What is the average distance in microns an electron can travel with a diffusion coefficient of 25 cm^2/s if the electron lifetime is 7.7 microseconds. Three significant digits and fixed point notation.

Answers

Answer 1

Answer: The average distance the electron can travel in microns is 1.387um/s

Explanation: The average distance the electron can travel is the distance an exited electron can travel before it joins together. It is also called the diffusion length of that electron.

It is gotten, using the formula below

Ld = √DLt

Ld = diffusion length

D = Diffusion coefficient

Lt = life time

Where

D = 25cm2/s

Lt = 7.7

CONVERT cm2/s to um2/s

1cm2/s = 100000000um2/s

Therefore D is

25cm2/s = 2500000000um2/s = 2.5e9um2/s

Ld = √(2.5e9 × 7.7) = 138744.37um/s

Ld = 1.387e5um/s

This is the average distance the excited electron can travel before it recombine


Related Questions

A cylindrical specimen of cold-worked steel has a Brinell hardness of 250.(a) Estimate its ductility in percent elongation.(b) If the specimen remained cylindrical during deformation and its original radius was 5 mm (0.20 in.), determine its radius after deformation.

Answers

Answer:

A) Ductility = 11% EL

B) Radius after deformation = 4.27 mm

Explanation:

A) From equations in steel test,

Tensile Strength (Ts) = 3.45 x HB

Where HB is brinell hardness;

Thus, Ts = 3.45 x 250 = 862MPa

From image 1 attached below, for steel at Tensile strength of 862 MPa, %CW = 27%.

Also, from image 2,at CW of 27%,

Ductility is approximately, 11% EL

B) Now we know that formula for %CW is;

%CW = (Ao - Ad)/(Ao)

Where Ao is area with initial radius and Ad is area deformation.

Thus;

%CW = [[π(ro)² - π(rd)²] /π(ro)²] x 100

%CW = [1 - (rd)²/(ro)²]

1 - (%CW/100) = (rd)²/(ro)²

So;

(rd)²[1 - (%CW/100)] = (ro)²

So putting the values as gotten initially ;

(ro)² = 5²([1 - (27/100)]

(ro)² = 25 - 6.75

(ro) ² = 18.25

ro = √18.25

So ro = 4.27 mm

Isolation amplifiers, also known as "followers" of "buffers", are characterized by high- impedance inputs and low-impedance outputs. In your own words, describe exactly what that means and suggest an application where it could be useful

Answers

Answer:

Buffers in electrical systems are amplifiers that prevent input voltage from being affected by whatever curent the load draws

Explanation:

The input and output parts of the circuit are isolated. By having high-impedance(following ohms law, V=IR) very small current is drawn by the amplifier circuit.  The output and input voltages are same. However, the output impedance is very low. In this way power losses are minimized and vlotage levels are maintained for the load

They are useful where a measurement of small signal is required in the presence of high voltage.

They are also used in multi-stage filters to isolate one stage from another

2 samples of water of equal volume are put into dishes and kept at room temp for several days. the water in the first dish is completely vaporized after 2.8 days while the water in the second dish takes 8.3 days to completely evaporate. What can you conclude about the two dishes

Answers

Answer:

Vaporization is the process by which a substance changes from its solid or liquid state to a gaseous state.

Since both liquids are of the same volume and are placed under the same temperature condition, for them to not to vaporize at the same time, they must have been in different containers.

For vaporization to take place, the volume of liquid, amount of air exposure and area of the surface must be considered.

Maybe the first liquid was in a dish which has a large opening, thereby exposing a large amount which can make water to evaporate faster, whereas the second liquid was somehow enclosed (in a deeper dish).

Water is boiled in a pan covered with a poorly fitting lid at a specified location. Heat is supplied to the pan by a 2-kW resistance heater. The amount of water in the pan is observed to decrease by 1.19 kg in 30 minutes. If it is estimated that 75 percent of electricity consumed by the heater is transferred to the water as heat, determine the local atmospheric pressure in that location

Answers

Answer:

[tex]P_{atm} = 87.5\,kPa[/tex]

Explanation:

The heat required to boil the water in the pan is:

[tex]Q = \eta_{e}\cdot \dot W_{e} \cdot \Delta t[/tex]

[tex]Q = 0.75 \cdot (2\,kW)\cdot (30\, min)\cdot (\frac{60\,sec}{1\, min} )[/tex]

[tex]Q = 2700\,kJ[/tex]

Since the pan is accompained with a poorly fitting lid, the heating process is isobaric and change on specific enthalpy is obtained by following expression:

[tex]\Delta h = \frac{Q}{\Delta m}[/tex]

[tex]\Delta h = \frac{2700\,kJ}{1.19\,kg}[/tex]

[tex]\Delta h = 2268.908\,\frac{kJ}{kg}[/tex]

Then, the local atmospheric pressure can be estimated by looking for the saturation pressure related to the change on specific enthalpy at property tables for saturated water:

[tex]P_{atm} = 87.5\,kPa[/tex]

Which of these statements is true?

1-Gutters are installed against the soffit.
2-Fascia requires openings for ventilation.
3-Drip edges prevent water from running underneath an overhang.
4-A gutter is installed flush with the fascia.
5-A vent spacer is installed underneath the rafter insulation.

Answers

Answer:

3-Drip edges prevent water from running underneath an overhang.

Explanation:

The only correct statement is in option 3. Drip edges are structures that are connected to the roof edges of buildings to ensure that the flow of water is properly controlled. They are typically used yo prevent water from getting to other parts of the building. They are made of non-corrosive and non-staining materials to make roofs of buildings beautiful.

Answer:

Drip edges prevent water from running underneath an overhang.

Explanation:

You are designing a spherical tank to hold water for a small village in a developing country. The volume of liquid it can hold can be computed as V = πh2[3R − h]3 where V = volume (m3), h = depth of water in tank (m), and R = the tank radius (m).

Answers

Answer:

A. [tex]9\pi h^2 - \pi h^3 -90 = 0\\\\[/tex]

B. h1 = 2.0813772719

    h2 = 2.0272465228

    h3 = 2.0269057423

Explanation:

V = πh^2 x [3R − h]/3

Given v=30, R=3

[tex]30 = \pi h^2 [\frac{9-h}{3} ]\\\\9\pi h^2 - \pi h^3 -90 = 0\\\\[/tex]

B. An initial guess within the interval [0; 6] is selected,

initial guess h0 = 1.5

Newton method  x₂ = x₁ - f'(x₁)/f(x₁)

           h₂ = h₁ - f'(x₁)/f(x₁)

            [tex]h_2 = h_1 - f'(x_1)/f(x_1)\\\\h_2 = h_1 - \frac{18\pi h-3\pi h^2}{9\pi h^2 - \pi h^3 -90}[/tex]            

h1 = 2.0813772719

h2 = 2.0272465228

h3 = 2.0269057423

A specimen of some metal having a rectangular cross section 10.5 mm x 13.7 mm is pulled in tension with a force of 2650 N, which produces only elastic deformation. Given that the elastic modulus of this metal is 79 GPa, calculate the resulting strain.

Answers

The calculated resulting strain of the metal is 0.0002329

How to determine the resulting strain

To calculate the resulting strain [tex](\(\epsilon\))[/tex], we can use Hooke's Law

This is represented as

[tex]\[\epsilon = \frac{\sigma}{E}\][/tex]

Where:

-[tex]\(\sigma\)[/tex] is the stress

- E is the elastic modulus

From the question, we have

Force F = 2650 N

The cross-sectional area is calclated as

[tex]\(A\) = 10.5 mm x 13.7 mm[/tex]

This gives

[tex]A = \(143.85 \times 10^{-6}\) m\(^2\)[/tex] (converted to [tex]m\(^2\)[/tex])

Calculating the stress [tex](\(\sigma\))[/tex] using the formula:

[tex]\[\sigma = \frac{F}{A}\][/tex]

Substitute the given values:

[tex]\[\sigma = \frac{2650}{143.85 \times 10^{-6}} = \frac{2650}{143.85 \times 10^{-6}} = 18422118.06 \text{ Pa}\][/tex]

Next, we have

[tex]\[\epsilon = \frac{\sigma}{E} = \frac{18422118.06}{79 \times 10^9} = \frac{18422118.06}{79 \times 10^9} = 0.0002329\][/tex]

Hence, the resulting strain is 0.0002329

A steel ship deck plate is 30 mm thick and 12 m wide. It is loaded with a nominal uni- axial tensile stress of 70 MPa. It is operated below its ductile-to-brittle transition temperature with KIc equal to 38.3 MPa. If a 65-mm-long central transverse crack is present, estimate the tensile stress at which catastrophic failure will occur. Compare this stress with the yield strength of 240 MPa for this steel.

Answers

Answer:

The answer is given in the attachments

Explanation:

Write a mechanism for the first step of this reaction using curved arrows to show electron reorganization. Consult the arrow-pushing instructions for the convention on regiospecific electrophilic attack on a double bond.

Answers

Answer:

1. Alkenes Can Be Nucleophiles! But How Do We Draw The Curved Electron-Pushing Arrows?

2. The Conventional Approach For Drawing Electron-Pushing Curved.

3. Arrows In Alkene Addition Reactions Is Slightly Ambiguous Modified Electron-Pushing Arrow Convention #1: “Bouncy” Arrows.

4. Modified Curved Arrow Convention #2: “Pre-bonds”.

Explanation:

1. Alkenes Can Be Nucleophiles! But How Do We Draw The Curved Electron-Pushing Arrows?

Alkenes are a lot more exciting than they’re often given credit for. That means that given a sufficiently frisky electrophile, they can donate their pair of π electrons to form a new sigma bond.

Like this!

However, there’s one little problem here. See that curved arrow? What does it really mean? If you weren’t given the product, would you be able to draw it, given that curved arrow?

See the problem here: Which atom of the alkene is actually forming the bond to hydrogen? When we were dealing with lone pairs, it was easy: atoms clearly “own” their lone pairs, and we can tell exactly which atom is forming a bond to which. With alkenes, it’s different: since they “share” that pair of electrons, we’re going to have to somehow show which atom gets the new atom and which is left behind as a carbocation.

2. The Conventional Approach For Drawing Electron-Pushing Curved Arrows In Alkene Addition Reactions Is Slightly Ambiguous

Here’s the conventional way it’s done. If we want to show the bottom carbon forming the bond, the usual way to do this is to draw this loop like this, to show the “path” of the electrons coming in an arc from this direction. The carbon on the alkene “closest” to the hydrogen is the one that ends up bonded to it.

Similarly, if we wanted to show the left carbon forming the bond, we’d “arc” the bond like this:

One problem with this: it’s kind of a kludge. The curved arrow notation is limited in that all we can really do is decide where the tail should go (at the π bond, obviously) and where the head should go (to form the new bond). But the question of which carbon forms the bond is still ambiguous.

And if there’s one thing organic chemists hate, it’s ambiguity.

Give me clear definitions or give me death!

To try and deal with this issue, organic chemists have come up with two potential solutions. They’re worth looking at if you’re finding this issue confusing.

3. Modified Electron-Pushing Arrow Convention #1: “Bouncy” Arrows.

Instead of showing the curved arrow as a big sweeping arc, one solution is to put an extra bounce into the arrow. The idea here is that we’re showing the pair of electrons travelling to the carbon in question, and from there moving on to form the new sigma bond. No more ambiguity here. [Literature reference]

This solves the ambiguity problem at the expense of putting in an extra hump in the arrow. Although it doesn’t seem like a big deal, the extra bounce has likely been the reason why this convention hasn’t taken off. However well intentioned, the trouble with a convention like this is humanity’s natural tendency towards laziness: taking the time to consistently draw an extra hump into the arrow – even if it takes only 5 seconds – represents extra work that is skipped unless absolutely necessary. Behavioral change is very difficult.

4. Modified Curved Arrow Convention #2: “Pre-bonds”.

Another way of dealing with this is to insert the equivalent of “training wheels” into our curved arrows. Since the curved arrow is itself ambiguous, to clarify things we put in a dashed line that precisely delineates where the new bond is forming. Then, we draw the arrow with the tail coming from the electron source (the π bond) and the head going to the new bond. We can put the arrow right on the dashed line itself. This has the advantage of not modifying the curved arrow convention itself, just adding in an optional “guide” that makes its application more clear. [For an application of this technique I recommend checking out Dr. Peter Wepplo’s blog, where I first found this convention used]

dotted line convention for alkene addition resolves ambiguity

If you find yourself confused following the movement of electrons in the reactions of alkenes with electrophiles, these supplementary conventions might be of use to you.

Personally, even though conventional curved arrows suffer from a bit of ambiguity, that’s generally not enough to make me stop using them. YMMV.

In the next post we’ll resume our regularly scheduled program on alkenes and carbocations.

A 600-ha farmland receives annual rainfall of 2500 mm. There is a river flowing through the farmland with an inflow rate of 5 m3/s and outflow rate of 4 m3/s. The annual water storage is the farmland increases by 2.5 x 106 m3. Based on the hydrologic budget equation, determine the annual evapotranspiration amount in mm. (1 ha

Answers

Answer:

E = 7333.33 mm

Explanation:

The annual evapotranspiration (E) amount can be calculated using the water budget equation:

[tex] P*A + Q_{in}*\Delta t = E*A + \Delta S + Q_{out}*\Delta t [/tex]   (1)

Where:

P: is the precipitation = 2500 mm,

Q(in): is the water flow into the river of the farmland = 5 m³/s,

ΔS: is the change in water storage = 2.5x10⁶ m³,  

Q(out): is the water flow out of the river of the farmland = 4 m³/s.

Δt: is the time interval = 1 year = 3.15x10⁷ s

A: is the surface area of the farmland = 6.0x10⁶ m²  

Solving equation (1) for ET we have:

[tex] E = \frac{P*A + Q_{in}*\Delta t - \Delta S - Q_{out}*\Delta t}{A} [/tex]

[tex] E = \frac{2.5 m \cdot 6.0 \cdot 10^{6} m^{2} + 5 m^{3}/s \cdot 3.15 \cdot 10^{7} s - 2.5 \cdot 10^{6} m^{3} - 4 m^{3}/s \cdot 3.15 \cdot 10^{7} s}{6.0\cdot 10^{6} m^{2}} [/tex]                                  

[tex] E = 7333.33 mm [/tex]

Therefore, the annual evapotranspiration amount is 7333.33 mm.

I hope it helps you!  

Final answer:

The annual evapotranspiration amount can be calculated using the hydrologic budget equation, by arranging known values of rainfall, inflow and outflow rates, and increase in water storage. This gives us the evapotranspiration amount in cubic meters which can be converted into depth (in mm) by dividing by the total land area.

Explanation:

The annual evapotranspiration amount can be calculated using the concept of the hydrologic budget equation, which states that the change in storage equals the sum of inputs minus the sum of outputs. In this scenario, rainfall and river inflow are the water inputs while evapotranspiration and river outflow are the water outputs. Given that the increase in water storage, rainfall, and river flow rates are known, we can rearrange the equation to find the evapotranspiration.

It results in:
Evapotranspiration (in m3) = Rainfall + Inflow - Outflow - Increase in Storage
Substituting the given values:
Evapotranspiration (in m3) = (2500 mm * 600 ha * 10,000 m2/ha * 1m/1000mm) + (5 m3/s * 31,536,000 s) - (4 m3/s * 31,536,000 s) - 2.5 * 106 m3;

To convert evapotranspiration volume to depth (in mm), we divide by the total land area:
Evapotranspiration (in mm) = Evapotranspiration (in m3) / (600ha * 10,000 m2/ha * 1mm/1m)

After computing the above equations, we arrive at the annual evapotranspiration amount in mm.

Learn more about Evapotranspiration here:

https://brainly.com/question/35173185

#SPJ3

Suppose that when a transistor of a certain type is subjected to an accelerated life test, the lifetime X (in weeks) has a gamma distribution with mean 28 weeks and standard deviation 14 weeks. (a) What is the probability that a transistor will last between 14 and 28 weeks? (Round your answer to three decimal places.) (b) What is the probability that a transistor will last at most 28 weeks? (Round your answer to three decimal places.) Is the median of the lifetime distribution less than 28? Why or why not? The median is 28, since P(X ≤ ) = .5. (c) What is the 99th percentile of the lifetime distribution? (Round your answer to the nearest whole number.) (d) Suppose the test will actually be terminated after t weeks. What value of t is such that only 0.5% of all transistors would still be operating at termination? (Round your answer to the nearest whole number.) t = weeks

Answers

Answer:

a The probability Needed is 0.424

b1 The probability Needed is 0.567

b2 The median of the life time distribution is less than 28 cause its probability is less than the probability of 28

c The Needed life time is 70 weeks

d The needed lifetime is t = 77 weeks

Explanation:

Let A represent the life time of the transistor in weeks and follows a gamma distribution with parameters ([tex]\alpha,\beta[/tex]).

Looking at what we are give we can say that

                 E(A) = 28 weeks and  [tex]\sigma_A[/tex]  = 14 weeks

Hence the mean of the gamma distribution is E(A) = [tex]\alpha\beta ------(1)[/tex]

and the variance of the gamma distribution is V(A) = [tex]\alpha\beta^2 ------(2)[/tex]

Looking at Equation 2

              [tex]\alpha\beta^2 =V(A)[/tex]

              [tex](\alpha\beta)\beta = V(A)[/tex]

             [tex]E(A)\beta = V(A)[/tex]

                     [tex]\beta = \frac{V(A)}{E(A)}[/tex]

[tex]Note:\alpha\beta = E(A)\\\ and \ \sigma_A^2 = V(A)[/tex]

                    [tex]\beta = \frac{\sigma_A^2}{E(A)}[/tex]

                    [tex]\beta = \frac{14^2}{28} = \frac{196}{28} = 7[/tex]

Looking at Equation 1

               E(A)  = [tex]\alpha \beta[/tex]

                  28 = [tex]\alpha (7)[/tex]

          =>    [tex]\alpha = \frac{28}{7}[/tex]

         =>    [tex]\alpha = 4[/tex]

Now considering the first question

        i.e to find the probability that a transistor will last between 14 and 28 weeks

            P(14 < A < 28) = P(A ≤28) - P(A ≤ 14)

The general formula for probability of  gamma distribution

                                   = [tex]F[\frac{a}{\beta},\alpha ] - F[\frac{a}{\beta},\alpha ][/tex]

                                   [tex]= F[\frac{28}{7},4 ] - F[\frac{14}{7},4 ][/tex]

                                   [tex]= F(4,4) - F(2,4)[/tex]

                                   [tex]= 0.567 - 0.143[/tex]    (This is gotten from the gamma table)

                                  [tex]= 0.424[/tex]

Now considering the second question        

     i.e to find the probability that a transistor will last at most 28 weeks  

                           [tex]P(A \le 28)[/tex]    =    [tex]F[\frac{28}{7},4][/tex]

                                                [tex]=F(4,4)[/tex]

                                                [tex]= 0.567[/tex]     (This is obtained from the gamma Table)

 we need to determine the median of the life time distribution less than 28

        from what we are given [tex]P(X \le \mu ) = 0.5[/tex] we can see that [tex]\mu[/tex]<28 since [tex]P(A \le 28)[/tex]  = 0.567 and this is greater than 0.5

Now considering the Third  question

       i.e to find the  [tex]99^{th}[/tex] percentile of the life time distribution

       Generally

        F(a : [tex]\alpha[/tex]) =99%

        F(a : 4) = 0.99

Looking at the gamma table the tabulated values at [tex]\alpha =4[/tex] and the corresponding 0.99 percent value to a is 10

         Now , find the product of [tex]\beta =7[/tex] with a = 10 to obtain the [tex]99^{th}[/tex] percentile

                   [tex]99^{th} \ percentile = a\beta[/tex]

                                            [tex]= 10 * 7[/tex]

                                            [tex]=70[/tex]

Now considering the Fourth  question

    i.e to determine the number of weeks such that 0.5% of all transistor will still be operating

    The first thing to do is to find the value in the incomplete gamma function with [tex]\alpha = 4[/tex] in such a way that

              F(a:4) = 1 - 0.5%

              F(a: 4) = 1 - 0.005

              F(x: 4)  = 0.995

So we will now obtain the 99.5 percentile

 Looking at the gamma tabulated values at [tex]\alpha = 4[/tex] and the corresponding 0.995 percent value for a (x depending on what you want to denoted it with) is 11

   So we would the obtain the product of [tex]\beta =7[/tex] with  a = 11  which is the [tex]99.5^{th}[/tex] percentile

                              [tex]t = a\beta[/tex]

                                 [tex]= 11 *7[/tex]

                                [tex]= 77[/tex]

   

The probability will be:

(a) 0.4240

(b) 0.5670

(c) 70

(d) 77

According to the question,

→ [tex]\mu = \alpha \beta[/tex]

 [tex]28= \alpha \beta[/tex] ...(equation 1)

→ [tex]\sigma^2 = \alpha \beta^2[/tex]

 [tex]14^2 = \alpha \beta^2[/tex] ...(equation 2)

By putting "equation 1" in "equation 2", we get

→ [tex]14^2 = \alpha \beta\times \beta[/tex]

   [tex]14^2 = 28\times \beta[/tex]

→ [tex]196 = 28\times \beta[/tex]

      [tex]\beta = 7[/tex]

      [tex]\alpha = 4[/tex]

(a) P(14 and 28)

→ [tex]P(14< X< 28 ) = F(\frac{x}{\beta}, \alpha )- F (\frac{x}{\beta}, d )[/tex]

                             [tex]= F(\frac{28}{7}, 4 )- F(\frac{14}{7} ,4)[/tex]

                             [tex]= F(4,4)-F(2,4)[/tex]

By using gamma tables, we get

                             [tex]= 0.5670-0.1430[/tex]

                             [tex]= 0.4240[/tex]

(b) P(almost 28)

→ [tex]P(x \leq 28) = F(\frac{x}{\beta}, \alpha )[/tex]

                    [tex]= F (\frac{28}{7} ,4)[/tex]

                    [tex]= F(4,4)[/tex]

                    [tex]= 0.5670[/tex]

(c) 99 percentile

[tex]F(X \leq x, \alpha) = 0.99[/tex][tex]F(x, \alpha) = 0.99[/tex][tex]F(x:4)=0.99[/tex]

at x = 10,

99th percentile,

→ [tex]x \beta = 10\times 7[/tex]

        [tex]= 70[/tex]

(d)

[tex]F(x;4) = 1-0.005[/tex][tex]F(x;4) = 0.995[/tex]

x = 11

→ [tex]t = x \beta[/tex]

     [tex]= 11\times 7[/tex]

     [tex]= 77[/tex]

Thus the above answers are correct.

Learn more:

https://brainly.com/question/14281632

The statements in the file main.cpp are in incorrect order.

Rearrange the statements so that they prompt the user to input:

The shape type (rectangle, circle, or cylinder)
The appropriate dimension of the shape.
Note: For grading purposes place the cylinder height statement before the radius statement.

The C++ program then outputs the following information about the shape:

For a rectangle, it outputs the area and perimeter
For a circle, it outputs the area and circumference
For a cylinder, it outputs the volume and surface area.
After rearranging the statements, your program should be properly indented.

Here is the code out-of-order:

using namespace std;

#include


int main()
{
string shape;
double height;
#include

cout << "Enter the shape type: (rectangle, circle, cylinder) ";
cin >> shape;
cout << endl;

if (shape == "rectangle")
{
cout << "Area of the circle = "
<< PI * pow(radius, 2.0) << endl;

cout << "Circumference of the circle: "
<< 2 * PI * radius << endl;

cout << "Enter the height of the cylinder: ";
cin >> height;
cout << endl;

cout << "Enter the width of the rectangle: ";
cin >> width;
cout << endl;

cout << "Perimeter of the rectangle = "
<< 2 * (length + width) << endl;
double width;
}

cout << "Surface area of the cylinder: "
<< 2 * PI * radius * height + 2 * PI * pow(radius, 2.0)
<< endl;
}
else if (shape == "circle")
{
cout << "Enter the radius of the circle: ";
cin >> radius;
cout << endl;

cout << "Volume of the cylinder = "
<< PI * pow(radius, 2.0)* height << endl;
double length;
}
return 0;

else if (shape == "cylinder")
{
double radius;

cout << "Enter the length of the rectangle: ";
cin >> length;
cout << endl;

#include

cout << "Enter the radius of the base of the cylinder: ";
cin >> radius;
cout << endl;

const double PI = 3.1416;
cout << "Area of the rectangle = "
<< length * width << endl;
else
cout << "The program does not handle " << shape << endl;
cout << fixed << showpoint << setprecision(2);
#include

Answers

In the rearranged code, the statements are placed in the correct order to prompt the user for input of the shape type and appropriate dimensions.

```cpp

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{

   string shape;

   double height, radius, width, length;

   const double PI = 3.1416;

   cout << "Enter the shape type: (rectangle, circle, cylinder) ";

   cin >> shape;

   cout << endl;

   if (shape == "rectangle")

   {

       cout << "Enter the width of the rectangle: ";

       cin >> width;

       cout << endl;

       cout << "Enter the length of the rectangle: ";

       cin >> length;

       cout << endl;

       cout << "Area of the rectangle = "

            << length * width << endl;

       cout << "Perimeter of the rectangle = "

            << 2 * (length + width) << endl;

   }

   else if (shape == "circle")

   {

       cout << "Enter the radius of the circle: ";

       cin >> radius;

       cout << endl;

       cout << "Area of the circle = "

            << PI * pow(radius, 2.0) << endl;

       cout << "Circumference of the circle: "

            << 2 * PI * radius << endl;

   }

   else if (shape == "cylinder")

   {

       cout << "Enter the height of the cylinder: ";

       cin >> height;

       cout << endl;

       cout << "Enter the radius of the base of the cylinder: ";

       cin >> radius;

       cout << endl;

       cout << "Volume of the cylinder = "

            << PI * pow(radius, 2.0) * height << endl;

       cout << "Surface area of the cylinder: "

            << 2 * PI * radius * height + 2 * PI * pow(radius, 2.0) << endl;

   }

   else

       cout << "The program does not handle " << shape << endl;

   cout << fixed << showpoint << setprecision(2);

   return 0;

}

```

In the rearranged code, the statements are placed in the correct order to prompt the user for input of the shape type and appropriate dimensions. Depending on the shape selected, the program computes and outputs the corresponding area, perimeter, circumference, volume, and surface area. The code is properly indented for readability.

8.2.1: Function pass by reference: Transforming coordinates. Define a function CoordTransform() that transforms the function's first two input parameters xVal and yVal into two output parameters xValNew and yValNew. The function returns void. The transformation is new

Answers

Answer:

The output will be (3, 4) becomes (8, 10)

Explanation:

#include <stdio.h>

//If you send a pointer to a int, you are allowing the contents of that int to change.

void CoordTransform(int xVal,int yVal,int* xNew,int* yNew){

*xNew = (xVal+1)*2;

*yNew = (yVal+1)*2;

}

int main(void) {

int xValNew = 0;

int yValNew = 0;

CoordTransform(3, 4, &xValNew, &yValNew);

printf("(3, 4) becomes (%d, %d)\n", xValNew, yValNew);

return 0;

}

Find the value of R2 required if vs = 18 V , R1 = 50 kΩ , and the desired no-load output voltage is vo = 6 VPart b)Several different loads are going to be used with the voltage divider from Part A. If the load resistances are 300 kΩ , 200 kΩ , and 100 kΩ , what is the output voltage that is the most different from the design output voltage vo = 6 V ?part c)The circuit designer wants to change the values of R1 and R2 so that the design output voltage vo = 6 V is achieved when the load resistance is RL = 200 kΩ rather than at no-load. The actual output voltage must not drop below 5.4 V when RL = 100 kΩ . What is the smallest resistor value that can be used forR1?

Answers

Answer:

Explanation:

Check attachment for solution

a. The value of R2 required for the desired no-load output voltage R2 = 10 kΩ

b. The most different output voltage is 5.8 V, which occurs when the load resistance is 300 kΩ.

c. The smallest resistor value that can be used for R1 is 45 kΩ.

Part A:

To find the value of R2 required for the desired no-load output voltage, we can use the following voltage divider equation:

vo = vs * R2 / (R1 + R2)

Substituting in the known values, we get:

6 V = 18 V * R2 / (50 kΩ + R2)

Solving for R2, we get:

R2 = 18 V * 6 V - 6 V * 50 kΩ / 6 V - 18 V

R2 = 10 kΩ

Part B:

To find the output voltage that is the most different from the design output voltage, we need to calculate the output voltage for each load resistance. We can use the following voltage divider equation:

vo = vs * (R2 / (R1 + R2) || RL)

Substituting in the known values for each load resistance, we get:

vo (RL = 300 kΩ) = 18 V * (10 kΩ / (50 kΩ + 10 kΩ) || 300 kΩ)

vo (RL = 300 kΩ) = 5.8 V

vo (RL = 200 kΩ) = 18 V * (10 kΩ / (50 kΩ + 10 kΩ) || 200 kΩ)

vo (RL = 200 kΩ) = 7.2 V

vo (RL = 100 kΩ) = 18 V * (10 kΩ / (50 kΩ + 10 kΩ) || 100 kΩ)

vo (RL = 100 kΩ) = 8.6 V

Therefore, the output voltage that is the most different from the design output voltage is 5.8 V, which occurs when the load resistance is 300 kΩ.

Part C:

To change the values of R1 and R2 so that the design output voltage vo = 6 V is achieved when the load resistance is RL = 200 kΩ rather than at no-load, we can use the following voltage divider equation:

vo = vs * R2 / (R1 + R2)

Substituting in the known values, we get:

6 V = 18 V * R2 / (R1 + 200 kΩ)

Solving for R2, we get:

R2 = 30 kΩ

Next, we need to calculate the value of R1 to ensure that the actual output voltage does not drop below 5.4 V when RL = 100 kΩ. We can use the following voltage divider equation:

vo = vs * (R2 / (R1 + R2) || RL)

Substituting in the known values, we get:

5.4 V = 18 V * (30 kΩ / (R1 + 30 kΩ) || 100 kΩ)

Solving for R1, we get:

R1 = 45 kΩ

Therefore, the smallest resistor value that can be used for R1 is 45 kΩ.

For such more question on voltage

https://brainly.com/question/28632127

#SPJ3

Description: Write a function that takes in a list of numbers and a list of indices. Note that indexList may not only contain valid indices. The function should keep track of the number and type of errors that occur. Specifically, it should account for IndexError and TypeError . It should return the average of all the numbers at valid indices and a dictionary containing the number and type of errors together in a tuple. errorDict should be formatted as follow

Answers

Answer:

Python code is explained below

Explanation:

average , count, indexerror, typeerror variables are initialised to 0

Then, for loop is used to traverse the indexlist, if type is not right, typeerror is incremented, else if index is not right, indexerror is incremented, otherwise, count is incremented, and the number is added to average.

At last, average variable which contains the sum of numbers is divided by count to get average.

Here is the code:

def error_finder(numList, indexList):

average = 0

count = 0

indexerror = 0

typeerror = 0

 

for i in range(len(indexList)):

if type(indexList[i])==int:

if indexList[i]>=len(numList) or i<0:

indexerror = indexerror + 1

else:

average = average + numList[indexList[i]]

count = count+1

else:

typeerror = typeerror + 1

 

d = {"IndexError": indexerror, "TypeError":typeerror}

 

average = average/count

 

return(average, d)

print(error_finder([4, 5, 1, 7, 2, 3, 6], [0, "4", (1, ), 18, "", 3, 5.0, 7.0, {}, 20]))

Fix the code so the program will run correctly for MAXCHEESE values of 0 to 20 (inclusive). Note that the value of MAXCHEESE is set by changing the value in the code itself. If you are not sure of how it should work then look at the Sample Runs of the next part. This part handles the beginning where it lists all the cheese types available and their prices. Note: it is a very simple fix that needs to be added to all the statements that have an array access.

Answers

Answer:

Code fixed below using Java

Explanation:

Error.java

import java.util.Random;

public class Error {

   public static void main(String[] args) {

       final int MAXCHEESE = 10;

       String[] names = new String[MAXCHEESE];

       double[] prices = new double[MAXCHEESE];

       double[] amounts = new double[MAXCHEESE];

       // Three Special Cheeses

       names[0] = "Humboldt Fog";

       prices[0] = 25.00;

       names[1] = "Red Hawk";

       prices[1] = 40.50;

       names[2] = "Teleme";

       prices[2] = 17.25;

       System.out.println("We sell " + MAXCHEESE + " kind of Cheese:");

       System.out.println(names[0] + ": $" + prices[0] + " per pound");

       System.out.println(names[1] + ": $" + prices[1] + " per pound");

       System.out.println(names[2] + ": $" + prices[2] + " per pound");

       Random ranGen = new Random(100);

       // error at initialising i

       // i should be from 0 to MAXCHEESE value

       for (int i = 0; i < MAXCHEESE; i++) {

           names[i] = "Cheese Type " + (char) ('A' + i);

           prices[i] = ranGen.nextInt(1000) / 100.0;

           amounts[i] = 0;

           System.out.println(names[i] + ": $" + prices[i] + " per pound");

       }        

   }

}



Two physical properties that have a major influence on the cracking of workpieces, tools, or dies during thermal cycling are thermal conductivity and thermal expansion.Explain why.

Answers

Answer:

Explanation:

It is generally known that the thermal stresses developed during thermal cycle results into cracking, and these thermal stresses are due to temperature gradients .

Stresses will be equivalently lower for a particular temperature gradient when the thermal expansion is low.

It also known that there will be a reduction in the temperature gradient if the thermal conductivity is high, as heat is dissipated faster and more equally and  with it, as well as  when deformation takes place due to thermal stresses, cracking occurs but if the ductility is high, more deformation will be allowed without cracking and thus reduces the tendency for cracking.

Final answer:

Thermal expansion and conductivity influence cracking during thermal cycling because materials expand or contract at different rates causing stress. Differences in these properties between bonded materials or different parts of a structure can lead to cracks. Understanding these properties is important in designing materials to minimize thermal stress.

Explanation:

The two physical properties that have a major influence on the cracking of workpieces, tools, or dies during thermal cycling are thermal conductivity and thermal expansion. Thermal expansion occurs due to the tendency of a material to change in volume in response to a change in temperature. When different parts of a workpiece, or different materials bonded together, have different thermal expansion coefficients or varied thermal conductivities, thermal stress can result as the materials expand or contract at different rates. This stress leads to the formation of cracks, especially if the material is rigid and cannot accommodate the stress through deformation.

For example, metal implants in the body may need replacement because of the lack of bonding between metal and bone due to different expansion coefficients. Similarly, the expansion of fillings in teeth can be different from that of tooth enamel, causing discomfort or damage. The understanding of thermal expansion and conductivity is critical in designing materials and structures, such as railroad tracks and roadways with adequate expansion joints to prevent buckling, or using materials like Pyrex for cooking pans to minimize cracking from thermal stress.

An adiabatic closed system is raised 100 m at a location where the gravitational acceleration is 9.8 m/s2. What Is the specific energy change of this system in kJ/kg?

Answers

Answer: 0.98kJ/kg

Explanation: for a kilogram mass of this system, raising the system at a height h gives it a potential energy of the magnitude gh,

Where g is gravitational acceleration,

and h is the height difference.

This system will have an energy change of

PE = 100*9.8 = 980 J/kg

This becomes 980/1000 kJ/kg

= 0.98kJ/kg

One kilogram of a contaminant is spilled at a point in a 4m deep reservoir and is instantaneously mixed over the entire depth. (a) If the diffusion coefficients in the N-S and E-W directions are 5 and 10 m2 /s, respectively, calculate the concentration as a function of time at locations 100m north and 100m east of the spill. (b) What is the concentration at the spill location after 5 minutes

Answers

Answer:

0.028 kg per Seconds; 8.4

Explanation:

N-S, 4 x 100 = 400 m^2, concentration 5/400= 0.0125 kg/s

E-W 4 x 100 =400 m^2 , => 10/400 =0.025 kg/s

(0.0125^2 + 0.025^2)^(1/2) =0.028 kg/s

in 5 minutes = 5 x 60 x 0.028 =8.4

A 60-g projectile traveling at 605 m/s strikes and becomes embedded in the 54-kg block, which is initially stationary. Compute the energy lost during the impact. Express your answer as an absolute value |ΔE| and as a percentage

Answers

Kinetic energy lost in collision is 1097.95 J

Explanation:

Given,

Mass,  [tex]m_{1}[/tex]= 60 g = 0.006 kg

Speed, [tex]v_{1}[/tex] = 605 m/s

[tex]m_{2}[/tex] = 54 kg

[tex]v_{2}[/tex]= 0

Kinetic energy lost, K×E = ?

During collision, momentum is conserved.

So,

[tex]m1v1 + m2v2 = (m1 + m2)v\\\\0.006 X 605 + 54 X 0 = (0.006 + 54) v\\\\v = \frac{3.63}{54.006}\\ \\v = 0.067m/s[/tex]

Before collision, the kinetic energy is

[tex]\frac{1}{2}* m1 * (v1)^2 + \frac{1}{2} * m2 * (v2)^2[/tex]

[tex]=\frac{1}{2} X 0.006 X (605)^2 + 0\\\\= 1098.075J[/tex]

Therefore, kinetic energy before collision is 1098 J

Kinetic energy after collision:

[tex]\frac{1}{2}* (m1+m2) * (v)^2 + KE(lost)[/tex]

By plugging in the values, we get

[tex]\frac{1}{2} * (0.006 + 54) * (0.067)^2 + KE(lost)[/tex]

[tex]0.1212J + KE(lost)[/tex]

Since,

initial Kinetic energy = Final kinetic energy

1098.075 J = 0.1212 J + K×E(lost)

K×E(lost) = 1098.075 J - 0.121 J

K×E(lost) = 1097.95 J

Therefore, kinetic energy lost in collision is 1097.95 J

A piston-cylinder assembly contains 0.5 lb of water. The water expands from an initial state where p1 = 40 lbf/in.2 and T1 = 300o F to a final state where p2 = 14.7 lbf/in.2 During the process, the pressure and specific volume are related by the polytropic process pv 1.2 = constant. Determine the energy transfer by work, in Btu.

Answers

Final answer:

To find the work done during the polytropic expansion of water in a piston-cylinder assembly, the initial and final volumes are needed to apply the polytropic process work formula. Without this information, it's not possible to calculate the energy transfer by work.

Explanation:

The question asks to determine the energy transfer by work during a polytropic process where pressure p and specific volume v are related by the equation pv1.2 = constant. To find the work done by the water when it expands in a piston-cylinder assembly, you would typically use the polytropic process work formula:

W = (P1V1 - P2V2) / (n - 1)

However, to use this formula, you would need the initial and final volumes, V1 and V2, which are not provided in the question. Without these volumes or additional information such as tables or diagrams that could help find these values through the relationship of states, it is impossible to provide a numerical answer to the question asked.

To accomplish the design project's Outback Challenge mission, your third design topic to research is a Flight Controller (i.e. manual RC transmitter) and GPS Module. The Flight Controller is not an autopilot, but rather a manual handheld flight control transmitter. If the autonomous operations fail, the Ground Base Control will take control of the UAS to manually release the rescue package (water bottle) to Outback Joe. Using the criteria found in the Outback Challenge, research and select the type of flight controller (i.e. manual handheld RC transmitter) and GPS module you feel would best accomplish the two-fold mission of searching for and delivering a rescue package to Outback Joe.

Answers

Answer:

Explanation: see attachment below

Alternating current on a power line oscillates at 60 Hz. Calculate the wavelength and determine whether transmission line effects are seen on a power line that is 1000 meters long. __/2

Answers

Answer:

Wavelength = 5,000,000 m

Explanation:

Power line has extremely low frequency and produce and transmit magnetic and electric over long distance. The radiation from power line are electromagnetic radiation since it can be classified as Radiowave. Hence using the formula:

Velocity of propagation=frequency

× wavelength

We use Velocity= c = 3 × 10 ^8 m/s

f = 60Hz

wavelength = 3 ×10^8/60

Wavelength = 5,000,000 m

We can ignore the transmission line effect when the line length is less than (1/50)wavelength or (1/20)wavelength.

Seeing the transmission line length given is 1000m, we ignore the effect of transmission line as negligible

A 200-gr (7000 gr = 1 lb) bullet goes from rest to 3300 ft/s in 0.0011 s. Determine the magnitude of the impulse imparted to the bullet during the given time interval. In addition, determine the magnitude of the average force acting on the bullet.

Answers

The magnitude of the impulse imparted to the bullet is 2.932 lb s. The magnitude of the average force acting on the bullet during the given time interval is 2666 lb.

Calculate the Impulse

Impulse is defined as the change in momentum of an object. It is given by the equation:

[tex]\[ \text{Impulse} = \Delta p = m \Delta v \][/tex]

Conversion factor for pound to slug (since force in pounds and velocity in ft/s, mass should be in slugs, where 1 slug = 32.174 lb):

[tex]\[ m \text{ (in slugs)} = \frac{0.02857 \text{ lb}}{32.174 \text{ lb/slug}}\\ = 0.000888 \text{ slugs} \][/tex]

[tex]\[ \text{Impulse} = m \Delta v = 0.000888 \text{ slugs} \times 3300 \text{ ft/s} \\= 2.9324 \text{ slug ft/s} \][/tex]

The impulse imparted to the bullet is:

[tex]\[ \text{Impulse} = 2.9324 \text{ lb s} \][/tex]

Calculate the Average Force

The average force can be calculated using the formula:

[tex]\[ F_{avg} = \frac{\Delta p}{\Delta t} \][/tex]

Given:

Time interval, [tex]\( \Delta t = 0.0011 \text{ s} \).[/tex]

[tex]\[ F_{avg} = \frac{2.9324 \text{ lb s}}{0.0011 \text{ s}} \\= 2665.82 \text{ lb} \][/tex]

Both portions of the rod ABC are made of an aluminum for whichE = 70 GPa. Knowing that the magnitude of P is 4 kN, determine(a) the value of Q so that the deflection at A is zero, (b) the correspondingdeflection of B.0.4 m0.5 m

Answers

Explanation:

Δ[tex]L_{BC}[/tex] = Δ[tex]L_{AB}[/tex]

[tex]\frac{(Q - 4000)(0.5)}{3.14* 0.03 *0.03 *70*10^{9} }[/tex]     (1)

= [tex]\frac{4000*0.4}{3.14*0.01*0.01*70*10^{9} }[/tex]

Q = 32,800 N

now put this value in equation 1.

Deflection of B = [tex]\frac{(32800-4000)(0.5)}{3.14*0.03*0.03*70*10^{9} }[/tex]

                       = 0.0728 mm

You are to design a digital communication system to transmit four multiplexed analog signals with bandwidths of 1200 Hz, 900 Hz, 300 Hz and 1500 Hz, respectively. Each analog signal is to be sampled at its own respective Nyquist rates and encoded using linear PCM. The maximum tolerable error for each sample is 1% of the signal's peak voltage (Vo).
(a) What is the minimum PCM word size (bits per sample) required?
(b) What is the minimum transmitted bit rate for each of the sampled signals?
(c) Assume the signals are multiplexed on a sample-by-sample basis (each PCM sample is considered a unit not to be divided between frames). If 10 bits per frame are added for synchronization, what is the minimum frame size required (bits)? How many samples from each signal are included in each frame?
(d) What is the transmitted frame rate of the frame defined in part (c) in frames per second? What is the overall transmitted bit rate of the multiplexed digital communication system (bits per second)?

Answers

Answer and Explanation:

The answer is attached below

An insulated piston-cylinder device contains 4 L of saturated liquid water at a constant pressure of 175 kPa. Water is stirred by a paddle wheel while a current of 7 A flows for 45 min through a resistor placed in the water. If one-half of the liquid is evaporated during this constant-pressure process and the paddle-wheel work amounts to 300 kJ, determine the voltage of the source.

Answers

Answer:

The voltage of the source is 207.5 V

Explanation:

Given:

Volume of the water V = 4 L

Pressure P = 175 KPa

Dryness fraction x2 = 0.5

The current I = 7 Amp

Time T = 45 min

The paddle-wheel work Wpw = 300 KJ

Obs: Assuming the kinetic and potential energy changes, thermal energy stored in the cylinder and cylinder is well insulated thus heat transfer are negligible

1 KJ/s = 1000 VA

Energy Balance

Ein - Eout = ΔEsys

We,in + Wpw, in - Wout = ΔU

IVΔT + Wpw, in = ΔH = m(h2 - h1)

Using the steam table (A-5) at P = 175 KPa, x1 = 0

v1 = vf = 0.001057 [tex]m^{3}/ Kg[/tex]

h1 = h2 = 487.01 [tex]\frac{KJ}{Kg}[/tex]

Using the steam table (A-5) at P = 175 KPa, x1 = 0.5

h2 = hf + x2 (hg - hf)  = 487.1  + 0.5 * (2700.2 - 487.1) = 1593.65 [tex]\frac{KJ}{Kg}[/tex]

The mass of the water is

m = V/v1

m = 0.004/0.001057 = 3.784 Kg

The voltage is

V = [tex]\frac{m(h2 - h1) - Wpw,in}{I (delta)t}\\[/tex]

V = [tex]\frac{3.784 * (1593.65 - 478.1) - 300}{7 * (45 * 60)}[/tex] = 0.207 * 1000 = 207.5 V

Final answer:

The final temperature of the water is 75°C.

Explanation:

In this problem, we are given the initial and final volumes of the gas, and we need to find the final temperature of the water. Considering that the process is isothermal and all the heat goes into the water, we can use the formula:



(initial volume * initial temperature) = (final volume * final temperature)



Given that the initial volume is 3 L and the final volume is 18 L, and the initial temperature of the water is 25°C, we can calculate the final temperature:



(3 L * 25°C) = (18 L * final temperature)



Simplifying this equation, we find that the final temperature of the water is 75°C.

*6–24. The beam is used to support a dead load of 400 lb>ft, a live load of 2 k>ft, and a concentrated live load of 8 k. Determine (a) the maximum positive vertical reaction at A, (b) the maximum positive shear just to the right of the support at A, and (c) the maximum negative moment at C. Assume A is a roller, C is fixed, and B is pinned.

Answers

Answer:

(a) maximum positive reaction at A = 64.0 k

(b) maximum positive shear at A = 32.0 k

(c) maximum negative moment at C = -540 k·ft

Explanation:

Given;

dead load  Gk = 400 lb/ft

live load Qk = 2 k/ft

concentrated live load Pk =8 k

(a) from the influence line for vertical reaction at A, the maximum positive reaction is

[tex]A_{ymax}[/tex] = 2*(8) +(1/2(20 - 0)* (2))*(2 + 0.4) = 64 k

See attachment for the calculations of (b) & (c) including the influence line

) An electrical heater 100 mm long and 5 mm in diameter is inserted into a hole drilled normal to the surface of a large block of material having a thermal conductivity of 5 W/m·K. Estimate the temperature reached by the heater when dissipating 50 W with the surface of the block at a temperature of 25°C.

Answers

Answer:

Th = 40.91 C

Explanation:

We must use the equation for heat current in conduction

[tex]H = \frac{kA(Th-Tc)}{L}[/tex]

                         Where k is the thermal conductivity of the material

                                     A is the cross-sectional area

                                     (Th -Tc) is the temperature difference

                                  and L is the length of the material

Thus

[tex]A = 2\pi r*0.1 = 0.00157079 m^{2}[/tex]

[tex]50 = \frac{5*0.00157079(Th-25)}{0.0025}[/tex]

Isolating Th, we have

[tex]Th = \frac{50*0.0025}{5*0.00157079}+25[/tex]

Th = 40.91 C

Final answer:

The question relates to estimating the temperature of a heater based on heat conduction, but it lacks the necessary details about the heater's material properties to provide a numerical answer.

Explanation:

The student is asking about the temperature reached by an electrical heater when dissipating power. To estimate this temperature, one must consider the concept of heat conduction in which the rate of heat transfer (Q/t) is influenced by the thermal conductivity (k) of the material, surface area (A), thickness (d), and temperature difference across the material. In this problem, the heater dissipates 50 W of power, the length of the heater is 100 mm, the diameter is 5 mm, and the thermal conductivity of the surrounding material is 5 W/m·K. To calculate the temperature reached by the heater, we would typically use the equation for steady-state heat transfer. However, the question lacks sufficient details such as the properties of the heater material, which would be necessary to determine the temperature distribution and to estimate the temperature reached by the heater. Therefore, with the information provided, we can only discuss the factors involved in calculating the temperature reached by the heater but cannot provide a numerical answer.

Tanya Pierce, President and owner of Florida Now Real Estate is seeking your assistance in designing a database for her business. One of her employees has experience in developing and implementing Access-based systems, but has no experience in conceptual or logical data modeling. So, at this point Tanya only wants you to develop a conceptual data model for her system. You are to use our entity-data diagramming notation - Crows foot symbols.

Tanya has some very specific needs for her system. There are several aspects of the business that need to be represented in the data model. Of central interest are properties that are listed or sold by the company. Note that a separate division of Florida Now handles raw land, so your system only has to deal with developed property. For all types of properties, Tanya wants to keep track of the owner (client), the listing and selling dates, the asking and selling prices, the address of the property, the Multiple Listing Service (MLS) number, and any general comments. In addition, the database should store the client that purchases a property. There are some specialized data that need to be stored, depending on the type of property. For single family houses she wants to store the area (for example UCF or Conway), the size of the house in square feet, the number of bedrooms and baths, the size of the garage (for example, 2 car), and the number of stories. For condominiums, the database should track the name of the complex, the unit number, the size in square feet, the number of bedrooms and baths, and the type of community (coop or condo). For commercial properties, she needs to know the zoning, size in square feet, type (industrial, retail, or office), and the general condition of the property.

Tanya also wants the database to store information about her real estate agents, such as their name, home address, home phone number, mobile phone number, email address, and their real estate license number. Also, the database should track which agent lists and sells each piece of property. Note that she has a separate system that tracks selling agents and listings from outside brokerages, so you don’t have to worry about external agents. However, sometimes a property will be listed and sold by the same Florida Now agent, but other times one Florida Now agent will list a property and another will sell it.

Of course, Tanya thinks that it would be good to have the database track information about Florida Now’s clients, such as their name, phone number, and street and email addresses. Also, she wants to be able to record comments about the client. Florida Now offers referral fees to clients who refer potential customers to the brokerage. The database should store these referral relationships between clients, including the amount and date of the referral payment. Note that only one client can be paid for a referral. In other words, it is not possible for two clients to be paid for referring the same client.

Finally, Tanya wants to be able to use the database to examine the effectiveness of various advertising outlets. For each outlet, the database should store the name of the outlet (for example, realestate.com or the Orlando Sentinel), the main contact person and their phone number. She also wants to know how much it cost to advertise each property on any outlet used, and when a property was advertised on each outlet used for that property. Keep in mind that a property may be advertised on multiple outlets, and that the cost of advertising on an outlet might vary from property to property.

Create an entity relationship diagram that captures Tanya’s database requirements. The ERD should indicate all entities, attributes, and relationships (including maximum and minimum cardinalities). Also be sure to indicate primary key attributes.

You must draw the ERD using computer software such as Visio, PowerPoint or Word. In addition, you must resolve all M:N (many- to-many) relationships and multi-valued attributes. State any assumptions you make. Remember that your assumptions must be reasonable and must not violate any stated requirements. Think through the entities, and attributes for each entity.

Answers

Answer:

the answer is attributes for each entity

Other Questions
Chris Bowie is trying to determine the amount to set aside so that he will have enough money on hand in 5 years to overhaul the engine on his vintage used car. While there is some uncertainty about the cost of engine overhauls in 5 years, by conducting some research online, Chris has developed the following estimates. Engine Overhaul Estimated Cash Outflow Probability Assessment $300 10% 470 30% 740 50% 880 10%How much hould Chris Bowie deposit today in an account earning 6%, compounded annually, so that he will have enough money on hand in 3 years to pay for the overhaul? The expected rainfall, in inches, for a city for the month of July is given by the inequality |x 4.25| 0.15. Find the citys expected maximum and minimum rainfall amounts.The minimum rainfall expected is ______inches, and the maximum rainfall expected is ______inches. Leaders at Cold Stone Creamery say they launched stores in Japan because Japanese consumers have Western brand awareness that enables them to comprehend the American ice cream experience. The leaders are making a case that: Charles Darwin's observations that finches of different species on the Galapagos Islands have many similar physical characteristics supports the hypothesis that these finches A all eat the same type of food. B acquired traits through use and disuse. C descended from a common ancestor. D have the ability to interbreed. Suppose the price of pepper increases by 20percent and, as aresult, the quantity of salt demanded (holding the price of salt constant) decreases by 2 percentThe cross-price elasticity of demand between pepper and salt is _____ (Enter your response rounded to two decimal places and include a minus sign if appropriate.)In this example, pepper and salt are _____Instead, suppose pepper and salt were substitutes.If so, then the cross-price elasticity of demand between prepper and salt would be:_____.1. Less than 1 but greater than 02. Negative3. Greater than 14. Positive5. Zero Betty pledges to donate $1,000 to the Children's Hospital. On the basis of the pledge, the hospital orders additional equipment. Betty reneges on the pledge. The hospital sues Betty. If the court enforces the pledge, it will be What is zora neal hurtson writting style in sweat is starting her own accounting firm and hires , a freelance web designer who specializes in responsive design to build her business website. Two weeks into the job, finds a full-time position at an advertising company and assigns her contract obligations to Max, a former college friend to complete the work for Reilly. Based on these facts can, assign her design contract to ? Is the sequence {an} bounded above by a number? If yes, what number? Enter a number or enter DNE. Is the sequence {an} bounded below by a number? If yes, what number? Enter a number or enter DNE. Select all that apply: The sequence {an} is A. unbounded. B. bounded above. C. bounded. D. bounded below. PLS HELP WILL MARK BRAINLIST IF ANSWER IS CORRECT !! :) FILL IN THE BLANKS Morgan Enterprises is doing inventory. In the inventory process, Morgan inadvertently miscategorized a $14,000 shipment of FOB shipping point goods in transit to a customer as FOB destination. How will this miscategorization impact Morgans total inventory? During a baseball game, a baseball is struck at ground level by a batter. The ball leaves the baseball bat with an initial velocity v0 = 26 m/s at an angle = 17 above horizontal. Let the origin of the Cartesian coordinate system be the balls position at impact. Air resistance may be ignored throughout this problem. a) express the magnitude of the ball's initial horizontal velocity, v0x, in terms of v0 and theta.b) express the magnitude of the ball's inital vertical velocity, v0y, in terms of v0 and theta.c) find the ball's maximum vertical height, hmax, in meters above ground.d) create an expression in terms of v0, theta, and g for the time (tmax) it takes the ball to travel to its maximum vertical height. e) calculate the horizontal distance, xmax, in meters the ball has traveled when it returns to ground level. How do you find the equality of 4/12=A/3 Bill and Stacy enter into a contract that falls within the provisions of the UETA. Under the UETA, "information that is inscribed on a tangible medium or that is stored in an electronic or other medium and is retrievable in perceivable form" is To what are 21st century citizens of the world turning to in an effort to stop mans negative imprint upon the planet? Four times What divided by two equals 5.2 Anyone knows how to do this A subsidy is defined as a. the difference between total revenue and total cost for a business firm. b. a payment to either the buyer or seller of a good or service, usually on a per-unit basis, when a good or service is purchased. c. a payment that must be made to the government whenever a good or service is sold. d. the number of trades that are eliminated from a market when a tax is imposed. If you are in the 20% federal income tax bracket, what is your after-tax yield on a municipal bond that is currently trading at par to yield 5%. Assume there are no state or local taxes. Why did the divorce rate in America decline during the Great Depression despite the strain that the economic situation put on marriages? A. Couples stuck together to get through the dismal economic conditions. B. Couples could not afford lawyers to go through with divorce. C. Couples returned to traditional values that forbid getting a divorce. D. Couples had to stay together because they needed two incomes to survive. E. Couples were influenced by the Sunday church programs that aired on the radio.