,\ ...,\ a_n-\text{geometric series}\\\\r=\dfrac{a_2}{a_1}=\dfrac{a_3}{a_2}=\dfrac{a_4}{a_3}=...=\dfrac{a_n}{a_{n-1}}-\text{common ratio}\\\\\text{From the table we have:}\\\\a_1=7,\ a_2=21,\ a_3=63,\ a_4=189,\ a_5=567\\\\\text{Check the common ratio:}\\\\\dfrac{21}{7}=3\\\\\dfrac{63}{21}=3\\\\\dfrac{189}{63}=3\\\\\dfrac{567}{189}=3\\\\\bold{CORRECT}[/tex]
find the length of AB leave your answer in terms of pi help please
[tex]\bf \textit{arc's length}\\\\ s=\cfrac{\pi \theta r}{180}~~ \begin{cases} r=radius\\ \theta =\textit{angle in}\\ \qquad \textit{degrees}\\ \cline{1-1} r=6\\ \theta =30 \end{cases}\implies s=\cfrac{\pi (30)(6)}{180}\implies s=\pi[/tex]
What is the slope of the line shown in the graph?
A) 3/2
B) 2/3
C) -3/4
D) -2/3
Choose two points
(4,1) and (-3 , 5)
rise/run = 4/6
Simplify - 2/3
Answer = B) 2/3
Hope this helps!!
we can simply get the slope by using two points off the line, hmmmm say the line passes through (0,3) and (-3,5)
[tex]\bf (\stackrel{x_1}{0}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-3}~,~\stackrel{y_2}{5}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{5-3}{-3-0}\implies \cfrac{2}{-3}\implies -\cfrac{2}{3}[/tex]
Solve: x + 3 = –x + 7
Answer:
x = 2
Step-by-step explanation:
x+3 = -x + 7
x = -x + 4
(2) = -(2) + 4
2 = 2
Answer:
The correct answer is x = 2.
Step-by-step explanation:
To solve this equation, we must get all of the variables (x's) to one side of the equation and get all of the constant terms (numbers only) to the other side.
Starting with this equation, we are going to add x to both sides of the equation. This will cancel out the -x on the right side of the equation, thereby moving all of the variable x's to the left side of the equation.
x + x + 3 = -x + x + 7
If we simplify by combining like terms, or adding the x's together, we get:
2x + 3 = 7
Next, we should subtract 3 from both sides of the equation in order to move all of the constant terms to the right side of the equation.
2x + 3 -3 = 7 - 3
If we simplify, we get:
2x = 4
Finally, we should divide both sides by 2 in order to get the variable x alone on the left side of the equation, solving it.
x = 2
Therefore, your answer is x = 2.
Hope this helps!
Help me out again Please
Which of the following is the result of using the remainder theorem to find F(-2)
for the polynomial function F(x) = -2x3 + x2 + 4x-3?
A. 9
B. -11
C.3
D. -23
Answer:
A. 9
Step-by-step explanation:
F(-2) = 9
We are given the polynomial function;
F(x) = -2x3 + x2 + 4x-3
In order to determine F(-2) using the remainder theorem, we plug in -2 in place of x in the equation and simplify;
F(-2) = -2(-2)^3 + (-2)^2 + 4(-2) - 3
F(-2) = 9
Answer:
A
Step-by-step explanation:
Evaluating F(- 2) gives the remainder on dividing the polynomial by (x + 2)
F(- 2) = - 2(- 2)³ + (- 2)² + 4(- 2) - 3 = 16 + 4 - 8 - 3 = 9 ← remainder
What is the volume of a rectangle Kay prism that is 16 meters by 25 meters by 37 meters? PLZ HELP QUICK
To find the volume multiply the three dimensions:
16 x 25 x 37 = 14,800 cubic meters.
A concession stand sells 50 drinks, of which 49 are lemonade. What is the probability that the next
drink sold will be lemonade? Write your answer as a fraction, decimal, or percent.
49 out of 50 drinks were lemonade.
Divide the number of lemonade drinks by total drinks:
49 / 50 = 0.98 = 98%
98% of the drinks were lemonade, so there would be a 98% chance the next drink was lemonade.
A change machine can accept $1, $5, $10, and $20 bills and returns quarters. What is the domain and range of this situation?
Answer:
Domain {1,5,10,20}
Ranger {4,20,40,80}
Step-by-step explanation:
$1=4 quarters
$5=20 quarters
$10=40 quarters
$20=80 quarters
Domain {1,5,10,20}
Ranger {4,20,40,80}
Interest rate is 4.25%, the time is 3 1/4 years, simple interest is $330. What is the principal?
Answer:
$2389.14
Step-by-step explanation:
The equation is I = PRT
330= (0.0425)(3.25)P
P=2389.14
Answer:
$2389.14.
Step-by-step explanation:
Use the formula
I = PRT/100 where I = interest , P is the principle, t = time and R = the rate.
330 = P * 4.25 * 3.25 / 100
33000 = P * 13.8125
P = 33,000 / 13.8125
P = $2389.14.
write y+1=-2x-3 in standard form
Answer:
2y=-5x
Step-by-step explanation:
First you mark your terms, which means to basically put the equation in order.
Then you add, for instance, first you'll add y and 1, you'll have 2y because y means one. Then, you'll have -2 minus 3 and you'll get -5 then you carry on the variables to the solutions.
Answer:
2y=-5x
hope this helps :3
If f(x) = 3x + 10 and g(x) = 2x– 4, find (f+ g)(x).
Answer:
5x+6
Step-by-step explanation:
f(x) = 3x + 10
g(x) = 2x– 4
(f+ g)(x) = 3x+10 + 2x-4
Combine like terms
= 5x+6
Answer:
5x + 6
Step-by-step explanation:
(f+ g)(x) = 3x + 10 + 2x– 4
= 5x + 6
what is the distance between (1,4) and (4,0) ?
Answer:
5 units
Step-by-step explanation:
To calculate the distance (d) use the distance formula
d = √ (x₂ - x₁ )² + (y₂ - y₁ )²
with (x₁, y₁ ) = (1, 4) and (x₂, y₂ ) = (4, 0)
d = [tex]\sqrt{(4-1)^2+(0-4)^2}[/tex]
= [tex]\sqrt{3^2+(-4)^2}[/tex]
= [tex]\sqrt{9+16}[/tex] = [tex]\sqrt{25}[/tex] = 5
Which is a solution to the equation?
(х-2)(х + 5) = 18?
[tex]\bf (x-2)(x+5)=18\implies \stackrel{\mathbb{F~O~I~L}}{x^2+3x-10}=18\implies x^2+3x-28=0 \\\\\\ (x-4)(x+7)=0\implies x= \begin{cases} 4\\ -7 \end{cases}[/tex]
How do you do this question down below?
Answer:
y = 3m - 6
Step-by-step explanation:
y = mx + b
b is the point where the line cuts the y axis.
That happens at (0,-6)
So far what you have on this equation is
y = mx - 6
You could use the point that cuts the x axis to find m.
y = 0
x = 2
0 = m*2 - 6 Add 6 to both sides
6 = m*2 - 6 + 6
6 = 2*m Divide by 2
6/2 = 2m/2 Do the division
3 = m
Answer
y = 3m - 6