Final answer:
The molar mass of Strontium nitride (Sr3N2) is calculated by multiplying the molar masses of strontium and nitrogen by their respective number of atoms in the formula and adding the products together, resulting in 290.88 g/mol.
Explanation:
To find the molar mass of Strontium nitride (Sr3N2), you must first determine the molar masses of strontium (Sr) and nitrogen (N) from the periodic table. The molar mass of strontium is 87.62 g/mol. Since there are three strontium atoms in Sr3N2, you would multiply 87.62 g/mol by 3. The molar mass of nitrogen is 14.01 g/mol, and there are two nitrogen atoms in Sr3N2, so multiply 14.01 g/mol by 2.
Then you add the molar masses of strontium and nitrogen together:
3 x 87.62 g/mol for Sr = 262.86 g/mol2 x 14.01 g/mol for N = 28.02 g/mol
Finally, sum these values to find the molar mass of Sr3N2:
Molar mass of Sr3N2 = 262.86 g/mol + 28.02 g/mol = 290.88 g/mol.
What volume of 0.05 mol/L HCl is required to react with 5.00g of manganese dioxide according to this equation?
4HCl(aq) + MnO2(s) → 2H2O(l) + MnCl2(aq) + Cl2(g)
217 ml of 0.05 M HCl will be required to react with 5 gm of MnO2 according to the equation given.
Explanation:
The balanced chemical equation is given as:
4HCl(aq) + MnO2(s) → 2H2O(l) + MnCl2(aq) + Cl2(g)
This shows that 4 moles of HCl reacts with 1 mole of MnO2
the mass of Manganese oxide is given as 5 grams
molar mass of MnO2 = 86.93 grams/mole
number of moles of MnO2 is given by
number of moles = [tex]\frac{mass}{atomic mass of one mole}[/tex]
number of moles= [tex]\frac{5}{86.93}[/tex]
= 0.0575 moles of MnO2
From the equation:
4 moles of HCl reacts with 1 mole of MnO2
x moles of HCl reacts with [tex]\frac{0.0575}{x}[/tex] moles of MnO2
[tex]\frac{1}{4}[/tex] = [tex]\frac{0.0575}{x}[/tex]
= 0.23 moles of HCl will react
atomic mass of HCl = 36.46 Grams/mole
mass = 0.23 x 36.46
= 8.3858 grams.of HCl
molarity of HCl = [tex]\frac{number of moles}{volume in liters}[/tex]
volume is 1 litre
so molarity is 0.23 M
Using the formula
M1V1 = M2V2
0.05 x 1 = 0.23 X x
x = 0.217 litre
so 217 ml of 0.05 M HCl will be required to react with 5 gm of MnO2.
What is the mass percent of a solution of 7.6 grams sucrose in 83.4 grams of water
Answer:
The mass percent of a solution of 7.6 grams sucrose in 83.4 grams of water is 8.351 %.
Explanation:
Given,
Mass of Sucrose = 7.6 grams
Mass of Water = 83.4 grams
In this solution, Sucrose is solute and water is the solvent.
Mass percent of a solution can be calculated using the formula,
Mass percent = (Mass of Solute/Mass of Solution)(100)
As sucrose is solute, mass of solute = 7.6 grams
As the solution contains both Sucrose and Water,
Mass of solution = 7.6 grams + 83.4 grams = 91 grams
Substituting the values, Mass percent = (7.6/91)(100) = 8.351 %.
Taking into account the definition of percentage by mass, the mass percent of a solution of 7.6 grams sucrose in 83.4 grams of water is 8.35 %.
The percentage by mass expresses the concentration and is defined as the ratio of the mass of the solute to the mass of the solution, expressed as a percentage.
The percentage by mass is calculated as the mass of the solute divided by the mass of the solution and multiplied by 100 to give a percentage. This is:
[tex]percent by mass= \frac{mass of solute}{mass of solution}x100[/tex]
In this case, you know:
mass of solute= 7.6 g mass of water= 83.4 g mass of solution= mass of solute + mass of water= 7.6 + 83.4 g= 91 gReplacing:
[tex]percent by mass= \frac{7.6 grams}{91 grams}x100[/tex]
Solving:
percent by mass= 0.0835
percent by mass= 8.35 %
Finally, the mass percent of a solution of 7.6 grams sucrose in 83.4 grams of water is 8.35 %.
Learn more:
brainly.com/question/19168984?referrer=searchResults brainly.com/question/18646836?referrer=searchResultsHow many grams of potassium iodide will produce 500 grams of silver iodide, when there is an excess of silver nitrate?Why?
A.235
B.707g
C.166g
D.301g
Answer:
None of the options are correct. The answer to the question is 353.2g
Explanation:
The equation for the reaction between is given below:
KI + AgNO3 —> KNO3 + AgI
Molar Mass of KI = 39 + 127 = 166g/mol
Molar Mass of AgI = 108 + 127 = 235g/mol
From the equation,
166g of KI produced 235g of AgI.
Therefore, Xg of KI will produce 500g of AgI i.e
Xg of KI = (166 x 500)/235 = 353.2g
The rate constant of the first-order reaction A→3B is 0.291 s−1. The concentration of A at t=5 seconds is 0.081 mol/L. What was the initial concentration of A?
To find the initial concentration of A in a first-order reaction, we can use the integrated rate law.
Explanation:In a first-order reaction, the rate of the reaction is directly proportional to the concentration of the reactant. The rate constant for the given first-order reaction is 0.291 s-1. To find the initial concentration of A, we can use the integrated rate law for first-order reactions:
[A]t = [A]0 * e-kt
Where [A]t is the concentration of A at time t, [A]0 is the initial concentration of A, k is the rate constant, and e is the base of natural logarithms. Putting in the given values, we get:
0.081 mol/L = [A]0 * e-(0.291 s-1)(5 s)
Solving for [A]0, we find that the initial concentration of A is approximately 0.232 mol/L.
Learn more about Rate of Reaction here:https://brainly.com/question/8592296
#SPJ12
5. What happens to the mass when you change
the volume?
It decreases
Explanation:If the mass of the object stays the same but the volume of the object decreases then its density becomes greater. If the volume of the object stays the same but the mass of the object increases then its density becomes greater.
The gas that was released is carbon _____
Answer:
dioxide
Explanation:
Item 4
How do conditions change as the depth of the ocean water increases?
Temperature increases and pressure decreases.
Temperature increases and pressure increases.
Temperature decreases and pressure increases.
Temperature decreases and pressure decreases.
Answer:
c
Explanation:
Answer:
option 2
Explanation:
temperature decreases as you are further away from the sun and less thermak energy is reaching you. the pressure increases as more water is above you.
(pls give brainliest T.T)
Nitrogen molecules rest with oxygen molecules. Nitrogen monoxide molecules are made.
N2 + O2 → 2NO
Nitrogen molecules and oxygen molecules react extremely slowly, even at 200°C.
The reaction between nitrogen
and oxygen becomes faster as both the temperature and the pressure increase. Explain why, using the reacting
particle model. (6 marks)
Answer:
At high temperature and pressure, reactions become faster
Explanation:
Collision theory or reaction particle model state that reacting particles must collide before reactions occur.
Reaction rate of reaction is dependent on the frequency of collision.
Kinetics of gases increases at higher temperature and pressure.
As the temperature and pressure of nitrogen and oxygen increased, they bound to move more faster, collide more frequently as to attain activation energy easily thereby increasing the reaction rate or making the reaction to complete faster.
Also at higher pressure, gaseous reactants are closer to each other.
6.0 moles of Na and 4.0 moles of Cl2 are mixed, how manu moles of NaCl in moles cane be made from this mixture
2 Na(s) + Cl2(g) —> 2 NaCl(s)
Answer:
Moles of NaCl formed is 6.0 moles
Explanation:
We are given the equation;
2 Na(s) + Cl₂(g) → 2 NaCl(s)
Moles of Na is 6.0 moles Moles of Cl₂ is 4.0 molesFrom the reaction;
2 moles of sodium reacts with 1 mole of chlorine gas to form 2 moles of NaCl
In this case;
6 moles of Na would require 3 moles of Cl₂, this means that chlorine gas is in excess.
Thus, the rate limiting reagent is sodium.
But, 2 moles of sodium reacts to form 2 moles of NaCl
Therefore;
Moles of NaCl = Moles of Na
= 6.0 moles
Thus, moles of sodium chloride produced is 6.0 moles
What kinds of elements form an ionic bond?
We have that For the Question"What kinds of elements form an ionic bond"
We see from the Definition that this kind of bond is formed b/w metals and non-metals
From the question we are told
What kinds of elements form an ionic bond
Generally
The Other Name for Ionic bond is covalent bond and it is formed when two ions of variant charge converge and this kind of bond is formed b/w metals and none metals
Therefore
For the Question
What kinds of elements form an ionic bond
We see from the Definition that this kind of bond is formed b/w metals and non-metals
For more information on this visit
https://brainly.com/question/17756498
What is the net ionic equation for Fe ( NO 3 ) 2 ( aq ) + Na 2 CO 3 ( aq ) ⟶ CaCO3 ( s ) + 2 NaNO 3 ( aq )
Answer:
Ca²⁺ (aq) + CO₃²⁻ (aq) ⟶ CaCO₃ (s)Explanation:
1. Write the balanced molecular equation(given):
Ca(NO₃)₂ (aq) + Na₂CO₃ (aq) ⟶ CaCO₃ (s) + 2NaNO₃ (aq)Notice that I replaced Fe(NO₃)₂ with Ca(NO₃)2 because Fe does not appear in the products.
2. Write the aqueous ionic compounds in form of ions:
Ca(NO₃)₂ (aq) ⟶ Ca²⁺ (aq) + 2NO₃⁻ (aq)Na₂CO₃ (aq) ⟶ 2Na⁺ + CO₃²⁻ (aq) 2NaNO₃ (aq) ⟶ 2Na⁺ (aq) + 2NO₃⁻ (aq)3. Write the overall ionic equation
In the balanced molecular molecular equation, substitute the ionic compounds with the corresponding ions:
Ca²⁺(aq) + 2NO₃⁻(aq) + 2Na⁺ (aq) + CO₃²⁻(aq) →
CaCO₃(s) + 2NO₃⁻(aq) + 2Na⁺(aq)
4. Write the net ionic equation
Remove the spectator ions (those that appear equal on both sides):
Ca²⁺ (aq) + CO₃²⁻ (aq) → CaCO₃ (s) ← answerwhat volume will 1.27 moles of helium gas occupy at stp
Answer:
28.45L
Explanation:
1mole of a gas occupy 22.4L at stp. This implies that 1mole of He also occupy 22.4L at stp.
Now if 1mole of He occupied 22.4L at stp, then, 1.27mol will occupy = 1.27x22.4 = 28.45L
Answer:
28.45L
Explanation:
the compound benzamide has the following percent composition. What is the empirical formula? C=69.40% H=5.825% O=13.21% N=11.57%
Answer:
C7H7NO
Explanation:
The following were obtained from the question:
C = 69.40%
H = 5.825%
N = 11.57%
O = 13.21%
The empirical formula can be obtained as illustrated in the attached file
Please help me with this: Create 20 bullet points specifically about energy exchanges in Earth's systems. Also, it doesn't have to be in 20 bullet points as long as it is about energy exchanges in Earth's systems in full paragraph that is fine too.
The below is about the energy exchanges in earth systems.
Explanation:
Energy exchanges in earth systems are of many types. The earth systems are atmosphere, geosphere, stratosphere, hydrosphere, and biosphere. All these earth systems exchange energy with each other.The earth gains energy reflected from the sky. It converts that energy back to space. That energy is equally given to all the planets in the sky.Each planet will absorb that energy and radiate heat. This heat is absorbed by all the places on the earth. So this is the energy exchange in the earth systems.Energy exchanges in Earth's system revolves around Earth's main energy outputs which are visible and infrared radiation, reflected light and thermal infrared radiation. ultraviolet radiation and visible radiation, gamma rays, X-rays and ultraviolet radiation.
Explanation:
Energy exchanges in Earth's system revolves around Earth's main energy outputs which are visible and infrared radiation, reflected light and thermal infrared radiation. ultraviolet radiation and visible radiation, gamma rays, X-rays and ultraviolet radiation.The Sun, which makes the external processes that occur in the atmosphere, hydrosphere, and at Earth's surface, The heat flowing from Earth's interior give power to the internal processes that produce volcanoes, earthquakes, and mountains.The Sun also radiates huge amounts of energy. Only a small portion of that energy hits the Earth, but it is enough to light our days, heat our air and land and it creates weather systems over the oceans and seas.When the Sun's energy moves around the space, it reaches Earth's atmosphere and finally to the surface.This heat energy is transferred throughout the planet's systems in three ways which are by radiation,by conduction, and by convection.How many iron ions are found in 10.9 molecules
Answer:
= 6.56 × 10²⁴ ions
Explanation:
We are given;
10.9 moles of Iron (iron doesn't exists as a molecules, so we can't have 10.9 molecules but we can have 10.9 moles)
We are required to determine the number of ions
We need to know that;
1 mole of iron = 6.022 × 10²³ ions
Therefore;
10.9 moles of iron will contain;
= 10.9 moles × 6.022 × 10²³ ions/mol
= 6.56 × 10²⁴ ions
Hence, 10.9 moles of iron contains 6.56 × 10²⁴ ions
2. Define and describe a mixture using examples.
A mixture is a substance made by combining two or more different materials in such a way that no chemical reaction occurs.
A mixture can usually be separated back into its original components. Some examples of mixtures are a tossed salad, salt water and a mixed bag of M&M's candy.
Which scientific tool is most useful when trying to convert a known amount of grams of water to moles of water?
Answer:
The periodic table
Explanation:
The periodic table can show the atomic number and atomic mass of any atoms easily. To convert grams of water to moles of water, you need to know the atoms that made up water molecules then find out their molecular mass. Water is made of two hydrogens and one oxygen atoms. Then you can find the atomic mass of hydrogens is 1 while oxygen is 16. The molecular mass of water will be 2*1 + 16= 18g/mol.
Use the molecular weight of water as a conversion factor to convert grams to moles. Then, use the number of moles and the mass of solvent to determine the molality of the solution.
Explanation:The most useful scientific tool when trying to convert a known amount of grams of water to moles of water is the molecular weight of water, which is used as a conversion factor. The process involves converting from grams to moles using the molecular weight of water (18.01528 g/mol).
Step 1. Convert from grams to moles of water using the molecular weight of water in the conversion factor. Step 2. Determine the molality of the solution from the number of moles of the solvent and the mass of solvent, in kilograms.In general, a mole of any substance has a mass in grams numerically equal to its molecular mass. So the molecular weight is a very convenient conversion factor for such calculations.
Learn more about Mole Conversion here:https://brainly.com/question/30640656
#SPJ12
The temperature at which a solid melts is not characteristic if a compound nor an element
Answer:
False
Explanation:
The temperature at which a solid melts, known as its melting point is highly characteristic of a compound and element.
The melting point of pure substances, compounds and elements is definite and not varied.
Melting point is an intensive property of matter. It does not depend on the amount of matter present. It is an innate or intrinsic property of every matter. For example, no matter the volume or mass of water, it will always boil at 100°C, all things being equal.Therefore, melting point of most solids is characteristic of compounds and elements.
A fountain pen, which has a total volume of 2.4 cm is half full with ink at ground level where the pressure is
780.0 mm Hg. It is put into the pocket of a pilot who flies to an altitude where the pressure is 520.0 mm Hg.
How much ink leaks out of the pen?
The amount of ink leaking out of the pen when the pressure decreases from 780 mm Hg to 520 mm Hg is 0.6 cm3, calculated using Boyle's Law.
Explanation:The question involves principles of physics, particularly the behavior of gases under changes in pressure, represented by Boyle's Law, which states that the volume of a gas is inversely proportional to its pressure. This means that when the pressure decreases, the volume of a gas (or ink in this case) increases. The fountain pen was filled at a pressure of 780.0 mm Hg, and the new pressure at the pilot's altitude is 520.0 mm Hg. We can use Boyle's Law to calculate the new volume of ink.
Here's how:
First, start with Boyle's Law equation: P1V1 = P2V2, where P1 is the initial pressure, V1 is the initial volume, P2 is the final pressure, and V2 is the final volume.Next, input your known values: (780 mm Hg)(1.2 cm3) = (520 mm Hg)(V2)Solve for V2, which comes out to be about 1.8 cm3.Since the pen can only hold 2.4 cm3, the excess volume of ink that is 1.8 cm3 - 2.4 cm3 = -0.6 cm3 will leak out. Note that the negative sign just implies leakage or reduction in volume.
Learn more about Boyle's Law here:https://brainly.com/question/21184611
#SPJ12
Question 2
For each of the following diagrams, calculate the net force on the object including the direction, and state if the forces are balanced or unbalanced
5 N
8N
Net Force
Balanced or Unbalanced:
The net force on the cube in Diagram A is 3 N to the right. The net force on the cube in Diagram B is 47 N downwards.
Diagram A
This diagram shows a cube with two forces acting on it: a 5 N force to the left and an 8 N force to the right. To calculate the net force, we need to subtract the smaller force from the larger force.
Net force = 8 N - 5 N = 3 N to the right
Diagram B
This diagram shows a cube with two forces acting on it: a 128 N force upwards and a 175 N force downwards. To calculate the net force, we need to subtract the smaller force from the larger force.
Net force = 175 N - 128 N = 47 N downwards
The net force on an object is the sum of all the forces acting on it. If the net force is zero, then the object is in equilibrium. If the net force is not zero, then the object will accelerate in the direction of the net force.
To calculate the net force on an object, we need to add up all the forces acting on it, taking into account their magnitudes and directions. We can use the following formula:
Net force = F1 + F2 + F3 + ...
Where F1, F2, F3, etc. are the magnitudes of the forces acting on the object.
In the case of Diagram A, we have two forces acting on the cube: a 5 N force to the left and an 8 N force to the right. To calculate the net force, we need to subtract the smaller force from the larger force:
Net force = 8 N - 5 N = 3 N to the right
This means that the cube will accelerate to the right.
In the case of Diagram B, we have two forces acting on the cube: a 128 N force upwards and a 175 N force downwards. To calculate the net force, we need to subtract the smaller force from the larger force:
Net force = 175 N - 128 N = 47 N downwards
This means that the cube will accelerate downwards.
What is the pressure in millimeters of mercury of 0.0105 mol m o l of helium gas with a volume of 223 mL m L at 50. ∘C ∘ C ? (Hint: You must convert each quantity into the correct units (L L , atm a t m , mol m o l , and K K ) before substituting into the ideal gas law.)
The pressure of helium gas in the given condition is 948.45 mm of Hg.
Explanation:
As per ideal gas law, the product of pressure and volume will be equal to the product of number of moles, gas constant and temperature of gas molecules. This is formed by the combination of three basic laws of kinetic theory of gases.
[tex]PV = nRT[/tex]
As the pressure P is unknown, but the volume V, temperature T and number of moles n is given for helium gas.
R = 8.314 J mol⁻¹ K⁻¹ = 62.363 mmHg L mol⁻¹ K⁻¹.
Then, pressure can be found as
[tex]P = \frac{nRT}{V}[/tex]
As T = 50°C = 50 + 273 K = 323 K and volume V = 223 mL = 0.223 L and n = 0.0105 mol
Then, [tex]P = \frac{0.0105*62.363*323}{0.223}=948.45 mm of Hg[/tex]
So, the pressure of helium gas in the given condition is 948.45 mm of Hg.
The melting point and freezing point of silver are 960 degrees celsius and 2162 degrees celsius, repectively. What is the freezing point?
Answer: 960 degrees celsius
Explanation:
The freezing point of silver is 960 degrees Celsius.
The melting point and freezing point of a pure substance are the same temperature, just described from different states of matter. When a substance transitions from solid to liquid, it is melting, and the temperature at which this occurs is called the melting point. Conversely, when a substance transitions from liquid to solid, it is freezing, and the temperature at which this occurs is called the freezing point. For silver, the temperature at which it melts (melting point) is 960 degrees Celsius, and this is also the temperature at which it freezes (freezing point). The value given for the freezing point in the question, 2162 degrees Celsius, is incorrect and is likely a typographical error. The correct freezing point of silver is 960 degrees Celsius.
How many grams of CO2 or an 800 mL at 94.5 K PA at -10°C?
Answer:
1.52g
Explanation:
First, let us calculate the number of mole of CO2 present. This is illustrated below:
V = 800mL
Recall: 1000mL = 1L
800mL = 800/1000 = 0.8L
P = 94.5 KPa = 94500Pa
Recall: 101325Pa = 1atm
94500Pa = 94500/101325 = 0.93atm
T = -10°C = -10 + 273 = 263K
R = 0.082atm.L/Kmol
n =?
PV = nRT
n = PV/RT
n = (0.8x0.93)/(0.082x263)
n = 0.0345mol
Now, we can obtain the mass of CO2 as follows:
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Number of mole of CO2 = 0.0345mol
Mass of CO2 = number of mole x molar Mass
Mass of CO2 = 0.0345 x 44 = 1.52g
Which of the following statements is correct in regards to density?
Temperature is directly proportional to density.
Temperature and pressure do not affect density.
Pressure is directly proportional to density.
Pressure is inversely proportional to density.
Answer:
Pressure is directly proportional to the density of a substance.
Explanation:
Pressure is a measure of force per unit area. Density is defined as mass per unit volume i.e the ratio of mass of a substance to it's volume.
Thus, it means that an increase in pressure results in an increase in density and vice-versa.
How do genes and chromosomes relate
What is the molarity of 6 moles (mol) of NaCl dissolved in 2 L of water?
Answer: M = 3 M
Explanation: Molarity is the ratio between the number of moles per unit Liter of volume.
M = n / L
= 6 mole / 2 L
= 3 M
74 calories to kilocalories
Answer:74 calories to kilocalories =0.074
Hope this helps
Chemical reactions occur at the same rate no matter what the size of the reactant particles.
True or false?
Answer:
false
Explanation:
it can be differ when the concentration,surface area and when the rate of reaction is changed
Final answer:
The statement is false. Reaction rates are affected by the size of the reactant particles because smaller particles have a greater surface area, which increases the number of collisions and the rate of reaction.
Explanation:
The statement that chemical reactions occur at the same rate no matter what the size of the reactant particles is false.
The rate of a chemical reaction is influenced by various factors. One of these factors is the state of subdivision of the reactants, which pertains to the size of the reactant particles. A reaction between two reactants, for example, will often occur at a faster rate if one reactant is in the form of many small particles rather than one large lump. This is because many small particles have a greater surface area, leading to more collisions, which increases the reaction rate.
Other factors affecting the rate include the chemical nature of the reacting substances, temperature, concentration of the reactants, and the presence of a catalyst. Each of these can have a significant impact on how quickly a reaction proceeds.
What is the total number of moles of atoms contained in 1 mole of NH3? 1 mole, 2 moles, 3 moles, or 4 moles
Answer:
4 moles
Explanation:
N is 1 atom and H has a subscript of 3 meaning there are 3 hydrogen atoms. (3+1=4). We know that N is a separate element of H, because they are both uppercase.
Moles are defined as the smallest base unit that is equivalent to [tex]6 .02214 \times 10^{23}[/tex] units.
In the given molecule of NH[tex]_4[/tex], there will be 4 moles of each atom.
NH[tex]_4[/tex] consists of 1 mole of the Nitrogen atom and 3 moles of the Hydrogen atom, which is then equivalent to the 4 moles of each atom in the molecule of NH[tex]_4[/tex].
Moles are chemical entities, which are used to measure the mass or molecular mass of the compound, molecule, or atom. The moles are, for example can be explained as equal to the mass of the atom. For example, there is one mole in 12 grams of carbon.
Thus, the correct answer is Option D.
To know more about moles, refer to the following link:
https://brainly.com/question/4147368
What does nitrogen do to the soil
Answer:The chemical element will always get converted during the cycle as it enters different ecosystems. Nitrogen plays an important role as a nutrient in soils. It is needed for photosynthesis in plants. Nitrogen helps decomposers such as bacteria, worms
Explanation:
Answer Nitrogen is so vital because it is a major component of chlorophyll, the compound by which plants use sunlight energy to produce sugars from water and carbon dioxide (i.e., photosynthesis). It is also a major component of amino acids, the building blocks of proteins. Without proteins, plants wither and die.
Explanation: