The vector r = xˆi + y ˆj + zkˆ, called the position vector points from the origin (0, 0, 0) to an arbitrary point in space with coordinates (x, y, z). Use what you know about vectors to prove the following: All points (x, y, z) that satisfy the equation Ax + By + Cz = 0, where A, B, and C are constants, lie in a plane that passes through the origin and that is perpendicular to the vector Aˆi + Bˆj + Ckˆ. Sketch this vector and the plane.

Answers

Answer 1

Answer:

The vectors r and  p = Aˆi + Bˆj + Ckˆ are perpendicular between them. Thus, the plane equation come from the fact that the dot product is equal to zero.

Step-by-step explanation:

The dot product of r and p

r*p = (xˆi + y ˆj + zk)*(Aˆi + Bˆj + Ckˆ) = Ax + By + Cz = 0


Related Questions

The caldwells are moving across the country. Mr Caldwell leaves 3 hours before Mrs Caldwell. If he averages 45 mph and she averages 65 mph, how many hours will it take Mrs Caldwell to catch mr. Caldwell

Answers

Final answer:

Mrs. Caldwell will travel 135 miles at an additional 20 mph to catch up to Mr. Caldwell. Therefore, it will take Mrs. Caldwell 6.75 hours to catch up to Mr. Caldwell.

Explanation:

This is a rate time distance problem in mathematics, typically learned in middle school. To calculate how long it will take Mrs. Caldwell to catch up with Mr. Caldwell, we need to compare the distance traveled by each person in the same time. Because rate equals distance over time (r=d/t), we know that the distance each person traveled is rate x time.

Mr. Caldwell left 3 hours before Mrs. Caldwell, so he traveled at 45 mph for 3 hours, or 135 miles. Once Mrs. Caldwell leaves, she needs to cover these 135 miles at a faster speed to catch up. Her speed is 20 mph greater than Mr. Caldwell’s. We divide the distance that Mr. Caldwell has covered (135 miles) by the difference in their speeds (20 mph) to find it will take Mrs. Caldwell 6.75 hours to catch up to him.

Learn more about Rate Time Distance here:

https://brainly.com/question/35683374

#SPJ3

y = x + 2y = -2x + 2y = -3x + 2y = -5x + 2y = -
3
2
x + 2y = -
5
2
x + 2y = -x + 2y = 2x + 2y = 5x + 2y =
5
2
x + 2
0

Answers

Answer:

i need more context

Step-by-step explanation:

HELP HOW DO I FIND THE B VALUE OF THIS

Answers

Answer:

b = [tex]\frac{8}{3}[/tex]

Step-by-step explanation:

period = [tex]\frac{2\pi }{b}[/tex], that is

b = [tex]\frac{2\pi }{period}[/tex] = [tex]\frac{2\pi }{\frac{3\pi }{4} }[/tex] = 2π × [tex]\frac{4}{3\pi }[/tex] = [tex]\frac{8}{3}[/tex]

Answer:

f(x) = 4cos(8/3)x - 3.

The missing space is 8/3.

Step-by-step explanation:

The general form is  f(x) = Acosfx + B    where A = the amplitude, f = frequency and B is the vertical shift..

Here A is given as  4,  B is - 3 and the frequency f = 2 π / period  =

2π / (3π/4)

= 8/3.

So the answer is f(x) = 4cos(8/3)x - 3.

In order to develop a more appealing​ cheeseburger, a franchise uses taste tests with 15 different​ buns, 8 different​ cheeses, 3 types of​ lettuce, and 4 types of tomatoes. If the taste tests were done at one restaurant by one tester who takes 10 minutes to eat each​ cheeseburger, approximately how long would it take the tester to eat all possible​ cheeseburgers?

Answers

Answer:

There would be

13 x 8 x 4 x 3 = 3,276 different cheeseburger combinations

If the taste tester takes 10 minutes to eat a cheeseburger, then it would take him

3276 x 10 = 32760 minutes

Eating round the clock, it would take him

32760 / 60 = 546 hours

546 / 24 = 22 days 18 hours

Now these are the numbers I'm seeing

1313 buns

88 cheese

44 lettuces

33 tomatoes

There would be

1313 x 88 x 44 x 33 = 167,769,888 different cheeseburger combinations

If the taste tester takes 10 minutes to eat a cheeseburger, then it would take him

167769888 x 10 = 1,677,698,880 minutes

1677698880 / 60 = 27,961,647 hours

27961647 / 24 = 1,165,068.62 days

1165068.62 / 365 = 3,191.97 years

Step-by-step explanation:

When I count as a principal of $1000 and earns 4% simple interest per year and other account as a principal $1000 and earns 4% interest compounded annually which account has the greater balance at the end of four years

Answers

Answer: the account that earned compound interest has the greater balance at the end of four years.

Step-by-step explanation:

The formula for determining simple interest is expressed as

I = PRT/100

Where

I represents interest paid on the amount invested.

P represents the principal or amount invested.

R represents interest rate

T represents the duration of the investment in years.

From the information given,

P = 1000

R = 4%

T = 4 years

I = (1000 × 4 × 4)/100 = 160

Total amount earned is

1000 + 160 = $1160

The formula for determining compound interest is expressed as

A = P(1+r/n)^nt

Where

A = total amount in the account at the end of t years

r represents the interest rate.

n represents the periodic interval at which it was compounded.

P represents the principal or initial amount deposited

From the information given,

P = 1000

r = 4% = 4/100 = 0.04

n = 1 because it was compounded once in a year.

t = 4 years

Therefore,.

A = 1000(1+0.04/1)^1 × 4

A = 1000(1.04)^4

A = $1170

A scientist measured the exact distance between two points on a map and came up with the following number: 0.04000 km.
Which digits are the significant figures in this measurement?
Explain your answer.

Answers

Answer:

The first zero after decimal point and 4 only

Step-by-step explanation:

Despite having 5 decimal points, the rules of significant figures dictate that unless there is a digit other than zero after, the only significant numbers are those that come before zero. For this case, the significant digits are only 0.04 but if it was 0.0400005 then all the other zeros would have also be considered significant.

PLZ HELP WILL MARK BRAINLIEST

Using the distance formula, d = √(x2 - x1)2 + (y2 - y1)2, what is the distance between point (3, 2) and point (5, 4) rounded to the nearest tenth?


5.3 units


1 unit


10 units


2.8 units

Answers

Answer:

2.8 units

You should get 2√(2) or √(8) which is less than 3 and greater than 2.

Answer: 2.8 units

Step-by-step explanation:

The formula for determining the distance between two points on a straight line is expressed as

Distance = √(x2 - x1)² + (y2 - y1)²

Where

x2 represents final value of x on the horizontal axis

x1 represents initial value of x on the horizontal axis.

y2 represents final value of y on the vertical axis.

y1 represents initial value of y on the vertical axis.

From the given points

x2 = 5

x1 = 3

y2 = 4

y1 = 2

Therefore,

Distance = √(5 - 3)² + (4 - 2)²

Distance = √2² + 2² = √4 + 4 = √8

Distance = 2.8 units

Which inequality can Josh use to determine x, the minimum number of visits he needs to earn his first free movie ticket?

Answers

Answer:

3.5x + 15 ≥ 55

Step-by-step explanation:

I think the question below contains the missing information.

Josh has a rewards card for a movie theater. - He receives 15 points for becoming a rewards card holder. - He earns 3.5 points for each visit to the movie theatre. - He needs at least 55 points to earn a free movie ticket. Which inequality can Josh use to determine x, the minimum number of visits he needs to earn his firs free movie ticket?

My answer:

Becoming a member = 15 pointsVisiting the moving theater = 3.5 pointsTotal points needed for a free movie ticket = 55

Let x is the number of times he visits = 3.5x

Total points = Points received on becoming a member + Points received on x visits

So,

Total Points = 15 + 3.5x

We know the total points must be at least 55 for a free movie ticket.  This can be expressed as:

3.5x + 15 ≥ 55

(1 point) A rock is thrown into a still pond and causes a circular ripple. If the radius of the ripple is increasing at a rate of 4 feet per second, how fast is the circumference changing when the radius is 18 feet?

Answers

Answer:

8pi feet per second

Or, 25.1 feet per second (3 sf)

Step-by-step explanation:

C = 2pi×r

dC/dr = 2pi

dC/dt = dC/dr × dr/dt

= 2pi × 4 = 8pi feet per second

dC/dt = 25.1327412287

Tara bought Three boxes of dog treats with 40 truth in each box two boxes of cat treats with 20 trees in each box simplify the expression below to find the total number of trees are bought

Answers

Answer:

Tara bought a total of 160 treats.

Step-by-step explanation:

We are given the following in the question:

Number of boxes of dog treats = 3

Number of treats in each dog box = 40

Total number of treats in dog box =

[tex]40 \times 3 = 120[/tex]

Number of boxes of cat treats = 2

Number of treats in each cat box = 20

Total number of treats in cat box =

[tex]20\times 2 = 40[/tex]

Total number of treats Tara brought =

Total number of treats in dog box + Total number of treats in cat box

[tex](40\times 3)+(20\times 2)\\= 120 + 40\\=160[/tex]

Thus, Tara bought a total of 160 treats.

Look at the proof. Name the postulate you would use to prove the two triangles are congruent.


A. AAA Postulate

B. SSS Postulate SAS

C. SAS Postulate

Answers

Answer:

Option C, SAS Postulate

Step-by-step explanation:

I think that it is option C because it does not give you 3 angles or 3 sides, it gives you 2 angles and 1 side.

Answer:  Option C, SAS Postulate

A right cylindrical solid is cut in half to form the figure shown. If the length is 20 cm and the diameter is 8 cm, what is the surface area?

(80π + 160) cm2
(96π + 160) cm2
320π cm2
(320π + 160) cm2

Answers

Answer:

(96π + 160) cm2

Step-by-step explanation:

Jerry manages a local car dealership. At the beginning of the month, his lot had m vehicles. During the month his salesman sold n vehicles, and he purchased p vehicles more. How many vehicles did the dealership have at the end of the month?

Answers

Answer:

m+p-n

Step-by-step explanation:

given that Jerry manages a local car dealership. At the beginning of the month, his lot had m vehicles. During the month his salesman sold n vehicles, and he purchased p vehicles more

We are to find the number of vehicles did the dealership have at the end of the month

At the end of the month the dealer would have

no of vehicles at the start of the month- sales of the vehicle in that month+Purchase of vechicles during that month

No of vehicles at the start of the month = m

Purchase during month                           =p

Total vehicles including purchase         = m+p

LESS: Vehicles sold in the month         =   n

No of vehicles at the end                      = m+p-n

What are the solutions to the system of equations?




{y=2x2−8x+5
{y=x−2

Answers

Final answer:

To find the solutions to the system of equations, use the substitution method. The solutions are (1/2, -3/2) and (7, 5).

Explanation:

To find the solutions to the system of equations, we can use the substitution method. First, solve one of the equations for y in terms of x. Let's solve the second equation for y:

y = x - 2

Now substitute this expression for y into the first equation:

x - 2 = 2x^2 - 8x + 5

Now we have a quadratic equation. Rearrange it into standard form:

2x^2 - 9x + 7 = 0

Next, factor the quadratic equation:

(2x - 1)(x - 7) = 0

Set each factor equal to zero and solve for x:

2x - 1 = 0, x - 7 = 0

x = 1/2, x = 7

Now substitute these values of x back into either of the original equations to find the corresponding values of y:

For x = 1/2: y = 1/2 - 2 = -3/2

For x = 7: y = 7 - 2 = 5

So the solutions to the system of equations are (1/2, -3/2) and (7, 5).

A scoop of ice cream has a 3 inch radius. How tall should the ice cream cone of the same radius be in order to contain all of the ice cream inside the cone?

Answers

Answer:

12cm

Step-by-step explanation:

The scoop of Ice Cream is in the shape of a circular solid which is a Sphere.

For the ice cream to fit into the cone, the volume of the cone must be equal to that of the sphere.

Radius of the Sphere=3cm

Volume of a Sphere = [tex]\frac{4}{3}\pi r^3[/tex]

Volume of a Cone=[tex]\frac{1}{3}\pi r^2h[/tex]

[tex]\frac{1}{3}\pi X 3^2h=\frac{4}{3}\pi X 3^3\\\frac{1}{3}h=\frac{4}{3} X 3\\\frac{1}{3}h=4\\h=4 X 3=12cm[/tex]

The Cone of same radius must be 12cm tall.

What do you know about the solution(s) to the system of equations?

A. There is no solution.


B. The solution is (2,0).


C. The solution is (0,−1).


D. There are infinitely many solutions.

Answers

Answer:

A because the linesnever cross.

Step-by-step explanation:

Answer:

There is no solution

Step-by-step explanation:

sin= 5/13, and cos b= 3/5, evaluate cos(a-b).

Answers

cos (a - b) is 56/65

Step-by-step explanation:

Step 1:

Given sin a = 5/13, find cos a.

sin a = opposite side/hypotenuse = 5/13

The adjacent side can be found using Pythagoras Theorem.

Hypotenuse² = Opposite Side² + Adjacent Side²

⇒ Adjacent side² = Hypotenuse² - Opposite Side²

                             = 13² - 5² = 169 - 25 = 144

∴ Adjacent Side = 12

⇒ cos a = adjacent side/hypotenuse = 12/13

Step 2:

Given cos b = 3/5, find sin b.

cos b = adjacent side/hypotenuse = 3/5

The opposite side can be found using Pythagoras Theorem.

Hypotenuse² = Opposite Side² + Adjacent Side²

⇒ Opposite side² = Hypotenuse² - Adjacent Side²

                             = 5² - 3² = 25 - 9 = 16

∴ Opposite Side = 4

⇒ sin b = opposite side/hypotenuse = 4/5

Step 3:

Find cos(a - b).

cos(a - b) = cos a cos b + sin a sin b

               = 12/13 × 3/5 + 5/13 × 4/5

               = 36/65 + 20/65 = 56/65

The paraboloid z = 6 − x − x2 − 5y2 intersects the plane x = 2 in a parabola. Find parametric equations in terms of t for the tangent line to this parabola at the point (2, 2, −20).

Answers

Answer:

x = 2

y = 2 +  t

z = -20 -20t

Step-by-step explanation:

First, we are going to find the equation for this parabola. We replace x = 2 in the equation of the paraboloid, thus:

[tex]z = 6-x-x^{2} -5y^{2}[/tex]

if x = 2, then

[tex]z = 6-(2)-2^{2}-5y^{2}[/tex]

[tex]z = -5y^{2}[/tex]

Now, we calculate the tangent line to this parabola at the point (2,2,-20)

The parametrization of the parabola is:

x = 2

y = t  

[tex]z = -5t^{2}[/tex]  since [tex]z = -5y^{2}[/tex]

We calculate the derivative

[tex]\frac{dx}{dt}= 0[/tex]

[tex]\frac{dy}{dt}= 1[/tex]

[tex]\frac{dz}{dt}= -10t[/tex]

we evaluate the derivative in t=2, since at the point (2,2,-20) y = 2 and y = t

Thus:

[tex]\frac{dx}{dt}= 0[/tex]

[tex]\frac{dy}{dt}= 1[/tex]

[tex]\frac{dz}{dt}= -10(2)= -20[/tex]

Then, the director vector for the tangent line is (0,1,-20)

and the parametric equation for this line is:

x = 2

y = 2 +  t

z = -20 -20t

The parametric equation of the tangent line is [tex]L(t)=(2,2+t,-20-20t)[/tex]

Parabola :

The equation of Paraboloid is,

                 [tex]z =6-x-x^{2} -5y^{2}[/tex]

Equation of parabola when [tex]x = 2[/tex] is,

       [tex]z=6-2-2^{2} -5y^{2} \\\\z=-5y^{2}[/tex]

The parametric equation of parabola will be,

     [tex]r(t)=(2,t,-5t^{2} )[/tex]

Now, we have to find Tangent vector to this parabola is,

    [tex]T(t)=\frac{dr(t)}{dt}=(0,1,-10t)[/tex]

We get, the point [tex](2, 2, -20)[/tex] when [tex]t=2[/tex]

The tangent vector will be,

 [tex]T(2)=(0,1,-20)[/tex]

The tangent line to this parabola at the point (2, 2, −20) will be,

     [tex]L(t)=(2,2,-20)+t(0,1,-20)\\\\L(t)=(2,2+t,-20-20t)[/tex]

Learn more about the Parametric equation here:

https://brainly.com/question/21845570

A pure acid measuring x liters is added to 300 liters of a 20% acidic solution. The concentration of acid, f(x), in the new substance is equal to the liters of pure acid divided by the liters of the new substance, or . Which statement describes the meaning of the horizontal asymptote? The greater the amount of acid added to the new substance, the more rapid the increase in acid concentration. The greater the amount of acid added to the new substance, the closer the acid concentration is to one-fifth. As more pure acid is added, the concentration of acid approaches 0. As more pure acid is added, the concentration of acid approaches 1.

Answers

Answer:

the answer is d

Step-by-step explanation:

Select the correct answer. Solve -9 2/7 -(-10 3/7) . A. -1 1/7 B. 1 1/7 C. 19 1/7 D. 19 5/7

Answers

Answer:

B. 1 1/7

Step-by-step explanation:

-9 2/7-(-10 3/7)

=-9 2/7+10 3/7

=1 1/7

Therefore, B. 1 1/7

Answer:

The answer is B

Step-by-step explanation:

B. 1 1/7

Find a degree 3 polynomial with real coefficients having zeros 3 and 3−3i and a lead coefficient of 1. Write P in expanded form.

Answers

Answer:

P =  x³ − 9x² + 36x − 54

Step-by-step explanation:

Complex roots come in conjugate pairs.  So if 3−3i is a zero, then 3+3i is also a zero.

P = (x − 3) (x − (3−3i)) (x − (3+3i))

P = (x − 3) (x − 3 + 3i) (x − 3 − 3i)

P = (x − 3) ((x − 3)² − (3i)²)

P = (x − 3) ((x − 3)² + 9)

P =  (x − 3)³ + 9 (x − 3)

P =  x³ − 9x² + 27x − 27 + 9x − 27

P =  x³ − 9x² + 36x − 54

If Naomi were to paint her living room alone, it would take 5 hours. Her sister Jackie could do the job in 8 hours. How many hours would it take them working together? Express your answer as a fraction reduced to lowest terms, if needed.

Answers

Answer:

40/13

The decimal form is going to be 3.076

Trevor Once to buy a car that cost 23600 he has 5000 for down payment how much more will Trevor O the car right solve and create an equation for his situation define the variable

Answers

Answer:

5000 + x = 23600  

Step-by-step explanation:

a car that cost = 23600

down payment = 5000

So he needs to pay: 23600 - 5000 = 18600 more to get the car

Let x represent the amount he needs to pay more, an equation for his situation:

5000 + x = 23600  

PLZ HELPPPPPPPPPPPPPPPP

Answers

it’s 0 because it’s a horizontal line and doesn’t have any change.

My Notes Determine the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution. Do not attempt to find the solution. (Enter your answer using interval notation.)t(t−4)y"+3ty'+4y=2,y(3)=0,y'(3)=−1

Answers

Answer:

The answer to the question is

The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is  (-∞, 4)

Step-by-step explanation:

To apply look for the interval, we divide the ordinary differential equation by (t-4) to

y'' + [tex]\frac{3t}{t-4}[/tex] y' + [tex]\frac{4}{t-4}[/tex]y = [tex]\frac{2}{t-4}[/tex]

Using theorem 3.2.1 we have p(t) =  [tex]\frac{3t}{t-4}[/tex], q(t) =  [tex]\frac{4}{t-4}[/tex], g(t) = [tex]\frac{2}{t-4}[/tex]

Which are undefined at 4. Therefore the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution, that is where p, q and g are continuous and defined is (-∞, 4) whereby theorem 3.2.1 guarantees unique solution satisfying the initial value problem in this interval.

Final answer:

The existence and uniqueness theorems for ODEs determine that the longest interval where the initial value problem has a unique and twice-differentiable solution is (0, 4), avoiding discontinuities at t=0 and t=4.

Explanation:

The initial value problem provided is a second-order linear ordinary differential equation (ODE) of the form:

t(t-4)y"+3ty'+4y=2, with initial conditions y(3)=0 and y'(3)=-1.

To determine the longest interval in which the solution is guaranteed to be unique and twice-differentiable, we need to consider the existence and uniqueness theorems for ODE's, which are predicated on the functions of the equation being continuous over the interval considered. Here, the coefficients of y" and y' are t(t-4) and 3t respectively. The problematic points occur where the coefficient of y" is zero because it will make the equation not well-defined, which occurs at t=0 and t=4. Therefore, the longest interval around the initial condition t=3 that avoids these points is (0, 4). Within this interval, the coefficients are continuous, and hence, the conditions for the existence and uniqueness of the solution are satisfied.

Why is the law of cosines a stronger statement than the pythagorean theorem?

Answers

Answer:

Answer in explanation

Step-by-step explanation:

The two laws are mathematical laws which are used in navigating problems which involves triangles. While the Pythagorean theorem is used primarily and exclusively for right angled triangle, the cosine rule is used for any type of triangle.

So, why is the cosine rule a stronger statement? The reason is not far fetched. As said earlier, the cosine rule can be used to resolve any triangle type while the Pythagorean theorem only works for right angled triangle. In fact, we can say the Pythagorean theorem is a special case of cosine rule. The reason why the expression is different is that, for the expression, cos 90 is zero, which thus makes our expression bend towards the Pythagorean expression view.

The explanation regarding the law of cosines is the stronger statement if compared with the Pythagorean theorem is explained below.

Difference between the law of cosines be the stronger statement if compared with the  Pythagorean theorem:

The Pythagorean theorem is used when there is the right-angled triangle, while on the other hand, the cosine rule is used for any type of triangle. Here the Pythagorean theorem should be considered for the special case of cosine rule. Due to this the cosine law should be stronger if we compared it with the Pythagorean theorem.

Learn more about cosine here;https://brainly.com/question/16299322

100 pyramid shaped chocolate candies with a square base of 12 mm size and height of 15 mm are melted in a cylinder coil pot if the part has a radius of 75 mm what is the height of the melted candies in the pot.

Answers

Answer: the height of the melted candies in the pot is 12.2 mm

Step-by-step explanation:

The formula for determining the volume of a square base pyramid is expressed as

Volume = area of base × height

Area of the square base = 12² = 144 mm²

Volume of each pyramid = 15 × 144 = 2160 mm³

The volume of 100 pyramid shaped chocolate candies is

2160 × 100 = 216000 mm³

The formula for determining the volume of a cylinder is expressed as

Volume = πr²h

Since the pyramids was melted in the cylindrical pot whose radius is 75 mm, it means that

216000 = 3.14 × 75² × h

17662.5h = 216000

h = 216000/17662.5

h = 12.2 mm

Answer:

The height of the melted candies in the pot is 4.07mm

Step-by-step explanation:

H= 100*1/3(12)^2(15)/π(75)^2=64/5π=4.07

A car travels along a straight road for 30 seconds starting at time t = 0. Its acceleration in ft/sec2 is given by the linear graph below for the time interval [0, 30]. At t = 0, the velocity of the car is 0 and its position is 10.

What is the total distance the car travels in this 30 second interval? Your must show your work but you may use your calculator to evaluate. Give 3 decimal places in your answer and include units.


Im not really sure how to go about this? Would I use the trapezoidal rule i dont know please help.

Answers

Answer:

666.667 feet

Step-by-step explanation:

Slope = -1

Intercept = 10

y = -t + 10

y is the acceleration

Integrate y fornv

v = -t²/2 + 10t + c

At t=0, v=0 so c = 0

v = -t²/2 + 10t

Turns when v = 0,

-t²/2 + 10t = 0

t = 0, 20

Integrate v for s

s = -t³/6 + 5t² + c

At t = 0, s = 10

10 = c

s = -t³/6 + 5t² + 10

s at t=30,

-(30³)/6 + 5(30)² + 10

= 10m

(Back to starting point)

At t = 20,

Displacement in

-(20³)/6 + 5(20)² + 10

= 343.333

Total distance = 2(343.333-10)

= 666.6667

The total distance the car travels in this 30 second interval is 1333.34 units

From the graph, we have the following points

(0, 10) and (10, 0).

Start by calculating the slope (m) of the graph

[tex]m = \frac{y_2 - y_1}{x_2 -x_1}[/tex]

So, we have:

[tex]m = \frac{0 - 10}{10-0}[/tex]

[tex]m =- \frac{10}{10}[/tex]

[tex]m =- 1[/tex]

The equation is then calculated as:

[tex]y = m(x -x_1) + y_1[/tex]

This gives

[tex]y = -1(x -0) + 10[/tex]

[tex]y = -1x+ 10[/tex]

[tex]y = -x+ 10[/tex]

The above equation represents the acceleration (y) as a function of time (x).

Integrate to get the velocity (v)

[tex]v = -\frac{x\²}{2} + 10x + c[/tex]

From the question, we have:

The velocity (v) of the car is 0, when the time (x) is 0.

So, we have:

[tex]0 = -\frac{0\²}{2} + 10(0) + c[/tex]

This gives

[tex]c = 0[/tex]

So, the equation becomes

[tex]v = -\frac{x\²}{2} + 10x + 0[/tex]

[tex]v = -\frac{x\²}{2} + 10x[/tex]

Set v = 0.

So, we have:

[tex]-\frac{x\²}{2} + 10x = 0[/tex]

Multiply through by -2

[tex]x^2 -20x = 0[/tex]

Factorize

[tex]x(x -20) = 0[/tex]

Split

[tex]x = 0\ or\ x -20 = 0[/tex]

Solve for x

[tex]x = 0[/tex] or [tex]x = 20[/tex]  

Integrate velocity (v) to get the displacement (d)

[tex]v = -\frac{x\²}{2} + 10x[/tex]

[tex]d = -\frac{t\³}{6} + 5t\² + c[/tex]

From the question, we have:

The position (d) of the car is 10, when the time (x) is 0.

So, we have:

[tex]-\frac{(0)\³}{6} + 5(0)\² + c = 10[/tex]

[tex]c = 10[/tex]

So, the equation becomes

[tex]d = -\frac{t\³}{6} + 5t\² + 10[/tex]

The position at 30 seconds is:

[tex]d = -\frac{(30)\³}{6} + 5(30)\² + 10[/tex]

[tex]d = 10[/tex]

The position at 20 seconds is:

[tex]d = -\frac{(20)\³}{6} + 5(20)\² + 10[/tex]

[tex]d = 676.667[/tex]

The total distance is then calculated as:

[tex]Total = 2 \times (d_2 -d_1)[/tex]

This gives

[tex]Total = 2 \times (676.667 -10)[/tex]

[tex]Total = 2 \times 666.667[/tex]

[tex]Total = 1333.34[/tex]

Hence, the total distance is 1333.34 units

Read more about distance at:

https://brainly.com/question/2239252

Tierra rode in a bike-a-thon. Her sponsors donated $7 for every 5 miles she biked. At the end of the bike-a-thon, Tierra had raised $147. How many miles did she ride?

Answers

Answer:

105 miles

Step-by-step explanation:

The question seeks to know the number of miles traveled by Tiera given that she received a certain amount of money in payment.

The total amount of money she received is $147. She receives $7 for every 5 miles traveled. The number of 5 miles traveled is calculated as 147/7 = 21

This means she traveled 5 miles 21 times.

Thus, the total number of miles she had traveled would be 21 * 5 = 105 miles in total

One number is 20 times another number. The product of the two numbers is 180. Write an equation and use it to find all pairs of numbers that satisfy the

Answers

y = 20x

y • x = 180

180/x = y

180/x = 20x

180 = 20x^2

x^2 = 6

x = + or - 3

Therefore y must equal + or - 60.

Answer: the Smaller number is 3

The larger number is 60

Step-by-step explanation:

Let x represent the smaller of the numbers.

Let y represent the larger number.

One number is 20 times another number. This means that

y = 20x

The product of the two numbers is 180. This means that

xy = 180- - - - - - - - - -1

Substituting y = 2x into equation 1, it becomes.

x × 20x = 180

20x² = 180

x² = 180/20 = 9

x = √9

x = 3

y = 20x = 20 × 3

y = 60

Other Questions
Camilo's property, with an adjusted basis of $302,200, is condemned by the state. Camilo receives property with a fair market value of $347,530 as compensation for the property taken.a. What is Camilos realized and recognized gain?b. What is the basis of the replacement property In the epinephrine pathway, an inhibitor of phosphodiesterase activity would have which of the following effects? A. block the activation of protein kinase A B. block the activation of G proteins in response to epinephrine binding to its receptor C. prolong the effect of epinephrine by maintaining elevated cAMP levels in the cytoplasm D. block the response of epinephrine Early in 2022, Stevenson Incorporated switched to a JIT (just-in-time) inventory system. Financial information for the two most recent years is listed below: How many times did inventory turnover increase as a result of the switch to the JIT system? A force is a A. push B. pull C. Both A and B D. Neither A nor B The author contrasts words with positive and negativeconnotations tocreate humor.encourage debate.clarify his argument.make an emotional appeal. A 34-year-old woman who has no past medical problems nor is currently taking any medications comes into your office because she noticed a tender lump in her left breast starting approximately one month ago. She is worried because she has an aunt who had breast cancer that was BRCA positive, though her mother is BRCA negative. Her periods have been regular since they started at the age of 13 and occur every 32 days. She is currently menstruating. She has three children aged 12, 9, and 4. On exam, her BMI is 32, up from 28 three years ago and her other vital signs are stable. On breast exam, you note a mobile rubbery mass of approximately 1 x 1cm and with regular borders that is tender to palpation. You appreciate no axillary adenopathy. The rest of her physical exam is unremarkable. Of the information provided, which of the following places this patient at increased risk for breast cancer?A. AgeB. WeightC. Parity historyD. Family history of cancerE. Age of menarche 2 PointsWhich statement is true?OA. The growth of suburbs caused many new types of business to dowell.OB. The growth of suburbs caused most businesses to fail.OC. The growth of suburbs meant that most new businesses were setup in the cities.O D. The growth of suburbs meant fewer job opportunities.SUBMIT Solve for x: 2 over x - 2 + 7 over x^2 - 4 = 5 over xA. x = -4/3 and x = 5B. x = -4/3 and x = 5C. x = 4/3 and x = 5D. x = 4/3 and x = 5 The ratio of the number of boys to the number of girls at school is 4:5. a. What fraction of the students are boys? b. If there are 120 boys, how many students are there altogether? * Quadrilateral ABCD is an isosceles trapezoid with median EF. Which of the following statements is true?Select the best answer from the choices provided.A. EF is parallel to the bases.B. EF = 2(AB + DC)C. 1/2EF = AB + DCD. EF =1/2(AD + CB) According to Holmes and Rahe, who developed the Social Readjustment Rating Scale, persons who experience a number of major life changes over the course of a year are likely to have what kind of experience in the next one-two years? Select one:a. Change of jobs more frequently than usual.b. Have a high probability of getting a divorce.c. Have a high probability of committing a crime.d. Experience more health problems than usual. The body weighing 2 kg moves through the horizontal surface and crosses the path x = 75 cm The coefficient of friction of the body and horizontal surface is 0.8. If the kinetic energy of the body in the starting position is 16J, how much will the kinetic energy of the body be in the definitive position? Valuetronics, an electronics company, is currently in the preproduction stage of launching one of its new stereo systems. In order to analyze the feasibility of the product, Valuetronics adopts an integrated system that allows it to manufacture the product before it physically exists, that is, the system allows Valuetronics to finalize the design of the stereo, analyze it, and do a test-run. In this context, Valuetronics is using a:____________.a. enterprise resource planning (ERP) system b. flexible manufacturing system (FMS) c. computer-aided engineering (CAE) system d. computer-aided manufacturing (CAM) system Marge has 4 more than 2 times as many books as Susan. If Marge has 22 books and x is the number of books that Susan has, the relationship can be written as 4 + 2x = 22. How many books does Susan have? 9-114. While setting up a mathematical sentence to solve a problem, Paulina and Aliya came up with the equations below. Since the equations did not look alike, the girls turned to you for help. Paulina: 4x+2y=6 Aliya: 12x+6y=18 After which event did Christians start to learn more about Muslim advances in science and mathematics?A) CrusadesB) Battle of ToursC) Thirty years warD) Battle of Hastings Multiply 2 1/2 x 3 2/3 6 yd11 yd16 yd5 yd13 yd 1. Find n.2 ftArea = 28 sq ft please help!!!!!!! (attached to the file)