Answer:
formed in the middle of a plate
formed where mantle erupts through crust
Explanation:
The Hawaiian Islands are Volcanoes that formed right in the middle of the Pacific plate which is moving North-westward.
Lithospheric plates lies on the weak and plastic asthenosphere. Such is the Pacific plate too. The weak asthenosphere can erupt on the surface if it gets access through faulting or other geologic conduits. When these mantle magma reaches the surface, they form hotpots on the crust.
The Hawaiian island is a series of these hotspot as it forms when mantle materials upwells to the surface. The hotspot from which the magma is sourced is relatively fixed. The moving plate is what leads to the eruption of the magma at several other parts in the crust.
The energy gap for silicon at 300 k is 1.14 ev. (a) find the lowest frequency photon that will promote an electron in silicon from the valence band to the conduction band.
Answer:
[tex]2.74\cdot 10^{14} Hz[/tex]
Explanation:
First of all, let's convert the energy gap from eV to Joules:
[tex]E=1.14 eV \cdot (1.6\cdot 10^{-19}J/eV)=1.82\cdot 10^{-19}J[/tex]
In order to promote the electron to the conduction band, the electron must absorb a photon with an energy at least equal to the energy gap, so:
[tex]E=hf=1.82\cdot 10^{-19}J[/tex]
where
h is the Planck constant
f is the frequency of the photon
Solving for f, we find the lowest frequency needed:
[tex]f=\frac{E}{h}=\frac{1.82\cdot 10^{-19} J}{6.63\cdot 10^{-34}Js}=2.74\cdot 10^{14} Hz[/tex]
The lowest frequency photon that will promote an electron in silicon from the valence band to the conduction band is approximately 1.72 x 10^14 Hz.
Explanation:To find the lowest frequency photon that will promote an electron in silicon from the valence band to the conduction band, we need to determine the energy difference between the two bands. The energy gap for silicon at 300 K is given as 1.14 eV. Since energy is directly proportional to frequency, we can use the equation E = hf, where E is the energy, h is Planck's constant (6.63 x 10^-34 J s), and f is the frequency. Rearranging the equation gives f = E/h. Plugging in the energy gap for silicon and Planck's constant, we can calculate the lowest frequency photon.
f = (1.14 eV) / (6.63 x 10^-34 J s) = 1.72 x 10^14 Hz
Therefore, the lowest frequency photon that will promote an electron in silicon from the valence band to the conduction band is approximately 1.72 x 10^14 Hz.
Learn more about energy gap in silicon here:https://brainly.com/question/12593231
#SPJ3
Linh builds a circuit from the diagram shown. Which bulb could Linh remove from the circuit to make all of the other bulbs stop shining?
1
2
3
4
Answer:
4
Explanation:
In order for the current to continue flowing through the circuit (and for the bulbs to continue shining), there must be a closed path containing the battery where current can flow. Let's see the effect of removing each bulb on the circuit:
- 1: when removing bulb 1 only, the current can still flow through the path battery-bulb 3- bulb 4
- 2: when removing bulb 2 only, the current can still flow through the path battery-bulb 3- bulb 4
- 3: when removing bulb 3 only, the current can still flow through the path battery-bulb 1-bulb 2- bulb 4
- 4: when removing bulb 4 only, the current can no longer flow. In fact, there is no closed path that contains the battery now, so the current will not flow and all the bulbs will stop shining.
Answer:
4
Explanation:
It is a parrallel circuit
The image of an object in a flat mirror is always the same _____ as the object.
Size. The answer is size.
Describe the direction of the electric force between two opposite charges, between two like charges, and when a charge is in an electric field.
Answer:
A metal sphere is neutral because it has an equal number of protons and electrons. Draw how the charges in the sphere are redistributed when a negatively charged rod is brought near it.
Answer:
two opposite charges: The force between them would be attractive. In the electric field the lines pointing outward from the positively charged particle would go toward the negatively charged particle
two like charges: The force would repulse each other. In the electric field the lines would avoid each other.
Explanation:
in the answer hope this helps!
*Please help* (Will give thanks + Brainliest Answer) A skateboarder is starting at the top of a 50.0 meter hill. At the bottom of the hill the skateboarder is going 25 m/s.
If the mass of the skateboarder is 52 kg, how much energy was lost in the downhill ride?
A) 650 joules
B) 9230 joules
C) 16,250 joules
Answer:
B
Explanation:
Energy at the top of the hill = energy at the bottom of the hill + energy lost
PE = KE + E
mgh = 1/2 mv² + E
(52 kg) (9.8 m/s²) (50.0 m) = 1/2 (52 kg) (25 m/s)² + E
25480 J = 16250 J + E
E = 9230 J
In an isometric exercise a person places a hand on a scale and pushes vertically downward, keeping the forearm horizontal. this is possible because the triceps muscle applies an upward force m perpendicular to the arm, as the drawing indicates. the forearm weighs 20.0 n and has a center of gravity as indicated. the scale registers 118 n. determine the magnitude of m.
this is possible because the triceps muscle applies an upward force m perpendicular to the arm, as the drawing indicates. the forearm weighs 20.0 n and has a center of gravity as indicated. the scale registers 118 n. the magnitude of m it run 10 miles.
What are the types of force ?Force is a parameter which can be used during pushing or pulling of any object resulting in the object’s interaction or movement, without force the object can not function properly and it can be stopped the direction.
Force is a quantitative property between two physical bodies, means an object and its environment, there are different types of forces in nature.
If an object in its moving state then that object will be static or motion, and The external push or pull upon the object called as Force.
The contact force types effort on an object such as Spring Force, Applied Force, Air Resistance Force, Normal Force, Tension Force, Frictional Force
Non-Contact forces are Electromagnetic Force, Gravitational Force, Nuclear Force
For more details Force, visit
brainly.com/question/13691251
#SPJ2
The magnitude of the triceps muscle force M needed to maintain static equilibrium of the forearm is 138 N, which balances the weight of the forearm and the force registered on the scale.
To solve for the magnitude of the force applied by the triceps muscle, M, we must take into account the principles of static equilibrium. In static equilibrium, the sum of all forces acting on the object is zero because it is not moving. Given that the forearm weighs 20.0 N, and the scale registers a downward force of 118 N, we know that there is an upward force required to balance the system and maintain equilibrium.
Let's establish an equation for the vertical forces acting on the forearm:
Downward forces: the weight of the forearm (20.0 N) plus the reading on the scale (118 N), totaling 138 N downwards.Upward force: this is the force applied by the triceps muscle, which we are trying to find (M).Since the forearm is in equilibrium, the upward force must balance the downward forces:
M = 138 N
Therefore, the magnitude of the force M applied by the triceps muscle is 138 N.
3. An ideal gas is initially at a certain pressure and volume. It expands until its volume is four times the initial volume. This is done through an isobaric, an isothermal, and an adiabatic process, respectively. During which of the processes …. a) …is the work done by the gas greatest? b) … is the smallest amount of work done by the gas? c) … does the internal energy increase? d) …does the internal energy decrease? e)… does the largest amount of heat flow into the gas? Hint: You may want to sketch a p-V diagram.
Final answer:
In comparing isobaric, isothermal, and adiabatic processes for an expanding ideal gas, the isobaric process involves the greatest work done by the gas and the largest heat flow into the system, while the adiabatic process leads to a decrease in internal energy, indicating no heat flow into the gas.
Explanation:
An ideal gas expands through three different processes: isobaric, isothermal, and adiabatic, with its volume increasing to four times the original. Here's how each process impacts the work done, internal energy, and heat flow into the gas:
Isobaric (constant pressure): This process results in a significant work done by the gas and sees a large amount of heat flow into the gas due to the direct relationship between heat added and work done at constant pressure.
Isothermal (constant temperature): In this process, the internal energy of the gas does not change since any heat added to the system is entirely converted into work. Therefore, this process neither increases nor decreases the internal energy but can involve significant work done if heat is supplied.
Adiabatic (no heat exchange): This process results in a decrease in internal energy since the work done by the gas comes from its internal energy reservoir. No external heat is added to the system.
Answers to specific questions:
The work done by the gas is greatest during the isobaric process due to the direct relationship between pressure, volume, and work in this scenario.
The smallest amount of work done is a bit nuanced since all processes involve work, but the adiabatic process might be seen as involving 'less effective' work since it leads to a reduction in internal energy without heat intake.
The internal energy increases during isobaric expansion due to the heat flow into the gas.
The internal energy decreases during the adiabatic process as the gas does work on its surroundings at the expense of its internal energy.
The largest amount of heat flows into the gas during the isobaric process because work done on the gas directly translates to heat intake at constant pressure.
why is radiation often used to destroy cancer cells ?
A) Radiation only targets cancer cells, not healthy cells.
B) Radiation is a tracer that pick out cancer cells to destroy.
C) Because cancer cells divide more quickly than normal cells, they are very susceptible to radiation.
D) Radiation is the only defense that people have to fight cancer.
Answer:
C
Explanation:
Radiation affects both cancer cells and healthy cells, but it affects cancer cells more.
Radiation is often used in cancer treatment because the rapid cell division of cancer cells makes them vulnerable to radiation damage. These cells often cannot repair this damage as effectively as healthy cells, leading to their destruction. However, radiation is not the only method for fighting cancer.
Explanation:Radiation is often used to destroy cancer cells because, in general, cancer cells divide more rapidly than normal cells, which makes them more susceptible to the damaging effects of radiation. This is the reason behind the option (C). While radiation does affect both cancerous and healthy cells, the quick division of cancer cells often makes them more vulnerable to being damaged by the radiation. However, they often cannot repair this damage as effectively as healthy cells can. Consequently, the cancer cells are destroyed, with minimal effect on the healthy cells. It's important to note that radiation is not the only method to fight cancer as stated in option (D). Other methods include surgery, chemotherapy, and immunotherapy. Furthermore, radiation is not a tracer that picks out cancer cells to destroy as stated in option (B).
Learn more about Radiation in Cancer Treatment here:https://brainly.com/question/31061027
#SPJ12
A hockey puck slides off the edge of a table with an initial velocity of 23.2 m/s and experiences no air resistance. The height of the tabletop above the ground is 2.00 m. What is the angle below the horizontal of the velocity of the puck just before it hits the ground? A hockey puck slides off the edge of a table with an initial velocity of 23.2 m/s and experiences no air resistance. The height of the tabletop above the ground is 2.00 m. What is the angle below the horizontal of the velocity of the puck just before it hits the ground? 72.6° 31.8° 15.1° 77.2° 22.8°
Answer:
15.1°
Explanation:
The horizontal velocity of the hockey puck is constant during the motion, since there are no forces acting along this direction:
[tex]v_x = 23.2 m/s[/tex]
Instead, the vertical velocity changes, due to the presence of the acceleration due to gravity:
[tex]v_y(t)= v_{y0} -gt[/tex] (1)
where
[tex]v_{y0}=0[/tex] is the initial vertical velocity
g = 9.8 m/s^2 is the gravitational acceleration
t is the time
Since the hockey puck falls from a height of h=2.00 m, the time it needs to reach the ground is given by
[tex]h=\frac{1}{2}gt^2\\t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2(2.00 m)}{9.8 m/s^2}}=0.64 s[/tex]
Substituting t into (1) we find the final vertical velocity
[tex]v_y = -(9.8 m/s^2)(0.64 s)=-6.3 m/s[/tex]
where the negative sign means that the velocity is downward.
Now that we have both components of the velocity, we can calculate the angle with respect to the horizontal:
[tex]tan \theta = \frac{|v_y|}{v_x}=\frac{6.3 m/s}{23.2 m/s}=0.272\\\theta = tan^{-1} (0.272)=15.1^{\circ}[/tex]
Final answer:
Using the kinematic equations for projectile motion, the final angle below the horizontal of the velocity of the puck just before it hits the ground is calculated to be 31.8° based on the given height of the fall and the initial horizontal velocity.
Explanation:
To find the angle below the horizontal of the velocity of the puck just before it hits the ground, we can use the kinematic equations for projectile motion. Considering that the puck experiences no air resistance, its horizontal velocity component remains constant at 23.2 m/s, and the vertical velocity component increases due to gravity (9.81 m/s2). First, we calculate the time it takes for the puck to fall 2.00 m using the vertical motion equation:
h = v0yt + (1/2)gt2
Since the puck slides off the table, the initial vertical velocity v0y is 0, so the equation simplifies to:
h = (1/2)gt2
Solving for t, we get:
t = sqrt((2h)/g)
Now that we have the time of fall, we can find the vertical velocity component just before impact using:
vy = gt
Finally, the angle θ can be calculated using the vertical and horizontal components:
tan(θ) = vy/vx
Plugging in the values:
θ = arctan(vy/vx)
After performing the calculations with the given numbers, we find that the angle is 31.8° below the horizontal just before the puck hits the ground. Therefore, the correct answer is 31.8°.
Which is a product of photosynthesis?
A)starch
B)glucose
C)water
D)carbon dioxide
*The product of photosynthesis is B) glucose because it makes glucose from the plant.
The products of photosynthesis are Glucose, Oxygen and water. Since oxygen and water exit through stomata, the main product is Glucose.
Answer: Option B
Explanation:
The solar energy is utilized to produce sugar in the process of photosynthesis. This process occurs in plants, bacteria's and protistans. In the photosynthesis process, the sunlight energy is transformed into some usable chemical energy. It is possible due to the pigment called chlorophyll which is green in color and present in plants.
Most time photosynthesis process makes use of water and releases oxygen as output. The leaves of the plants are the collector of solar. The intakes of photosynthesis process are carbon dioxide, water and the results are glucose and oxygen.
A farmer places unhatched chicken eggs under a heat lamp. How does the radiation help the eggs?
It keeps the area around the eggs cool until the eggs hatch.
It makes the eggs weaker so they are easier to break open.
It makes the eggs stronger so they do not break.
It keeps the eggs warm until they hatch.
It keeps the eggs warm until they hatch is your answer
Why is the answer B?
Answer:
Explanation:
The center of mass lies on a line that joins position 4 of one start with position 4 of the other star. The shortest distance between these two points will produce the largest velocity. You are using F = m v^2/R
Small R = large force.
Large Force = increased speed.
The masses don't have any effect on the outcome: they remain constant.
PLEASE HELP!!! Multiple choice!!!
If you had two identical magnets and put them together so that one of the south poles was in contact with the other's north pole, what would you have?
A. one magnet with a stronger north pole
B. one magnet with a stronger south pole
C. one magnet with a north pole and a south pole
D. no magnet since the two smaller magnets would lose their magnetism when combined to form a larger magnet
Answer:
C. one magnet with a north pole and a south pole
Explanation:
Which resistors in the circuit must have the same amount of charge passing through each second?
Resistors 'C' and 'D' are in series. There's only one possible route for current to flow through them.
Every electron that flows through one of them has to flow through the other one.
The current (amount of charge per second) must be the same in 'C' and 'D', no matter how many ohms of resistance either one may have. (answer-choice B)
Answer:
C & D
Explanation:
physics s2
Explain how planes achieve flight using terminology appropriate for a five year old child.
Answer: the air makes it go WHOOSH!!
Explanation:
just kidding. the air pushes the wings up because of the way they are shaped. this creates lift.
When all of these things work together(mentioned below), the big heavy piece of metal becomes a plane that can fly high up in the sky!
What is an Aeronautics?Aeronautics is the science of designing planes and other flying machines. Aeronautical engineers must understand four fundamental areas in order to design planes. Engineers must understand all of these elements in order to design a plane.
A plane uses something called "air pushing it up" to help it fly. This air pushing is called "lift." The wings of the plane are shaped like long, flat feathers that help create lift.
Another way the plane flies is by using its engine to make a strong "whoosh" of air that moves the plane forward. This strong "whoosh" of air is called "thrust."
And finally, the plane uses its tail to help it steer and balance, just like a bird uses its tail to help it fly straight.
So, when all of these things work together, the big heavy piece of metal becomes a plane that can fly high up in the sky.
Learn more about aeronautics here:
https://brainly.com/question/14371982
#SPJ6
A 200 mW horizontally polarized laser beam passes through a polarizing filter whose axis is 25∘ from vertical.
What is the power of the laser beam as it emerges from the filter?
answer needs to be in mW
Answer:
35.7 mW
Explanation:
The intensity of light after passing through a polarizer is given by
[tex]I=I_0 cos^2 \theta[/tex]
where
[tex]I_0[/tex] is the initial intensity of the light
[tex]\theta[/tex] is the angle between the direction of polarization of the initial light and the transmission axis of the polarizing filter
Keeping in mind that the power is directly proportional to the intensity:
[tex]P \propto I[/tex]
we can rewrite the previous equation as
[tex]P=P_0 cos^2 \theta[/tex]
where we have
[tex]P_0 = 200 mW[/tex]
[tex]\theta=90^{\circ}-25^{\circ}=65^{\circ}[/tex] (because the initial light is horizontally polarized, while the axis of the filter is 25 degrees from the vertical
So, the power of the laser beam emerging from the filter is
[tex]P=(200 mW) cos^2 65^{\circ}=35.7 mW[/tex]
The power of the laser beam as it emerges from the polarizer is approximately 35.7 mW, as calculated using Malus's Law.
Explanation:The power P' of a light beam after passing through a polarizer can be determined by Malus's Law:
P' = P cos^2(θ),
where P is the initial power of the light, θ is the angle between the light's initial polarization direction and the axis of the polarizer.
In this case, the light is horizontally polarized and the axis of the polarizer is 25° from vertical, so the angle θ we need is the complement of 25°, which is 65° (since 90° - 25° = 65°).
Plug in the given values: P = 200 mW and θ = 65° into the equation, we get:
P' = 200 cos^2(65°)
Solving this you get: P' = 35.7 mW
Learn more about Polarization here:https://brainly.com/question/25535837
#SPJ11
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS AND I NEED ALL CORRECT ANSWERS ONLY!!!
______________ are devices that create a magnetic field through the application of electricity.
A.Ganerators
is the answer
Agree with previous answer.
A. Generators
How do isotopes of an element differ?
Answer: Isotopes of an element will contain the same number of protons and electrons but will differ in the number of neutrons they contain. In other words, isotopes have the same atomic number because they are the same element but have a different atomic mass because they contain a different number of neutrons.
What is the earliest time from which we observe light in the universe?
Answer:
a few hundred thousand years after the Big Bang
Explanation:
When a beta minus decay occurs in an unstable nucleus, what happens to the atomic number of the nucleus?The atomic number increases by 1.The atomic number decreases by 1.The atomic number remains constant.The atomic number increases by 2.The atomic number decreases by 2.
Answer:
The atomic number increases by 1.
Explanation:
The beta minus decay is a process in which a neutron decays into a proton, emitting an electron and an anti-neutrino:
[tex]n \rightarrow p + e + \bar{\nu}[/tex]
If this process occurs inside an unstable nucleus, we notice that:
- a neutron is converted into a proton, therefore
- the number of neutrons decreases by 1 and the number of protons increases by 1
Keep in mind that the atomic number of a nucleus corresponds to the number of protons it contains: therefore, since this number increases by 1, then the atomic number increases by 1.
4.6 billion years ago the earth is created from what
I'm not positive but if I'm reading the question right it would be the big bang sorry if I'm wrong
A 4000-? resistor is connected across a 220-V power source. What current will flow through the resistor?
Answer:
55 mA
Explanation:
Ohm's law states:
V = IR
where V is voltage, I is current, and R is resistance.
220 V = I (4000 Ω)
I = 0.055 A
I = 55 mA
Suppose you measure the parallax angle for a particular star to be 0.1 arcsecond. The distance to this star is
A) 10 light-years.B) 10 parsecs.C) 0.1 light-year.D) 0.1 parsec.E) impossible to determine.
Answer:
B) 10 parsecs
Explanation:
The distance of a star measured with the parallax method is given by:
[tex]d=\frac{1}{\theta}[/tex]
where
d is the distance, in Parsec
[tex]\theta[/tex] is the parallax angle, in arcseconds
For the star in the problem, the parallax angle is
[tex]\theta=0.1''[/tex]
therefore, the distance of the star is
[tex]d=\frac{1}{0.1''}=10 pc[/tex]
so, 10 parsecs.
What properties does electrical resistance in a wire depend on?
Answer:
Explanation:
You can always figure out something to say about a question like this if you have a formula to work with. Likely you do.
There are many ways it can be written
R = k * L / A
So here's the answer.
Resistance = k which depends of the properties of the material used to make the wire * the Length of the wire divided by the cross sectional area of the wire.
The electrical resistance of anything depends on its physical dimensions (length and cross-section area of a wire), and the substance of which it's composed.
What is the voltage drop across the 20.0 resistor?
C i think
Answer:
120.0v drop across the 20.0 resistor
Explanation:
A student is working in a lab to determine how time affects impulse. The student keeps the force the same in each trial but changes the impact time. Some data is shown. Which trial has the greatest impulse?
Answer: trial 3
Explanation:
impulse equals force x time so for each trial it would be a force which is 500 x 8 individual time trial 3 has the highest time which would equal the highest impulse.
500 x .45 = 225
Answer:
Trial 3
Explanation:
got it correct
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS AND I NEED ALL CORRECT ANSWERS ONLY!!!
The purpose of a cell (battery) is to:
C is the answer
you got right
D) store chemical energy and transfer it to electrical energy when a circuit is connected.
Hope this helps chu
Have a great day ♡♡
What structure on the south african coast has a range of 63 km and releases flashes every 30 seconds?
Answer:
Cape Point lighthouse
Explanation:
The lighthouse is located South of Cape Town, at a point where boats turn to go around the tip of Africa.
The new lighthouse has the most powerful light of all the lighthouses in South Africa, with a power of 10 megacandelas. That's why it's being visible for up to 63 km around.
It's a very important lighthouse helping to conduct the traffic around dangerous waters where 2 oceans meet.
A student performs an exothermic reaction in a beaker and measures the temperature. If the thermometer initially reads 35 degrees Celsius, what is a possible reading of the thermometer after the reaction? A. 35 degrees Celsius B. 25 degrees Celsius C. 45 degrees Celsius D. 0 degrees Celsius
Answer : The correct option is, (C) 45 degrees Celsius.
Explanation :
Endothermic reaction : It is defined as the chemical reaction in which the energy is absorbed from the surrounding.
In the endothermic reaction, the energy of reactant are less than the energy of product. During endothermic reaction, initially the temperature of the reaction is high because initially amount of heat is given to the system and after the reaction, the temperature of the reaction is low.
Exothermic reaction : It is defined as the chemical reaction in which the energy is released into the surrounding.
In the exothermic reaction, the energy of reactant are more than the energy of product. During exothermic reaction, initially the temperature of the reaction is low because initially there is no heat is given to the system and after the reaction, the temperature of the reaction is high because after ther reaction, more amount of energy is released.
As per question, a student performs an exothermic reaction in a beaker and measures the temperature. Initially, the thermometer reads 35 degrees Celsius. After the reaction, the thermometer temperature will be more that initial temperature that is, 45 degrees Celsius.
Hence, correct option is, (C) 45 degrees Celsius.
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS AND I NEED ALL CORRECT ANSWERS ONLY!!!
Look at the following diagram of two bar magnets and determine if the magnets will or will not connect (attract). Why is that the case?
Definitely B.
Unlike poles attract and like poles repeal