Answer:
The orientation b has the largest magnetic torque.
Explanation:
As the complete question is not given, the complete question is attached herewith
From the diagram
[tex]|\mu_a|=|\mu_b|=|\mu_c|=|\mu|[/tex]
Also the angles for the 3 orientations are given as
[tex]\theta_a>90\\\theta_b=90\\\theta_c<90\\[/tex]
Now as the torque τ is given as
[tex]\tau=|\mu||B|sin\theta[/tex]
As the value of μ and B is same so value of τ is maximum for sin θ is maximum so
[tex]sin \theta_{max}=1\\\theta_{max}=90[/tex]
So the orientation b has the largest magnetic torque.
The orientation with the largest magnetic torque on the dipole is Orientation B (See attached image).
What is Magnetic Torque?
The torque on the dipole is defined as:
τ = µ×B,
where B is the external magnetic field.
The magnitude of this torque is µB sinθ, where θ is the angle between B and µ
Magnetic Torque is highest when;
→ →
µ ⊥ β
That is when θ = 90°. Hence B is the correct answer. Please see attached image.
Learn more about Magnetic Torque at:
https://brainly.com/question/6585693
Before using a string in a comparison, you can use either the To Upper method or the To Lower method to convert the string to upper case or lower case, respectively, and then use the converted string in the comparison.1. True2. False
Answer:
True
Explanation:
If there's no preference over the string case (upper case or lower case), one can convert both strings to upper case or to lowercase and then compare the converted strings to test if they're equal or not.
An Illustration is
string a = "Boy"
string b = 'bOy"
if(a.ToUpper() == b.ToUpper() || a.ToLower() == b.ToLower())
{
Print "Equal Strings"
}
else
{
Print "Strings are not equal";
}
The above will first convert both strings and then compare.
Since they are the same (after conversion), the statement "Equal Strings" will be printed, without the quotes
The statement is true. Most programming languages include methods to convert strings to either lower or upper case. This feature is useful to make comparisons case-insensitive.
Explanation:
This statement is true. In many programming languages, there are methods to convert a string to either lower case or upper case. These methods are often utilized to make string comparisons case-insensitive, eliminating any discrepancy caused by case differences.
For example, in Java, the methods are toLowerCase() and toUpperCase(), while in Python, they are lower() and upper(). This is particularly useful when a program is designed to interact with human input, as it allows the program to accept input regardless of the case used.
Learn more about Case Conversion in Strings here:https://brainly.com/question/34384773
#SPJ12
The battery is now disconnected from the plates and the separation of the plates is doubled ( = 0.78 cm). What is the energy stored in this new capacitor?
Answer:
The energy stored in this new capacitor is [tex]4.4514\times10^{-9}\ J[/tex]
Explanation:
Suppose, Two parallel plates, each having area A = 2180 cm² are connected to the terminals of a battery of voltage [tex]V_{b}= 6\ V[/tex] as shown. The plates are separated by a distance d = 0.39 cm.
We need to calculate the charge
Using formula of capacitance
[tex]C=\dfrac{Q}{V}[/tex]
[tex]\dfrac{Q}{V}=\dfrac{\epsilon_{0}A}{d}[/tex]
[tex]Q=V\times\dfrac{\epsilon_{0}A}{d}[/tex]
Put the value into the formula
[tex]Q=6\times\dfrac{8.85\times10^{-12}\times2180\times10^{-4}}{0.39\times10^{-2}}[/tex]
[tex]Q=2.968\times10^{-9}\ C[/tex]
The distance between the plates is doubled.
We need to calculate the new capacitance
Using formula of capacitance
[tex]C'=\dfrac{\epsilon_{0}A}{d}[/tex]
Put the value into the formula
[tex]C'=\dfrac{8.85\times10^{-12}\times2180\times10^{-4}}{0.78\times10^{-2}}[/tex]
[tex]C'=2.473\times10^{-10}\ F[/tex]
We need to calculate the energy stored in this new capacitor
Using formula of energy
[tex]U=\dfrac{1}{2}C'V^2[/tex]
Put the value into the formula
[tex]U=\dfrac{1}{2}\times2.473\times10^{-10}\times(6)^2[/tex]
[tex]U=4.4514\times10^{-9}\ J[/tex]
Hence, The energy stored in this new capacitor is [tex]4.4514\times10^{-9}\ J[/tex]
a 360 mile trip began on a greeway in a car traveling at 62 mph. Once the road became a 2 lane highway, the car slowed to 54 mph. If the total trip took 6 hours, find the time spent on each type of road
Answer:
Time spent on the greenway road = 4.5 hours
Time spent on the 2 lane road = 1.5 hours
Explanation:
The distance of the trip is 360 miles and the initial speed of the car is 62 miles/hr and after the road became 2 lane highway the car slowed to 54 miles/hr.
Let us divide the trip into two
Greenway
speed = distance/time
speed = 62 mph
time = a
distance = speed × time
distance = 62a
2 lane highway
speed = distance/time
speed = 54 mph
time = b
distance = speed × time
distance = 54b
Total distance
62a + 54b = 360......................(i)
Total time
a + b = 6..............................(ii)
a = 6-b
insert a in equation (i)
62(6-b) + 54b = 360
372 - 62b + 54b = 360
-8b = 360-372
-8b = - 12
b = 12/8
b = 1.5
from equation (ii)
a + 1.5 = 6
a = 6 - 1.5
a = 4.5
When point charges q1 = +7.9 μC and q2 = +6.0 μC are brought near each other, each experiences a repulsive force of magnitude 0.75 N. Determine the distance between the charges.
Answer:0.754m
Explanation:
F=kq1q2/r^2
R^2= kq1q2/f
R^2= 9*10^9*7.9*10^-6*6.0*10^-6/0.75
R^2= 9*7.9*6*10^-3/0.75
R^2=0.4266/0.75
R^2=0.5688
R=√0.5688
R=0.754m
A ball is thrown upward. At a height of 10 meters above the ground, the ball has a potential energy of 50 joules (with the potential energy equal to zero at ground level) and is moving upward with a kinetic energy of 50 joules. Air friction is negligible. The maximum height reached by the ball is most nearly
Answer: 20m
Explanation:
We will solve this question by applying the law of conservation of energy which states that the sum of potential energy and kinetic energy is always the same.
The PE is 0 at surface and maximum at top while the KE is maximum at surface and 0 at top.
From the question,
PE = mgh = 50 J -(1)
mg* 10 = 50
mg = 50/10
mg = 5
The total energy at that point = PE + KE = 50 + 50 = 100 J
Therefore, at topmost point, the PE will be 100 J
mgH = 100J , H is the needed height
Using the value of mg obtained above, we have
H= 100/5
H = 20 m
In a certain region of space, a uniform electric field is in the x direction. A particle with negative charge is carried from x 5 20.0 cm to x 5 60.0 cm. (i) Does the electric po- tential energy of the charge-field system (a) increase, (b) re- main constant, (c) decrease, or (d) change unpredictably
Answer:
(a) increase
Explanation:
On a line graph; we have the x-axis to the positive side and the negative side .In a positive x-axis direction, the force is usually positive, vice versa the negative side as well.
The change in the potential energy of a charge field-system can be given as:
[tex]\delta U= -q(EdsCos \theta)[/tex]
where;
q = positive test charge
E = Electric field
ds = displacement between thee charge positions
θ = Angle between the electric field and the displacement.
Given that:
Charge of the particle = -q
displacement = (60.0 -20.0)cm = 40.0 cm
θ = 0
Replacing our values in the above equation, we have:
[tex]\delta U = -(-q)(60Cos 0)[/tex]
[tex]\delta U = qEds[/tex]
Since the potential energy of the system is positive, therefor the electric potential energy also increases.
The electric potential energy of a system consisting of a negatively charged particle in a uniform electric field increases when the particle is moved in the same direction as the field.
Explanation:The electric potential energy of the charge-field system increases as a negatively charged particle is moved in the same direction as the electric field. This is because work is done to overcome the force of the electric field, which opposes the movement of the negatively charged particle. The uniform electric field produces a constant force, and since work is force times distance, the amount of work (and hence energy) increases.
Learn more about Electric Potential Energy here:https://brainly.com/question/33051432
#SPJ3
To calibrate the calorimeter electrically, a constant voltage of 3.6 V is applied and a current of 2.6 A flows for a period of 350 seconds. If the temperature rises from 20.3°C to 29.1°C, what is the heat capacity of the calorimeter?
Answer:
[tex]372.3 J/^{\circ}C[/tex]
Explanation:
First of all, we need to calculate the total energy supplied to the calorimeter.
We know that:
V = 3.6 V is the voltage applied
I = 2.6 A is the current
So, the power delivered is
[tex]P=VI=(3.6)(2.6)=9.36 W[/tex]
Then, this power is delivered for a time of
t = 350 s
Therefore, the energy supplied is
[tex]E=Pt=(9.36)(350)=3276 J[/tex]
Finally, the change in temperature of an object is related to the energy supplied by
[tex]E=C\Delta T[/tex]
where in this problem:
E = 3276 J is the energy supplied
C is the heat capacity of the object
[tex]\Delta T =29.1^{\circ}-20.3^{\circ}=8.8^{\circ}C[/tex] is the change in temperature
Solving for C, we find:
[tex]C=\frac{E}{\Delta T}=\frac{3276}{8.8}=372.3 J/^{\circ}C[/tex]
Final answer:
The heat capacity of the calorimeter, determined by applying a constant voltage and measuring the temperature change, is calculated to be 372.3 J/°C.
Explanation:
To calculate the heat capacity of the calorimeter, we first need to understand the amount of heat (q) added to the system. This can be determined using the formula q = IVt, where I is the current (2.6 A), V is the voltage (3.6 V), and t is the time (350 seconds). So, the heat added to the system is q = 3.6 V * 2.6 A * 350 s = 3276 J. The temperature change (ΔT) observed in the calorimeter is from 20.3°C to 29.1°C, which is a change of 8.8°C. The heat capacity (C) of the calorimeter can then be calculated as C = q/ΔT = 3276 J / 8.8 °C = 372.3 J/°C. This indicates the amount of heat required to raise the temperature of the calorimeter by one degree Celsius.
The air in a room with volume 180 m3 contains 0.25% carbon dioxide initially. fresher air with only 0.05% carbon dioxide flows into the room at a rate of 2 m3/min and the mixed air flows out at the same rate. find the percentage p of carbon dioxide in the room as a function of time t (in minutes).
The situation can be modeled with a differential equation taking into account the inflow and outflow rates of carbon dioxide. By resolving this equation, we obtain a function representing the CO2 quantity over time. This can be easily converted into percentage by dividing by the room's volume and multiplying by 100.
Explanation:This problem can be solved using a mathematical model called a differential equation. The percentage of carbon dioxide in the room changes over time due to the input of fresher air and the removal of mixed air.
Let's denote the quantity (not the percentage, the actual quantity) of carbon dioxide in the room at time t by Q(t). Initially, we have Q(0) = 0.0025 * 180 = 0.45 m³.
Carbon dioxide flows into the room at a rate of 0.0005 * 2 = 0.001 m³/min and flows out at the rate proportional to the total quantity present, which is (Q(t) / 180) * 2 = (Q(t) / 90) m³/min. Therefore the situation can be modelled by the differential equation dQ/dt = 0.001 - Q(t) / 90. Here, 0.001 represents the rate on inflow of carbon dioxide, and Q(t) / 90 represents the rate of outflow.
By solving this differential equation, we can obtain the function Q(t) which gives the quantity of carbon dioxide in the room at each moment, and the percentage of carbon dioxide can be obtained by dividing Q(t) by the volume of the room and multiplying by 100 to get a percentage, i.e., p(t) = Q(t)/180 * 100.
Learn more about Differential Equations here:https://brainly.com/question/33433874
#SPJ12
The percentage of carbon dioxide in the room over time can be calculated using differential equations. The resulting function is[tex]p(t) = 0.005 * e^{(t/90)} + 0.02 * e^{(-t/90)}[/tex]. This takes into account both the inflow of fresh air and the mixture exiting the room.
To determine the percentage p of carbon dioxide in the room as a function of time t (in minutes), we need to use principles from differential equations to model the mixing process.
Initially, the volume of the room is 180 m³ containing 0.25% carbon dioxide. Fresh air with 0.05% carbon dioxide flows into the room at 2 m³/min.
Let's denote the amount of carbon dioxide in the room at time t by C(t), measured in cubic meters. The concentration of carbon dioxide p(t) is given by:
[tex]p(t) = ( C(t) / 180 ) * 100[/tex]The rate of change of the carbon dioxide in the room can be written as:
dC/dt = rate of carbon dioxide coming in - rate of carbon dioxide going outThe inflow of carbon dioxide is:
[tex]2 m^3/min * 0.0005 = 0.001 m^3/min[/tex]The outflow of carbon dioxide depends on the concentration in the room:
[tex]outflow = (C(t) / 180) * 2 m^3/min[/tex]Thus, the differential equation becomes:
[tex]dC/dt = 0.001 - (C(t) / 180) * 2[/tex]This simplifies to:
[tex]dC/dt = 0.001 - (2C/180)[/tex][tex]or, dC/dt = 0.001 - (C/90)[/tex]
To solve this, we use an integrating factor. The integrating factor is:
[tex]e^{\int\{(1/90) }dt} = e^{t/90}[/tex]Multiplying both sides by the integrating factor:
[tex]e^{(t/90)} * dC/dt = 0.001 * e^{(t/90)} - (C/90) * e^{(t/90)}[/tex]This simplifies to:
[tex]d/dt [C(t) * e^{(t/90)}] = 0.001 * e^{(t/90)}[/tex]Integrate both sides:
[tex]C(t) * e^{(t/90)} = \int\0.001 * e^{(t/90)}}dt = 0.001 * 90 * e^{(t/90)} + K[/tex]Hence,
[tex]C(t) = 0.09 * e^{(t/90)} + K/e^{(t/90)}[/tex]To find K, use the initial condition C(0):
Initial amount of CO2:
[tex]C(0) = 180 * 0.0025 = 0.45[/tex]Thus,
[tex]0.45 = 0.09 + K[/tex]Therefore, [tex]K = 0.36[/tex].
The solution is:
[tex]C(t) = 0.09 * e^{(t/90)}+ 0.36 * e^{(-t/90)}[/tex]The percentage of CO2 is:
[tex]p(t) = {C(t) / 180} * 100[/tex]This simplifies to:
[tex]p(t) = (0.09 * e^{(t/90)} + 0.36 * e^{(-t/90)}) / 1.8[/tex]Hence:
[tex]p(t) = (1/20) * (0.09 e^{(t/90)} + 0.36 e^{(-t/90)})[/tex][tex]p(t) = 0.005 * e^{(t/90)} + 0.02 * e^{(-t/90)}[/tex]
two cars leave at the same time and travel in opposite directions. one travels 44mi/hr and the other travels 55mi/hr. in how many hours will they be 297 miles apart.
Answer:
In 3 hours, the cars will be 297 miles apart.
Explanation:
Speed=Distance/Time
Distance= Speed X Time
Speed of 1st Car=44 miles/hr
Distance=44 X Time taken = 44t
Speed of 2nd Car=55 miles/hr
Distance=55 X Time taken = 55t
Total Distance Covered by both Cars = 44t + 55t = 99t
The cars are 297 miles apart, therefore:
99t = 297
t = 3 hours
It means that in 3 hours, the distance between the cars is 297 miles.
A parallel plate capacitor is connected to a battery and charged to voltage V. Leah says that the charge on the plates will decrease if the distance between the plates is increased while they are still connected to the battery. Gertie says that the charge will remain the same. Which one, if either, is correct, and why?
Explanation:
Below is an attachment containing the solution.
In the dangerous "sport" of bungee-jumping, a daring student jumps from a balloon with a specially designed elastic cord attached to his waist. The unstretched length of the cord is 23.4 m, the student weighs 818 N, and the balloon is 31.3 m above the surface of a river below. Calculate the required force constant of the cord if the student is to stop safely 2.74 m above the river. Answer in units of N/m.
Answer:
k = 1755 N/m
Explanation:
Given:
- The length of the cord L = 23.4 m
- Weight of the student W = 818 N
- The elevation of balloon H = 31.3 m
Find:
Calculate the required force constant of the cord if the student is to stop safely 2.74 m above the river.
Solution:
- We know the potential energy of the student changes by
ΔP.E = m*g*( H - 2.74 )
mg*(31.3 - 2.74) = 818*28.56 = 23362.08 J
- When he stops at 2.74 m above ground his KE = 0 so ALL his lost potential energy must be stored in the extended or stretched bungee cord.
- He falls 23.4 m before the bungee cord starts to stretch. That means it doesn't start stretching until he is 31.3 - 23.4 = 7.9 m above the ground.
- It has to stop stretching at 2.74 m above the ground so the
total stretch = 7.9 - 2.74 = 5.16 m
- Therefore his PE from 31.3 m to 2.74 m is stored in a 5.16 m stretch of the bungee cord.
½kx² = ΔP.E
k = 2*ΔP.E / x^2
k = 2*23362.08 / 5.16^2
k = 1755 N/m
Large numbers of ribosomes are present in cells that specialize in producing which molecules?
Answer:
Protein molecules
Explanation:
Ribosomes are the cell organelles that are responsible for the synthesis of protein in the cell. Proteins are the fundamental building blocks and help in repair and damage of cell in the body.
Ribosome is a complex which is made up of protein and RNA. Ribosomes can be found floating within the cytoplasm or attached to the endoplasmic reticulum.
Which technique provides a smooth transition from acceleration to braking?
Answer:
Cover-braking technique
Explanation:
Cover braking involves the technique of taking off the foot from the accelerator and hovering it over the braking pedal. The foot must not be placed on the braking pedal to avoid the wear of brake unnecessarily.
It is done usually when an obstacle is expected in front of the moving car. This provides an edge in the reaction time of application of the brakes hence reducing the stopping time.
Regenerative braking and engine braking are techniques used for a smooth transition from acceleration to braking. These techniques convert kinetic and potential energy into electrical energy or use engine power to slow down the vehicle, respectively.
Explanation:The technique that provides a smooth transition from acceleration to braking is commonly recognized in physics and engineering called regenerative braking. Regenerative braking is a central component of the operation of hybrid and electric vehicles. It functions by converting a vehicle's kinetic and gravitational potential energy into electrical energy that recharges the vehicle's battery when deceleration is initiated.
Another method is engine braking, usually applied in larger vehicles like trucks to avoid overheating of brakes specially when traveling downhill.
Both methods, whether it is engine braking or regenerative, provide a smooth progression from accelerated motion to a decrease in speed, or braking. This way, they manage the transition smoothly while conserving and efficiently using energy.
Learn more about Braking Techniques here:https://brainly.com/question/32242758
#SPJ12
In a pickup game of dorm shuffleboard,students crazed by final exams use a broom to propel a calculus book along the dorm hallway. If the 3.5 kg book is pushed from rest through a distance of 0.90 m by the horizontal 25 N force from the broom and then has a speed of 1.60 m/s,what is the coefficient of kinetic friction between the book and floor?
Answer:
Coefficient of friction between the book and floor is 0.582.
Explanation:
Using the velocity formula;
v^2 = 2as
a = v^2/(2s)
a = 1.6^2/(2*0.9)
a = 2.56/1.8
a = 1.42 m/s^2
the force necessary to give the book the acceleration is
F = ma = 3.5*1.42 (m is mass of the book i.e. 3.5 kg)
F = 4.98 N
The difference in the force is the friction force, which is
Ff = 25 - 4.98 = 20 N
Ff = mgμ
where μ is coefficient of friction and g is acceleration due to gravity that is 9.8 m/s^2
μ = Ff/mg
μ = 20/(3.5*9.81)
μ = 0.582
Coefficient of friction between the book and floor is 0.582.
This question involves the concepts of the equation of motion and Newton's second law of motion.
The coefficient of kinetic friction between the book and the floor is "".
First, we will find the acceleration of the block by using the third equation of motion:
[tex]2as = v_f^2-v_i^2[/tex]
where,
a = acceleration = ?
s = distance covered = 0.9 m
vf = final speed = 1.6 m/s
vi = initial speed = 0 m/s
Therefore
[tex]a=\frac{(1.6\ m/s)^2-(0\ m/s)^2}{2(0.9\ m)}\\\\a=1.42\ m/s^2[/tex]
Hence, from Newton's second law of motion:
[tex]Net\ Force = Frictional\ Force + F\\Net\ Force = \mu mg+ma[/tex]
where,
Net Force = 25 N
μ = coefficient of kinetic friction = ?
m = mass of the book = 3.5 kg
g = acceleration due to gravity = 9.81 m/s²
Therefore,
[tex]25\ N = \mu(3.5\ kg)(9.81\ m/s^2)+(3.5\ kg)(1.42\ m/s^2)\\\\\mu=\frac{25\ N - 4.98\ N}{34.33\ N}\\\\\mu = 0.58[/tex]
Learn more about Newton's Second Law of Motion here:
brainly.com/question/13447525?referrer=searchResults
The attached picture shows Newton's Second Law of Motion.
A throttle position sensor waveform is going to be observed. At what setting should the volts per division be set to see the entire waveform from 0 volts to 5 volts using a DSO with 8 voltage and 10 time divisions?
Answer:
1 V / div
Explanation:
Solution:
- The vertical scale has eight divisions.
- If each division is set to equal 1 volt, the display will show 0 to 8 volts.
- This is okay in a 0 to 5 volt variable sensor such as a throttle position (TP) sensor.
- The volts per division (V/div) should be set so that the entire anticipated waveform can be viewed.
The toothpick mass was 0.14 g, its speed before entering the branch was 218 m/s, and its penetration depth was 14 mm. If its speed was decreased at a uniform rate, what was the magnitude of the force of the branch on the toothpick
Answer:
= 238N
Explanation:
mass = 0.14g = 14 × 10⁻⁵kg
initial velocity = 218m/s
final velocity = 0
penetration depth (distance) = 14mm = 14 × 10⁻³m
v²(final) = v²(initial) + 2aΔx
0² = (218)² + 2(14 × 10⁻³)a
a = -(218)² / 2(14 × 10⁻³)
a = 16.97 × 10⁵m/s²
F = ma
= (14 × 10⁻⁵)(16.97 × 10⁵)
= 237.58N
≅ 238N
Explanation:
Below is an attachment containing the solution.
A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 25 cmcm and 1300 turns of wire. When running, the solenoid produced a field of 1.5 TT in the center.
Incomplete question as we have not told which quantity to find.So the complete question is here
A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 25 cmcm and 1300 turns of wire. When running, the solenoid produced a field of 1.5 TT in the center.Given this, how large a current does it carry?
Answer:
[tex]I=2.021A[/tex]
Explanation:
Magnetic field B=1.5 T
Length L=2.2mm =0.0022m
Number of turns N=1300 turns
To find
Current I
Solution
From the magnetic at the center of loop we know that:
[tex]B=uI\frac{N}{L}[/tex]
Substitute the given values
[tex]B=uI\frac{N}{L}\\ as\\u=4\pi *10^{-7} T.A/m\\So\\B=uI\frac{N}{L}\\I=\frac{LB}{Nu}\\ I=\frac{0.0022m(1.5T)}{(1300)(4\pi *10^{-7} T.A/m)}\\I=2.021A[/tex]
We have seen that the heart produces a magnetic field, and that this can be used to diagnose problems with the heart. The magnetic field of the heart is a dipole field that is produced by a loop current in the outer layers of the heart. Suppose the field at the center of the heart is 90 pT (a pT is 10−12T ) and that the heart has a diameter of approximately 12 cm. What current circulates around the heart to produce this field?
Explanation:
The field at the center of circular current can be calculated by
B = [tex]\frac{\mu _0 I}{r}[/tex]
here μ₀ is permeability constant and is equal to 4π x 10⁻⁷
I is the current in circular path and r is the radius of circle
Thus I =[tex]\frac{90x10^-^1^2x12x10^-^2}{4\pi x 10^-^7 }[/tex] = 8.8 x 10⁻⁵ A
What is the amount of electric field passing through a surface called? A. Electric flux.B. Gauss’s law.C. Electricity.D. Charge surface density.E. None of the above.
Answer:
Electric flux
Explanation:
The electric flux measures the amount of electric field passing through a surface. For any closed surface, the electric field passing through it (electric flux) is given by Guass law. The mathematical relation between electric flux and the enclosed charge is known as Gauss law for the electric field. Electric flux may also be visualised as the amount of electric lines of force passing through an area.
The octet rule states that in chemical compounds atoms tend to have
Answer:
In chemical compounds, atoms tends to have the electron configuration of a noble gas.
Explanation:
The noble gases are unreactive because of their electron configurations. This noble gas neon has the electron configuration of 1s22s22p6 . It has a full outer shell and cannot incorporate any more electrons into the valence shell.
The octet rule states that atoms tend to form compounds in ways that give them eight valence electrons and thus the electron configuration of a noble gas. An exception to an octet of electrons is in the case of the first noble gas, helium, which only has two valence electrons.
The octet rule states that atoms (excluding some exceptions like hydrogen and helium) in a compound strive for eight electrons in their valence shell, making it stable. This is achieved by sharing, accepting or donating electrons. For instance, oxygen in a water molecule gains two electrons from two hydrogen atoms through covalent bonding.
Explanation:The octet rule is a principle in chemistry which states that atoms in chemical compounds tend to achieve a stable electron configuration with eight electrons, a complete 'octet', in their valence shell. Atoms will donate, accept, or share electrons to fulfill this rule. For example, oxygen, which has six electrons in its valence shell, will react with other atoms so as to gain two more electrons, completing its octet. This is achieved through covalent bonding, where electrons are shared between atoms, such as in a water molecule H2O. It is important to note that there are exceptions to this rule, notably hydrogen and helium which are stable with two and helium with two electrons in their valence shell respectively.
Learn more about Octet Rule here:https://brainly.com/question/33717924
#SPJ5
A small car of mass m and a large car of mass 4m drive along a highway at constant speed. They approach a curve of radius R. Both cars maintain the same acceleration a as they travel around the curve. How does the speed of the small car vS compare to the speed of the large car vL as they round the curve
Answer:
Explanation:
Given that we have two cars
First car has mass =m
Second car has mass = 4m
They are driving at constant speed
Given that the radius of curve is R
Both cars maintain the same acceleration.
Let velocity of small car be vS
Velocity of big car be vL
From centripetal acceleration
a=V²/R
V²=aR
Then since both car have the same accelerating and bashing through the same curve of radius R
Then, We can say, V² is constant
vL² = vS²
Then taking square root of both side
vL=vS
The speed of the small car vS is greater than the speed of the large car vL as they round the curve due to the difference in their masses and the application of the same acceleration.
Explanation:The speed of the small car vS is greater than the speed of the large car vL as they round the curve. This is because both cars have the same acceleration a, but the small car has less mass than the large car. According to Newton's second law, F = ma, the force required to maintain the same acceleration is greater for the larger car, which means it has a greater speed as it rounds the curve.
Learn more about Speed comparison in curved motion here:https://brainly.com/question/30204265
#SPJ3
how does urban planning impact land?
Answer:
Ensures land is used for its designated purposes hence avoiding misuse of land.
Explanation:
The process of urban planning ensures that different land uses are shown such as commercial, residential, public land, forestry and agricultural and institutional lands. This process helps in designing for essential services such as roads, sewarage and water, gas and electricity. In the process, encroachment is controlled and land utilized as planned. Therefore, land is properly utilized while minimizing environmental pollution, leading to sustainable development.
Two eagles fly directly toward one another, the first at 15.0 m/s and the second at 20.0 m/s. Both screech, the first one emitting a frequency of 3200 Hz and the second one emitting a frequency of 3800 Hz. What frequencies do they receive if the speed of sound is 330 m/s?
Answer:
The first eagle hear a frequency of 4.23kHz and the second eagle hear a frequency of 3.56kHz
Explanation:
Given that
both eagle are flying towards one another
speed of the first eagle v1 = 15m/s
speed of the second eagle v2 = 20m/s
frequency emitted by the first eagle f1= 3200Hz
frequency emitted by the second eagle f2 = 3800Hz
speed of sound v = 330m/s
[tex]F_1 = (\frac{v + v_2}{v - v_1} )f_1\\F_1 = (\frac{330 + 20}{330 - 15} )(3200)\\= 3.56 \times 10^3Hz\\= 3.56kHz\\[/tex]
the second part
[tex]F_1 = (\frac{v + v_2}{v - v_1} )f_1\\F_1 = (\frac{330 + 15}{330 - 20} )(3800)\\= 4.23 \times 10^3Hz\\= 4.23kHz\\[/tex]
The first eagle hear a frequency of 4.23kHz and the second eagle hear a frequency of 3.56kHz
In a certain time period a coil of wire is rotated from one orientation to another with respect to a uniform 0.38-T magnetic field. The emf induced in the coil is 5.0 V. Other things being equal, what would the induced emf be if the field had a magnitude of 0.55 T
Explanation:
When coil is placed in the magnetic field , the flux attached with it can be found by the relation . Flux Ф = the dot product of magnetic field and area of coil .
Thus Ф = B A cosθ
here B is magnetic field strength and A is the area of coil .
The angle θ is the angle between coil and field direction .
When coil rotates , the angle varies . By which the flux varies . The emf is produced in coil due to variation of flux . The relation for this is
The emf produced ξ = - [tex]\frac{d\phi}{dt}[/tex] = B A sinθ [tex]\frac{d\theta}{dt}[/tex]
Now in the given problem
5 = 0.38 x A x [tex]\frac{d\theta}{dt}[/tex] I
Now if the magnetic field is 0.55 T and all the other terms are same , the emf produced
ξ = 0.55 x A x [tex]\frac{d\theta}{dt}[/tex] Ii
dividing II by I , we have
[tex]\frac{\xi}{5}[/tex] = [tex]\frac{0.55}{0.38}[/tex] = 1.45
or ξ = 7.2 V
84. Calculate the velocity a spherical rain drop would achieve falling from 5.00 km (a) in the absence of air drag (b) with air drag. Take the size across of the drop to be 4 mm, the density to be 1.00 × 103 kg/m3 , and the surface area to be πr2 .
Answer:
a) [tex]v=313.209\ m.s^{-1}[/tex]
b) [tex]v_t=3751.79\ m.s^{-1}[/tex]
Explanation:
Given:
height of the raindrop, [tex]h=5000\ m[/tex]a)
[tex]v=\sqrt{2g.h}[/tex]
[tex]v=\sqrt{2\times 9.81\times 5000}[/tex]
[tex]v=313.209\ m.s^{-1}[/tex]
b)
given that:
diameter of the drop, [tex]d=4\ mm=0.004\ m[/tex]
density of the air, [tex]\rho=1.18\ kg.m^{-3}[/tex]
the terminal velocity is given as:
[tex]v_t=\sqrt{\frac{2m.g}{\rho.A.c_d} }[/tex]
where:
m = mass
g = acceleration due to gravity
[tex]\rho=[/tex] density of the medium through which the drop is falling (here air)
A = area normal to the velocity of fall
[tex]c_d=[/tex] coefficient of drag = 0.47 for spherical body
[tex]v_t=\sqrt{\frac{2\times 5\times 9.81}{1.18\times \pi\times 0.002^2\times 0.47} }[/tex]
[tex]v_t=3751.79\ m.s^{-1}[/tex]
Point sources of air pollution are __________. Question 9 options: all the hydrocarbons produced by trees in the Smoky Mountains specific spots--such as a factory's smokestacks--where large quantities of pollution are discharged the diffuse release of pollution from autos and homes into the atmosphere the release of pollution from many unidentifiable sources
Answer:
Smoky Mountains specific spots--such as a factory's smokestacks--where large quantities of pollution are discharged
Explanation:
Point source pollution is characterized by the following components:
It is a single sourceThe source is identifiableThe source is known to release pollutants into the environmentFrom the options, Smoky Mountains specific spots--such as a factory's smokestacks--where large quantities of pollution are discharged ticked all the necessary box for a point source pollution.
As you watch the video, notice that the size of the tidal bulges varies with the Moon's phase, which depends on its orbital position relative to the Sun. Which of the following statements accurately describes this variation? A. Low tides are lowest at both full moon and new moon.
B. High tides are highest at both full moon and new moon.
Answer:
Both
A. Low tides are lowest at both full moon and new moon.
B. High tides are highest at both full moon and new moon.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the moon across to the Earth sphere.
Since gravity variate with the distance:
[tex]F = G\frac{m1\cdot m2}{r^{2}}[/tex] (1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance Where m1 and m2 are the masses of the two objects that are interacting and r is the distance between them.
For example, see the image below, point A is closer to the moon than point b and at the same time the center of mass of the Earth will feel more attracted to the moon than point B. Therefore, that creates a tidal bulge in point A and point B.
On the other hand, a full moon it gets when Sun, the Earth and the moon are in a line and the moon is reflecting the sunlight.
When the Moon is between the Earth and the Sun it will be illuminated in its back, so it is not possible to see it from the Earth (that is called new moon).
In those two cases mentioned above, the Sun tidal force contributes to the tidal force of the moon over the earth making high tides higher and low tides lower.
When you lift a bowling ball with a force of 71.6 N, the ball accelerates upward with an acceleration a. If you lift with a force of 82.3 N, the ball's acceleration is 1.91a. Calculate the weight of the bowling ball.
Answer:
59.84 N
Explanation:
The net force is responsible for the upward acceleration of the bowling ball.
The net force acting on a body accelerates the body in the same direction as that in which the resultant is applied.
Net force = ma
ma = F - mg
In the first case,
F = 71.6 N, a = a m/s²
ma = 71.6 - mg (eqn 1)
In the second case,
F = 82.3 N, a = 1.91a m/s²
m(1.91a) = 82.3 - mg
1.91 ma = 82.3 - mg (eqn 2)
Substitute for ma in (eqn 2)
1.91 (71.6 - mg) = 82.3 - mg
136.756 - 1.91 mg = 82.3 - mg
136.756 - 82.3 = 1.91 mg - mg
0.91 mg = 54.456
mg = 54.456/0.91
mg = 59.84 N
Hence, the weight of the bowling ball = 59.84 N
Hope this Helps!!!
The weight of the bowling ball is 59.84 N
What is the net force?The net force should be held responsible where there is the upward acceleration of the bowling ball. When it should be acted on the body so it should be in a similar direction.
We know that
Net force = ma
So,
ma = F - mg
Now
In the first case,
F = 71.6 N, a = a m/s²
ma = 71.6 - mg (eqn 1)
And,
In the second case,
F = 82.3 N, a = 1.91a m/s²
m(1.91a) = 82.3 - mg
So,
1.91 ma = 82.3 - mg (eqn 2)
Now
1.91 (71.6 - mg) = 82.3 - mg
136.756 - 1.91 mg = 82.3 - mg
136.756 - 82.3 = 1.91 mg - mg
0.91 mg = 54.456
mg = 54.456/0.91
mg = 59.84 N
Hence, the weight of the bowling ball = 59.84 N
Learn more about acceleration here: https://brainly.com/question/16335988
Which type of wave is classified as electromagnetic?
A) Sound
B) Light
C) Water
D) Seismic
FOR USA TEST PREP!!!
Answer: B) Light
Explanation: light waves are Electromagnetic waves. Visible light is one of the many types of electromagnetic waves. The others are mechanical waves.
Which of the following types of reactions would decrease the entropy within a cell?
digestion
hydrolysis
respiration
dehydration reactions
catabolism
Answer:
dehydration reactions
Final answer:
Dehydration reactions decrease entropy within a cell by building larger molecules from smaller units, unlike catabolic reactions like digestion and respiration which increase entropy by breaking down molecules.
Explanation:
The type of reaction that would decrease the entropy within a cell are dehydration reaction. Entropy is a measure of disorder or randomness in a system, and dehydration reactions are anabolic processes that build larger molecules from smaller ones, thus decreasing entropy. In contrast, catabolic reactions, such as digestion, hydrolysis, and respiration, generally increase entropy in a system by breaking down complex molecules into simpler ones and releasing energy in the process.