Thomas Ray’s parents begin saving to buy their son a car for his 16th birthday. They save $800 the first year and each year they save 5% more than the previous year. How much money will they have saved for his 16th birthday? (I’m in the arithmetic and geometric series + sigma notation part of my lessons)

Answers

Answer 1

Answer:

  $18,925.99

Step-by-step explanation:

The sum of n=16 terms of the geometric series with first term a1=800 and common ratio r=1.05 will be ...

  Sn = a1·(r^n -1)/(r -1)

  S16 = $800·(1.05^16 -1)/(1.05 -1) ≈ $18,925.99

Answer 2

Answer: they have saved $18925.99 for his 16th birthday.

Step-by-step explanation:

We know that they save $800 per year, and in each year after the first, they add a 5% extra (0.05 in decimal form).

then, the first year the amount is $800.

the second year, they add $800 + 0.05*$800 = $800*1.05

the third year, they add: $800*1.05 + 0.05*$800*1.05 = $800*(1.05)^2

Now is easy to see that the relation is:

C(n)= $800*(1.05)^(n)

where n goes from 0 to 15, and represents the 16 years in which the parents are saving money.

now, we know that for a geometric series we have:

∑a*r^n = a*( 1 + r^N)/(1 + r)

where the sumation goes from 0 to N -1.

in our case, N - 1 = 15, so N = 16. a = $800 and r = 1.05

then the total of money is;

T = $800*(1 - 1.05^16)/( 1 - 1.05) = $18925.99


Related Questions

Please answer fast!!! will give brainliest!!!
given: m arc PIV = 7/2 m arc PKV Find: m∠VPJ

Answers

Answer:

The measure of angle VPJ is [tex]140\°[/tex]

Step-by-step explanation:

Let

x-----> the measure of arc PIV

y-----> the measure of arc PKV

we know that

The inscribed angle is half that of the arc it comprises.

so

[tex]m<VPJ=\frac{1}{2}(x)[/tex]

[tex]x=3.5y[/tex] -----> equation A

[tex]x+y=360\°[/tex] -----> equation B

substitute equation A in equation B

[tex]3.5y+y=360\°[/tex]

[tex]4.5y=360\°[/tex]

[tex]y=80\°[/tex]

Find the value of x

[tex]x=3.5(80\°)=280\°[/tex]

Find the measure of angle VPJ

[tex]m<VPJ=\frac{1}{2}(280\°)=140\°[/tex]

An office supply store has five different packages of black ink pens which is the best deal available on black ink pens at this office supply

Answers

Answer:

12 pack for $15.00

Step-by-step explanation:

4 pack for $7.00:  7 ÷4  = 1.75

6 pack for $10.25:  10.25 ÷6 ≈ 1.71

10 pack for $13.00:  13 ÷10  = 1.30

12 pack for $15.00:  15.00 ÷12 = 1.25

25 pack for $32.50:  32.50 ÷25 = 1.30

What Is The Circumference Of This Circle? Use 3.14 For Pi. There Is A Line Down The Middle Saying "12 cm"

Answers

12 is the diameter. We need the circumference which you get by multiplying 12x2 sides which = 24 which is the circumference

In the straightedge and compass construction of the parallel line below, which of the following reasons can you use to prove that CD and EG are parallel?

A. ∠FCD ≅ ∠FDC by construction
B. ∠FEG≅ ∠FGE by construction
C. ∠FCD ≅ ∠GEC by construction
D. ∠FEG ≅ ∠FCD by construction

Answers

Answer:

D.

Step-by-step explanation:

Lines EG and CD are cut by transversal CF.

By construction, ∠FEG=∠FCD. These two angles are corresponding angles.

Since two corresponding angles are congruent, then lines EG and CD are parallel (by  converse of the corresponding angles postulate).

Converse of the Corresponding Angles Postulate: If the corresponding angles formed by two lines and a transversal are congruent, then lines are parallel.

f(x)= 2 cos π x + sin π x is a sinusoid.

Answers

Answer

TRUE

Step-by-step explanation:

We can easily solve this question by using a graphing calculator or any plotting tool, to check if it is a sinusoid.

The function is

f(x) = 2*cos(π*x) + sin(π*x)

Which can be seen in the picture below

We can notice that f(x) is a sinusoid. It has periodic amplitudes, and the function has a period T = 2

The maximum and minimum values are

Max = 2.236

Min = -2.236

If you're any good at inequalities, please help!
The gas tank in Lou’s car holds 13 gallons of gasoline. There are already 7 gallons of gasoline in the tank. He is putting gasoline that costs $2.50 per gallon in his car. Lou spends x dollars putting gasoline in his car. Model a compound inequality for this situation.

Answers

Answer:

So the maximum amount of gasoline the tank can contain is 13 gallons and there are already 7 gallons of gasoline in the tank. Therefore, we want to make sure that the amount of gasoline put in the tank doesn't reach any higher than 13 gallon.

The amount of gasoline that Lou bought with x dollars is x/2.50 gallons.

We have the inequality:

x/2.50 + 7 ≤ 13

*If you solve it, x should be smaller or equal to $15.

Final answer:

The math problem can be solved by setting up a compound inequality expressing the range that Lou can spend on gasoline. This factors in the total capacity of his tank, the current amount of gas, and the price per gallon. The result is 0 <= x <= $15.

Explanation:

For this problem, Lou needs to fill the remainder of his gas tank, which is 13 gallons total but already has 7 gallons. That means he needs to fill 13 - 7 = 6 gallons more. Gasoline costs $2.50 per gallon, so the total amount of money he spends, represented by x, can be calculated using the inequality $2.50 * number of gallons <= x.

But because Lou can add anywhere from 0 to 6 gallons, we will have a compound inequality. So, the inequality will be: $2.50 * 0 <= x <= $2.50 * 6.

This simplifies to 0 <= x <= $15, meaning Lou can spend anywhere from $0 to $15 on gasoline, depending on how much more he wants to put in his tank.

Learn more about Compound Inequality here:

https://brainly.com/question/31904612

#SPJ2

If BC = 6 and AD = 5, find DC. 4 4.5 7.2

Answers

Answer:

4

Step-by-step explanation:

The value of Side DC is 4.

What are similar triangles?

Triangles with the same shape but different sizes are said to be similar triangles. Squares with any side length and all equilateral triangles are examples of related objects. In other words, if two triangles are similar, their corresponding sides are proportionately equal and their corresponding angles are congruent.

We have three similar triangles because each has a right angle and shares an angle.   Let's write the angles in order: opposite to the short leg, long leg, and the hypotenuse.

CAB ≡ BAD ≡ CBD

Or as ratios,

CA:AB:CB = BA:AD:BD = CB:BD:CD

We also know

AC = AD + CD

(AD+CD):AB:CB = BA:AD:BD = CB:BD:CD

(AD+CD)/CB=CB/CD

Let CD = x

(5 +x )/6 = 6/x

(5+x)*x = 6*6

5x + x² = 36

x² + 5x - 36 = 0

x² + 9x -4x -36 = 0

x(x+9 ) -4 (x +9 ) = 0

(x-4)(x+9) = 0

x= 4, -9

We reject the negative root and conclude x=4

Therefore, Side DC is 4.

To know more about similar triangles refer to :

https://brainly.com/question/14285697

#SPJ2

The total area of Wisconsin is 65498 square miles. Of that, about 80% is land area. About how many square miles of Wisconsin is not land area?

Answers

Final answer:

About 13099.6 square miles of Wisconsin is not land area.

Explanation:

To find the amount of square miles of Wisconsin that is not land area, we need to calculate 20% of the total area. First, we find 1% of the total area by dividing it by 100. 65498 square miles / 100 = 654.98 square miles. Then, we multiply this by 20 to find 20%: 654.98 square miles * 20 = 13099.6 square miles. Therefore, about 13099.6 square miles of Wisconsin is not land area.

Learn more about Calculating non-land area in Wisconsin here:

https://brainly.com/question/15542522

#SPJ2

At the Many Chips Cookie Company, they are serious about the number of chocolate chips in their cookies. They claim that each cookie has c chips. If their claim is true, there will be 200 chips in 10 cookies. Write an equation to describe this situation.

Answers

Answer:

c=20

Step-by-step explanation:

200=10c

200/10=c

20=c

Given: PRST is a square
PMKD is a square
PR = a, PD = a
Find the area of PMCT.

Answers

Answer:

[tex](1-\sqrt{2})a^2[/tex]

Step-by-step explanation:

Consider irght triangle PRS. By the Pythagorean theorem,

[tex]PS^2=PR^2+RS^2\\ \\PS^2=a^2+a^2\\ \\PS^2=2a^2\\ \\PS=\sqrt{2}a[/tex]

Thus,

[tex]MS=PS-PM=\sqrt{2}a-a=(\sqrt{2}-1)a[/tex]

Consider isosceles triangle MSC. In this triangle

[tex]MS=MC=(\sqrt{2}-1)a.[/tex]

The area of this triangle is

[tex]A_{MSC}=\dfrac{1}{2}MS\cdot MC=\dfrac{1}{2}\cdot (\sqrt{2}-1)a\cdot (\sqrt{2}-1)a=\dfrac{(\sqrt{2}-1)^2a^2}{2}=\dfrac{(3-2\sqrt{2})a^2}{2}[/tex]

Consider right triangle PTS. The area of this triangle is

[tex]A_{PTS}=\dfrac{1}{2}PT\cdot TS=\dfrac{1}{2}a\cdot a=\dfrac{a^2}{2}[/tex]

The area of the quadrilateral PMCT is the difference in area of triangles PTS and MSC:

[tex]A_{PMCT}=\dfrac{(3-2\sqrt{2})a^2}{2}-\dfrac{a^2}{2}=\dfrac{(2-2\sqrt{2})a^2}{2}=(1-\sqrt{2})a^2[/tex]

Which of the following expressions is equal to sin⁡(-150°)?

A. sin(30°)
B. -sin(-30°)
C. -sin(30°)
D. sin(150°)

Answers

Check the picture below.

let's notice that the angle -150° has a reference angle of 30°, so any trigonometric function for either angle will be the same value, however, let's recall that the sine or y-coordinate is negative on the III Quadrant, so sin(-150°) is the same as sin(30°) BUT negative, -sin(30°).

Answer:

C. -sin(30°)

Step-by-step explanation:

180-150=30

-sin(30) = -.5 on calculator j like sin(-150) is

PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!

Assume that there are 2 trials.

X = 2 where X represents the number of successes.



Which probability matches the probability histogram?

Round the answer to one decimal place.

Answers

Answer: The probability of the histogram is 0.6.

Step-by-step explanation:

Look at the images below for the step-by-step explanation. It's a lot easier to write on docs, rather than on this website. Anyway, I hope you've learned something. Bye!!!

What is the average rate of change from x = −3 to x = −4?

Answers

Answer:

-2

Step-by-step explanation:

Since it would be immensely helpful to know the equation of this parabola, we need to figure it out before we can continue.  We have the work form of a positive upwards-opening parabola as

[tex]y=a(x-h)^2+k[/tex]

where a is the leading coefficient that determines the steepness of lack thereof of the parabola, x and y are coordinates of a point on the graph, and h and k are the coordinates of the vertex.  We know the vertex: V(-3, -3), and it looks like the graph goes through the point P(-2, -1).  Now we will fill in the work form equation and solve for a:

[tex]-1=a(-2-(-3))^2-3[/tex]

which simplifies a bit to

[tex]-1=a(1)^2-3[/tex]

and

-1 = a(1) - 3.  Therefore, a = 2 and our parabola is

[tex]y=2(x+3)^2-3[/tex]

Now that know the equation, we can find the value of y when x = -3 (which is already given in the vertex) and the value of y when x = -4.  Do this by subbing in the values of x one at a time to find y.  When x = -3, y = -3 so the coordinate of that point (aka the vertex) is (-3, -3).  When x = -4, y = -1 so the coordinate of that point is (-4, -1).  The average rate of change between those 2 points is also the slope of the line between those 2 points, so we will use the slope formula to find it:

[tex]m=\frac{-1-(-3)}{-4-(-3)} =\frac{2}{-1}=-2[/tex]

And there you have it!  I'm very surprised that this question sat unanswered for so very long!  I'm sorry I didn't see it earlier!

What is the solution to the equation below?

[tex]\frac{\sqrt{3-2x} }{\sqrt{4x} } =2[/tex]

A. x = 5/6
B. x = 9/10
C. x = 1/6
D. x = 3/10

Answers

Answer: OPTION C

Step-by-step explanation:

 Given the equation [tex]\frac{\sqrt{3-2x} }{\sqrt{4x} } =2[/tex], you need to solve for  the variable "x".

First, you need to multiply both sides of the equation by [tex]\sqrt{4x}[/tex]:

[tex](\frac{\sqrt{3-2x}}{\sqrt{4x}})(\sqrt{4x} })=2(\sqrt{4x} })\\\\\sqrt{3-2x}=2\sqrt{4x}[/tex]

Now you need to square both sides of the equation:

[tex](\sqrt{3-2x})^2=(2\sqrt{4x})^2\\\\3-2x=4(4x)\\\\3-2x=16x[/tex]

Subtrac 3 and 16x from both sides:

[tex]3-2x-(3)-(16x)=16x-(3)-(16x)\\\\-18x=-3\\[/tex]

Divide both sides by -18:

[tex]\frac{-18x}{-18}=\frac{-3}{-18}\\\\x=\frac{1}{6}[/tex]

Which function f (x) , graphed below, or g (x) , whose equation is g (x) = 3 cos 1/4 (x + x/3) + 2, has the largest maximum and what is the value of this maximum?

f(x), and the maximum is 3.

g(x), and the maximum is 5.’

f(x), and the maximum is 2.

g(x), and the maximum is 2.

Answers

Answer:

Second option

g(x), and the maximum is 5.’

Step-by-step explanation:

In the graph it can easily be seen that the maximum value reached by the function f(x) is y = 3.

Then, the function g (x) is:

[tex]g(x) = 3cos(\frac{1}{4}(x + \frac{1}{3}x)) + 2[/tex]

By definition the function

[tex]y = cos(x)[/tex] reaches its maximum value when x = 0,  [tex]2\pi[/tex],  [tex]4\pi[/tex], ..., [tex]2k\pi[/tex]

So

When [tex](\frac{1}{4}(x + \frac{1}{3}x)) = 0[/tex]  entonces [tex]cos((\frac{1}{4}(x + \frac{1}{3}x)) = 1[/tex].

Thus:

[tex]g(0) = 3(1) + 2\\\\g(0) = 5[/tex].

Therefore the function that has the greatest maximum is g(x) when [tex]g(x) = 5[/tex]

The answer is the second option

A toy rocket is launched straight up into the air with an initial velocity of 60 ft/s from a table 3 ft above the ground. If acceleration due to gravity is –16 ft/s2, approximately how many seconds after the launch will the toy rocket reach the ground?

Answers

Answer:

Answer:

t = 3.8 s

option 3

Step-by-step explanation:

For this case we have the following equation:

 h (t) = at ^ 2 + v * t + h0

 Substituting values we have:

 h (t) = - 16 * t ^ 2 + 60 * t + 3

 We equate the equation to zero:

 -16 * t ^ 2 + 60 * t + 3 = 0

 We look for the roots of the polynomial:

 t1 = -0.04935053979258153

 t2 = 3.7993505397925817

 We are left with the positive root and round:

 t2 = 3.8 s

Answer:

7,55 seg

Step-by-step explanation:

Initial Velocity = 60 ft/s

High = 3ft

Acceleration = -16 ft/s2

According to the next formula

H = Vi(t) - 1/2 gt2

We got a cuadratic formula which roots are

t1 = -0,04 seg and t2 = 7,55 seg

the time not negative so t= 7,55 seg

Cathy has a nickel, a dime, and a quarter in her purse. She randomly picks a coin, replaces it, and then picks another coin. The probability that the two coins are of different denominations is .
SOMEONE HELP PLEASE THIS IS FOR PLATO.

Answers

Answer:

Hence, the probability that the two coins are of different denomination is:

                            2/3

Step-by-step explanation:

Let N denote nickel, D denotes dime and Q denotes Quarter.

Now when two coins are drawn one after the other with replacement then the outcomes is given by:

         (N,N)     (N,D)      (N,Q)

         (D,N)     (D,D)      (D,Q)

         (Q,N)     (Q,D)      (Q,Q)  

This means that there are a total of  9 outcomes.

The outcomes such that both the denominations are different i.e. the number of favorable outcomes are:  6

{ (N,D) (N,Q) (D,N) (D,Q) (Q,N) (Q,D) }

The probability that the two coins are of different denomination is:

                             6/9=2/3

Please help me..........

Answers

Answer:

a = 7

Step-by-step explanation:

45 45 90 right triangle so it's an isosceles triangle (A triangle with two equal sides)

a = 7

Find the value of tan(sin^-1(1/2))

Answers

If you know that [tex]\sin\dfrac\pi3=\dfrac12[/tex], then you know right away

[tex]\tan\left(\sin^{-1}\dfrac12\right)=\tan\dfrac\pi3=\dfrac1{\sqrt}3=\dfrac{\sqrt3}3[/tex]

###

Otherwise, you can derive the same result. Let [tex]\theta=\sin^{-1}\dfrac12[/tex], so that [tex]\sin\theta=\dfrac12[/tex]. [tex]\sin^{-1}[/tex] is bounded, so we know [tex]-\dfrac\pi2\le\theta\le\dfrac\pi2[/tex]. For these values of [tex]\theta[/tex], we always have [tex]\cos\theta\ge0[/tex].

So, recalling the Pythagorean theorem, we find

[tex]\cos^2\theta+\sin^2\theta=1\implies\cos\theta=\sqrt{1-\sin^2\theta}=\sqrt{1-\left(\dfrac12\right)^2}=\dfrac{\sqrt3}2[/tex]

Then

[tex]\tan\theta=\tan\left(\sin^{-1}\dfrac12\right)=\dfrac{\sin\theta}{\cos\theta}=\dfrac{\frac12}{\frac{\sqrt3}2}=\dfrac1{\sqrt3}=\dfrac{\sqrt3}3[/tex]

as expected.

Answer:

c. square root 3/3

Step-by-step explanation:

just did it on edg

Help me please.................

Answers

Answer:

  $4140

Step-by-step explanation:

For each of the amounts, the final balance is ...

  A = P(1 +rt)

Filling in the given numbers, we can add the final balances:

  900(1 + 0.06·4) + 900(1 + 0.06·3) + 900(1 + 0.06·2) + 900(1 + 0.06·1)

  = 900(4 + 0.06(4 +3 +2 +1)) = 900·4.60

  = 4140

The amount withdrawn is $4140.

If A=16°55’ and c=13.7, find a (picture provided)

Answers

Answer:

c. 4.0

Step-by-step explanation:

To find a, we'll use the Law of Sines that says:

[tex]\frac{a}{sin(A)} = \frac{c}{sin(C)}[/tex]

And we'll isolate a to get:

[tex]a = \frac{sin(A) * c}{sin(C)}[/tex]

Then we will plug-in the information we already have (changing 16°55' into 16.92)

[tex]a = \frac{sin(16.92) * 13.7}{sin(90)} = 3.99[/tex]

So, let's round it to 4 to match the answer number C.

Answer:

C

Step-by-step explanation:

Use the definition of the sine function:

[tex]\sin \angle A=\dfrac{\text{opposite leg}}{\text{hypotenuse}}=\dfrac{BC}{AB}.[/tex]

Substitute [tex]\angle A=16^{\circ}55'[/tex] and [tex]c=13.7[/tex] into the previous formula:

[tex]\sin 16^{\circ}55'=\dfrac{a}{c},\\ \\\sin 16^{\circ}55'=\dfrac{a}{13.7},\\ \\a=13.7\cdot \sin16^{\circ}55',\\ \\a\approx 13.7\cdot 0.284\approx 4[/tex]

if 5x^2 + 7x = 6, which statement is correct?
A) x = 2 or x = 3/5
x = -2 or x = 3/5
X=2 or X= -3/5
x=-2 or X =-3/5

Answers

Answer:

12x^2=6

Divide by 12

x^2=1/2or.5

square root

x=0.707

Step-by-step explanation:

New Question, I'll offer 40 points again. Please help me if you can. Thank you!!! Which statement best describes the association between variable X and variable Y?

A) moderate positive association

B) weak positive association

C) weak negative association

D) moderate negative association

Answers

Answer:

C) weak negative association

Step-by-step explanation:

As X increases, Y generally decreases.  So this is a negative association.  Because the points are widely scattered, it is also a weak association.  So the answer is C.

the answer is c because the graph is going down

What is the amplitude and period of f(t)=2.5 tan t?

Answers

Answer:

Option d.

Amplitude: None

Period: π

Step-by-step explanation:

To quickly solve this problem, we can use a graphing tool or a calculator to plot the equation.

Please see the attached image below, to find more information about the graph

The equation is:

f(t) = 2.5 tan (t)

We can see from the graph that the amplitude goes up to infinity, and the period is equal to π.

Option d.

Amplitude: None

Period: π

Final answer:

The amplitude of the function f(t)=2.5 tan t is 2.5, as it's the coefficient of the tangent function. The period is π, as it's obtained by dividing π by the number multiplying 't', which in this case, is 1.

Explanation:

The function given, f(t)=2.5 tan t, is a trigonometric function, which represents a wave. In the context of a wave represented by a trigonometric function such as this, there are several key components. The two most important for this question are:

Amplitude: The amplitude of a wave is the peak value of the wave. In the given equation, the amplitude is the coefficient of the trigonometric function, which is 2.5.Period: The period of a wave is the length of one cycle of the wave. The period of a tan function is (π/b), where 'b' is the number multiplying t. In this case, as 't' doesn't have any multiplier, the period is π.

Learn more about Amplitude and Period here:

https://brainly.com/question/15930409

#SPJ3

Line CD passes through (0, 1) and is parallel to x + y = 3. Write the standard form of the equation of line CD. x + y = 1 x – y = 1 x + 1 = y x + y = 11

Answers

ANSWER

x+y=1

EXPLANATION

We want to find the equation of line CD which passes through (0, 1) and is parallel to x + y = 3.

In slope intercept form, the given line is

y=-x+3

The slope of this line is m=-1

Line CD also has the same slope

The equation is given by:

y=mx+b

The given point (0,1) means the y-intercept;is b=1

Hence the equation is

y=-x+1

In standard form the equation is:

x+y=1

Answer:

The answer is x + y = 1

Step-by-step explanation:

Given: Line CD passes through (0, 1) and is parallel to x + y = 3.

We know that if two line are parallel then they have equal slopes.

Thus, the slope of line = slope of line x + y = 3

 x + y = 3  when we compare this to the standard linear equation

= 3 - x

y = m x + c  .we get m = -1 .

The slope of CD (m)= -1

Now, the equation of line CD passing through (0,1) is given by :-

( y - 1 ) = m ( x - 0 )

⇒ ( y - 1 ) = ( -1 ) x

⇒ x + y = 1

The equation of line CD = x + y = 1

simplify the number using the imaginary unit i √-75

Answers

[tex] \sqrt{ - 75} = \sqrt{ - 1 \times 75} = \sqrt{ {i}^{2} \times 75 } = 5i \sqrt{3} \\(therefore \: {i}^{2} = - 1)[/tex]

Answer:

[tex]\large\boxed{\sqrt{-75}=5\sqrt3\ i}[/tex]

Step-by-step explanation:

[tex]i=\sqrt{-1}\\\\\sqrt{-75}=\sqrt{(25)(3)(-1)}\qquad\text{use}\ \sqrt{ab}=\sqrt{a}\cdot\sqrt{b}\\\\=\sqrt{25}\cdot\sqrt3\cdot\sqrt{-1}=5\cdot\sqrt3\cdot i=5\sqrt3\ i[/tex]

What does it mean to be "certain" to occur?





What does it mean for an event to be "impossible" to occur?​

Answers

Certain means the event will happen.

Impossible means the event would never happen.

To be "certain" to occur means the event will definitely happen without any doubt.

For an event to be "impossible" to occur means that there is no chance whatsoever that the event will happen.

When we say an event is "certain" to occur, we mean that the event will definitely happen. In terms of probability, if an event has a probability of (1) (or 100%), it is certain to occur. For example, if you flip a fair coin, the probability of it landing either heads or tails is (1), meaning it's certain to land on one of the two sides.

On the other hand, when we say an event is "impossible" to occur, we mean that the event will definitely not happen. In terms of probability, if an event has a probability of (0) (or (0%), it is impossible to occur. For example, if you roll a six-sided die and ask for a result that is not within the range of 1 to 6, the probability of that happening is (0), so it's impossible for the die to show that result.

These concepts are fundamental to understanding the certainty or impossibility of events in probability theory and are essential for making predictions and decisions based on probabilistic models.

6 libras de café y 5 de azúcar costaron 227 pesos y 5 libras de café y 4 libras de azúcar (a los mismos precios) costaron 188 pesos hallar el precio de una libra de café y una libra de azúcar

Answers

Answer:

The price of one pound of coffee is 32 pesos

The price of one pound of sugar is 7 pesos

Step-by-step explanation:

The question in English is

6 pounds of coffee and 5 pounds of sugar cost 227 pesos and 5 pounds of coffee and 4 pounds of sugar (at the same prices) cost 188 pesos Find the price of one pound of coffee and one pound of sugar.

Let

x-----> the price of one pound of coffee

y-----> the price of one pound of sugar

we know that

6x+5y=227 -----> equation A

5x+4y=188 ----> equation B

Solve the system of equations by graphing

Remember that the solution of the system of equations is the intersection point both graphs

The solution is the point (32,7)

see the attached figure

therefore

The price of one pound of coffee is 32 pesos

The price of one pound of sugar is 7 pesos

Please help me asap! In an election, 2/5 of the voters voted for a new school tax. What is the probability that a randomly selected voter did not vote for the tax? Express your answer as a percentage.

a. 40%

b. 6%

c. 60%

d. 4%

Answers

Answer:

the answer is c 60%, may i have brainlyiest

Final answer:

To find the probability that a voter did not vote for a new school tax when 2/5 did, subtract 2/5 from 1 to get 3/5, then convert to a percentage to get 60%.

Explanation:

In the given problem, we know that 2/5 of the voters voted for a new school tax. To find the probability that a randomly selected voter did not vote for the tax, we need to calculate the fraction of those who did not vote for the tax. Since the total probability must be 1 (or 100%), those who did not vote for the tax would account for the remaining fraction of 1 - 2/5, which is 3/5. To express this as a percentage, we convert 3/5 into a decimal and then into a percentage.

First, calculate 3/5 as a decimal: 3/5 = 0.6. Then, to convert it to a percentage, multiply by 100: 0.6 × 100 = 60%.

Therefore, the probability that a randomly selected voter did not vote for the new school tax is 60%, which corresponds to answer choice c. 60%.

(8Q) Tell whether the function exhibits damped oscillation. If it does, identify the damping factor and tell whether the damping occurs.

Answers

Answer:

Option c.

No damping

Step-by-step explanation:

We can easily solve this question by using a graphing calculator or any plotting tool.

The function is

f(x) = (√11)*cos(3.7x)

Which can be seen in the picture below

We can notice that f(x) is a cosine with maximum amplitude of  (√11). Neither this factor nor the multiplication of x by 3.7 serve as a damping factor since they are constants.

f(x) does not present any dampening

Answer:

C) No damping.

Step-by-step explanation:

This is the correct answer on ed-genuity, hope this helps! :)

Other Questions
please help me with these two history questionsan image is attached Kaila is treating a patient at the scene of an automobile accident. She is having difficulty hearing the patient over the sound of police sirens. This is best described as a(n)distance barrier.personal barrier.physical barrier.emotional barrier. I need help I number five and explain please for brainless answer !! :)) Compare and contrast the architecture and function of the pyramid of Djoser and the Great Pyramids at Giza How does the subhead fasting and football hint at the central idea of that section The anions formed from the atoms of the elements in family VIA should carry a +6 charge.a.trueb.false Need help with history In the reaction of chlorine with calcium, explain which atom is oxidized.Show ALL steps and work. I don't understand this. Find a unit vector in the direction of u and opposite of u Please help!! 20 POINTS The complex number z = -2 + 10i is a sum of... The area of a rectangle is (25x2 9y2) square units. Determine the dimensions of the rectangle by factoring the area expression completely. Show your work. what is the sum of 1 1/2 + 3 3/4 + 5 1/8 ? Interactive LearningWare 13.1 explores the approach taken in problems such as this one. A composite rod is made from stainless steel and iron and has a length of 0.241 m. The cross section of this composite rod is shown in the drawing and consists of a square within a circle. The square cross section of the steel is 3.76 cm on a side. The temperature at one end of the rod is 88.9 C, while it is 10.2 C at the other end. Assuming that no heat exits through the cylindrical outer surface, find the total amount of heat conducted through the rod in two minutes. |2x+1|>5 what is the answersolve for real numbers x. Please help me out!! Due tomorrow!! When completely factored, 3x248 equals - If color is an inherited trait in beetles Find the range of the given data set., , 1, 11 Receptors that are __________ bind to chemicals outside of the cell, and this binding process causes a chemical response on the inside of cells.