Answer: 0.8664
Step-by-step explanation:
Given : Mean : [tex]\mu = 60,000\text{ miles}[/tex]
Standard deviation : [tex]\sigma = 4,000\text{ miles}[/tex]
Sample size : [tex]n=40[/tex]
The formula to calculate the z-score :-
[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
For x= 59,050
[tex]z=\dfrac{59050-60000}{\dfrac{4000}{\sqrt{40}}}\approx-1.50[/tex]
For x= 60,950
[tex]z=\dfrac{60950-60000}{\dfrac{4000}{\sqrt{40}}}\approx1.50[/tex]
The P-value : [tex]P(-1.5<z<1.5)=P(z<1.5)-P(z<-1.5)[/tex]
[tex]=0.9331927-0.0668072=0.8663855\approx0.8664[/tex]
Hence, the likelihood of finding that the sample mean is between 59,050 and 60,950=0.8664
The likelihood of finding that the sample mean is between 59,050 and 60,950 miles, according to the given normal distribution, is approximately 86.64%.
Explanation:To solve this problem, we consider that the population mean is 60,000 and the standard deviation is 4,000. If we choose a sample of 40 tires, the standard deviation of the sample mean (standard error) is the standard deviation divided by the square root of the sample size (σ/√n).
This gives us 4,000/√40 = 633. The z-scores for the lower and upper bounds of our interval (59,050 and 60,950) are calculated by subtracting the population mean from these values, and dividing by the standard error. For 59,050: (59,050 - 60,000)/633 = -1.5 and for 60,950: (60,950 - 60,000)/633 = 1.5.
Using standard normal distribution tables, we know that the probability associated with a z-value of 1.5 is 0.9332. Since the normal distribution is symmetric, the probability associated with -1.5 is also 0.9332. Therefore, the probability that the sample mean lies between 59,050 and 60,950 is 0.9332 - (1 - 0.9332) = 0.8664 or approximately 86.64%.
Learn more about Normal Distribution here:https://brainly.com/question/34741155
#SPJ3
1 point) Let H be the set of all points in the second and fourth quadrants in the plane V That is, H- (e, y)y 0) Is H a subspace of the vector space V? R2 1. Does H contain the zero vector of V? choose 2. Is H closed under addition? If it is, enter CLOSED. If it is not, enter two vectors in H whose sum is not in H, using a comma separated list and syntax such as 3. Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R and a vector in H whose product is not in H, using a comma separated list and syntax such as 2, 3, 4> 4. Is H a subspace of the vector space V? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3 choose
Answer:
Step-by-step explanation:
What level of math is this?
To determine if H is a subspace, we need to check three properties: the presence of the zero vector, closure under vector addition, and closure under scalar multiplication.
1. Does H contain the zero vector of V? The answer is no, because the zero vector (0,0) does not lie in the second or fourth quadrants.
2. Is H closed under addition? The answer is no. For example, the vectors (-1, 1) from the second quadrant and (-1, -1) from the fourth quadrant would sum to (-2, 0), which is not part of either quadrant.
3. Is H closed under scalar multiplication? The answer is no, as multiplying a vector in H by a negative scalar will place it in the opposite quadrant, which is outside H. For example, the scalar -1 and the vector (-1, 1) will yield the vector (1, -1), which is not in the second or fourth quadrants.
4. Is H a subspace of the vector space V? The answer is no, because it does not meet the required properties mentioned in parts 1-3.
Electric power costs 17.8 cents per kWh in Los Angeles in July 2017 (compared to the national average of 14.3 cents per kWh). How much did it cost (in cents) to run a 1500 W hair dryer for 10 minutes in Los Angeles during July 2017? Assume 3 significant digits in your answer.
The cost to run a 1500 W hair dryer for 10 minutes in Los Angeles during July 2017 is:
4.45 cents
Step-by-step explanation:Electric power costs 17.8 cents per kWh in Los Angeles in July 2017.
Now we are asked to find the cost to run a 1500 W hair dryer for 10 minutes in Los Angeles during July 2017.
We know that: 1 w=0.001 kW
This means that:
1500 W= 1.500 kW
Also, it is used for 10 minutes
i.e. 1/6 hours
Hence, the electric power used to run the hair dryer is: 1.500×(1/6)
i.e. Electric power to used by hair dryer is: 0.25 kWh
Cost of 1 kwh is: 17.8 cents
This means that cost of 0.25 kwh is: 17.8×0.25
= 4.45 cents
Hence, the answer is:
4.45 cents
A. The point-slope form of the equation of a line is y ? y1 = m(x ? x1), where m is the slope and (x1, y1) is a point on the line. Write the equation of the line in point-slope form perpendicular to the graph of y = 1/2x -7 passing through the point (6, 5).
B. Write an equation of the perpendicular bisector of JK, where J = (?8, 4) and K = (4, 4).
Can you show work please.
Answer:
A.
[tex]y - 5 = -2(x-6)[/tex]
Negative reciprocal gives you the perpendicular slope so negative reciprocal of 1/2 is -2.
Then apply point-slope form.
B. The answer is x = 6.
The midpoint of JK is
[tex]\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) = \left( \frac{8+ 4}{2}, \frac{4 + 4}{2} \right) = \left(6,4\right)[/tex]
The line that goes through JK is just a horizontal line [tex]y = 4[/tex] because the y-coordinate does not change. So its perpendicular bisector is the vertical line that goes through the x-coordinate of the midpoint, that is, [tex]x = 6[/tex].
a+b= 17, ab=70, Find the value of |a-b|
Answer:
3
Step-by-step explanation:
there are two solutions in the given system of two equations:
a=10; b=7 and a=7; b=10.
|a-b|=3.
what is the y-coordinate of the vertex of the parabola?
f(x)= -x^2 - 2x +6
Answer:
7
Step-by-step explanation:
The function can be written in vertex form as ...
f(x) = -(x +1)^2 +7
The vertex is then identifiable as (-1, 7). The y-coordinate is 7.
_____
Vertex form is ...
f(x) = a(x -h)^2 +k
where "a" is the vertical scale factor, and (h, k) is the vertex point. It is convenient to arrive at this form by factoring "a" from the first two terms, then adding and subtracting the square of the remaining x-coefficient inside and outside parentheses.
f(x) = -(x^2 +2x) +6
f(x) = -(x^2 +2x +1) + 6 -(-1) . . . . completing the square
f(x) = -(x +1)^2 +7 . . . . . . . . . . . . vertex form; a=-1, (h, k) = (-1, 7)
The y-coordinate of the vertex of the parabola defined by the function f(x)= -x² - 2x + 6 is 3. This is found by using the vertex formula and then substituting the x-coordinate back into the original function.
To find the y-coordinate of the vertex of the parabola defined by the quadratic function f(x)= -x² - 2x + 6, we can use the vertex formula for a parabola in standard form, which is y = ax² + bx + c. The x-coordinate of the vertex is given by the formula -b/(2a), and the y-coordinate can then be calculated by applying the x-coordinate to the original function.
First, let's find the x-coordinate of the vertex:
a = -1 (coefficient of x²)b = -2 (coefficient of x)x-coordinate of the vertex, x_v = -(-2)/(2*(-1)) = -(-2)/(-2) = 1
Now, substitute x_v back into the function to find the y-coordinate:
y-coordinate of the vertex, y_v = f(1) = -1² - 2*1 + 6 = -1 - 2 + 6 = 3
Therefore, the y-coordinate of the vertex is 3.
If the nominal interest rate is 6 percent and the rate of inflation is 10 percent, then the real interest rate is A. -16 percent. B. 4 percent. C. -4 percent. D. 16 percent.
Answer: C. -4 percent
Step-by-step explanation:
Nominal interest rate is the interest rate before taking inflation into account.
Real interest rate takes the inflation rate into account.
The equation that links all three values is
nominal rate - inflation rate = real rate
6 - 10 = -4
-4 percent
The real interest rate can be calculated by subtracting the inflation rate from the nominal interest rate. In this case, the real interest rate is -4%, suggesting an investor would lose value due to inflation.
Explanation:The calculation of the real interest rate involves subtracting inflation from the nominal interest rate. This is essential since inflation erodes the purchasing power of money, making it an important factor to consider when dealing with interest rates. In this case, you need to subtract the inflation rate (10 percent) from the nominal interest rate (6 percent).
So, performing this calculation:
6% (Nominal Interest Rate) - 10% (Inflation Rate) = -4%
Thus, in this scenario, the correct option would be C. -4 percent. This implies that an investor would actually lose ground when considering the effect of inflation.
Learn more about Real Interest Rate here:https://brainly.com/question/34393655
#SPJ3
Please help me! Struggling with Geometry! 45 points (proofs)
Answer:
Step-by-step explanation:
It’s nothing
The long jump record, in feet, at a particular school can be modeled by f(x) = 19.6 + 2.5ln(x + 1) where x is the number of years since records began to be kept at the school. What is the record for the long jump 11 years after record started being kept? Round your answer to the nearest tenth.
Answer:
25.8
Step-by-step explanation:
Use the formula for the present value of an ordinary annuity or the amortization formula to solve the following problem. PV $8,000; i 0.01; PMT $400; n = ? (Round up to the nearest integer.) n=
Answer:
n = 22
Step-by-step explanation:
We will use the formula for the present value of an ordinary annuity :
[tex]P.V.=P(\frac{1-(1+r)^{-n}}{r})[/tex]
where P = periodic payment
r = rate per period
n = number of periods
Given P = PMT = $400, P.V. = $8,000, i = 0.01, and we have to find n.
Now we put the values in the formula
[tex]8000=400(\frac{1-(1+0.01)^{-n}}{0.01})[/tex]
After rearranging we have
[tex]\frac{8000\times 0.01}{400}=1-1.01^{-n}[/tex]
[tex]20\times 0.01=1-1.01^{-n}[/tex]
[tex]1.01^{-n}[/tex] = 1 - 0.2
[tex]1.01^{-n}[/tex] = 0.8
Taking log on both sides
-n log 1.01 = log 0.8
[tex]n=\frac{-log0.08}{log1.01}[/tex] = 22.4257
Therefore, n = 22
So there are total 22 payments
Five infinity stones cost $16.80. What is the price per infinity stone ?
Answer:
The price is $3.36 per infinity stone
Step-by-step explanation:
we know that
Five infinity stones cost $16.80
so
To find the price of each infinity stone (unit rate) divide the total cost by five
[tex]\frac{16.80}{5} =3.36\frac{\$}{infinity\ stone}[/tex]
What is the length of side s of the square shown below?
Answer:
C
Step-by-step explanation:
The Pythagorean Theorem tells us that
a^2 + b^2 = c^2
a = b = s because a right angle and a 45 degree angle leaves only 45 degrees which means that both acute angles are 45 degrees
c = 2
2s^2 = 2^2 Divide by 2
s^2 = 4/2
s^2 = 2 Take the square root of both sides.
sqrt(s^2) = sqrt(2)
s = sqrt(2)
Answer:
C: square root of 2.
Step-by-step explanation:
Ignore the picture that shows option D, jcherry99's description is correct.
Formulate the recursive formula for the following geometric sequence.
{-16, 4, -1, ...}
Answer that question with all work shown. Thanks
Answer:
a_n=-\frac{1}{4 a_{n-1}
Step-by-step explanation:
The recursive formula for the geometric sequence is given by:
a_n = a_{n-1} \cdot r
where,
r is the common ratio terms
-16, 4, -1, ...
This is a geometric sequence.
Here, and
Since,
ans so on .....
Substitute the given values we have;
⇒
Therefore, the recursive formula for the following geometric sequence is,
Answer:
[tex]A_n= A_{n-1} (\frac{-1}{4})[/tex]
Step-by-step explanation:
Formulate the recursive formula for the following geometric sequence.
{-16, 4, -1, ...}
Here the common difference of two terms are not same.
LEts find the common ratio. To find common ratio, divide the second term by first term
[tex]\frac{4}{-16} =\frac{-1}{4}[/tex]
[tex]\frac{-1}{4} =\frac{-1}{4}[/tex]
So common ratio is -1/4
Recursive formula is
[tex]A_n= A_{n-1} (r)[/tex]
'r' is the common ratio.
Recursive formula becomes
[tex]A_n= A_{n-1} (\frac{-1}{4})[/tex]
3x3 matrix A. r1(3 -2 0) r2(0 1 1) r3(2 -1 0). don't calculate A^-1 or raise any matrix to a power first. calculate det(2A^-2)
Answer with explanation:
For, a 3 × 3, matrix
[tex]r_{1}=(3,-2,0)\\\\r_{2}=(0,1,1)\\\\r_{3}=(2,-1,0)[/tex]
which are entries of First, Second and Third Row Respectively.
So, if written in the form of Matrix (A)
[tex]A=\left[\begin{array}{ccc}3&-2&0\\0&1&1\\2&-1&0\end{array}\right][/tex]
⇒Adjoint A= Transpose of Cofactor of A
[tex]a_{11}=1,a_{12}=2,a_{13}=-2\\\\a_{21}=0,a_{22}=0,a_{23}=-1\\\\a_{31}=-2,a_{32}=- 3,a_{33}=3\\\\Adj.A=\left[\begin{array}{ccc}1&0&-2\\2&0&-3\\-2&-1&3\end{array}\right][/tex]
⇒≡ |Adj.A|=1 ×(0-3) -2×(-2-0)
= -3 +4
=1 --------(1)
⇒For, a Matrix of Order, 3 × 3,
| Adj.A |=| A|²---------(2)
[tex]|2 A^{-2}|=2^3\times |A^{-2}|\\\\=2^3\times |A|^{-2}\\\\=\frac{8}{|A^{2}|}\\\\=\frac{8}{|Adj.A|}\\\\=\frac{8}{1}\\\\=8[/tex]
--------------------------------------------(Using 1 and 2)
[tex]\rightarrow|2 A^{-2}|=8[/tex]
translate the phrase into an Algebraic Expression and Simplify : The Result of Increasing the product of a number x and 9 by 4
Answer:
[tex]y =( x +9 )\times 4[/tex]
simplified
[tex]y = 4x + 48[/tex]
Step-by-step explanation:
first know that the result would be y or f(x), because it's the function applied to x that makes it y. so its starts with either y= or, f(x)=
increasing by a number is multiplying, the word and is used for addition so
+9 ×4 will be in the equation
used PEMDAS, distribution, and combining like terms to simplify
The n candidates for a job have been ranked 1, 2, 3, . . . , n. Let X be the rank of a randomly selected candidate, so the X has the pmf p(x) = 1/n, if x = 1, 2, 3 . . . n, 0, otherwise. This is called the discrete uniform distribution. Compute E(X) and Var(X). (Hint: the sum of the first n positive integers is n(n + 1)/2, whereas the sum of their squares is n(n + 1)(2n + 1)/6.)
By definition of expectation,
[tex]\displaystyle E[X]=\sum_xx\,P(X=x)=\sum_{x=1}^n\frac xn=\frac{n(n+1)}{2n}=\boxed{\frac{n+1}2}[/tex]
and variance,
[tex]V[X]=E[(X-E[X])^2]=E[X^2-2X\,E[X]+E[X]^2]=E[X^2]-E[X]^2[/tex]
Also by definition, we have
[tex]E[f(X)]=\displaystyle\sum_xf(x)\,P(X=x)[/tex]
so that
[tex]E[X^2]=\displaystyle\sum_{x=1}^n\frac{x^2}n=\frac{n(n+1)(2n+1)}{6n}=\frac{(n+1)(2n+1)}6[/tex]
and finally,
[tex]V[X]=\dfrac{(n+1)(2n+1)}6-\dfrac{(n+1)^2}4=\boxed{\dfrac{n^2-1}{12}}[/tex]
Answer:
[tex]\frac{n^{2} - 1 }{12}[/tex]
Step-by-step explanation:
Data:
We collect the variables and simplify the result:
E[X] = [tex]\SIGMA \\[/tex]Σ x · p(x) = [tex]\frac{1}{n}[/tex]= ....
E[X²] =∑ x²· p(x) = ∑x²·[tex]\frac{1}{n}[/tex] = ....
Var [X] = E[X²] - E[X]² = ...
We then use the identities:
∑x = [tex]\frac{n(n+1)}{2}[/tex] and ∑ x² = [tex]\frac{n(n+1)(2n+1)}{6}[/tex]
simplifying the identities above gives:
[tex]\frac{n^{2-1} }{12}[/tex]
the sum of five and a number n is at least 12
Answer:
Step-by-step explanation:
If you simply need to identify the inequality, it is
n + 5 ≥ 12
since "sum" means to add and "at least" is the inequality sign that is greater than or equal to.
If you are solving it, then the solution set will be
n ≥ 7
Answer:
5 + n ≥ 12.
Step-by-step explanation:
Given : sum of five and a number n is at least 12.
To find : Write expression .
Solution : We have given sum of five and a number n is at least 12.
According to given statement :
Sum of 5 and n
5 + n
At least 12 mean the number is 12 or greater than 12
So ,
5 + n ≥ 12.
Therefore, 5 + n ≥ 12.
We are given three coins: one has heads in both faces, the second has tails in both faces, and the third has a head in one face and a tail in the other. We choose a coin at random, toss it, and it comes heads. What is the probability that the opposite face is tails?
Answer:
50% chance
Step-by-step explanation:
Answer:
1/3
Step-by-step explanation:
There are 3 coins, and each coin has 2 possible outcomes. So there are a total of 6 possible outcomes.
Of these 6 outcomes, 3 are heads. Of these 3, only 1 has tails on the opposite face.
So the probability is 1/3.
We can also show this using conditional probability:
P(A|B) = P(A∩B) / P(B)
Probability that A occurs, given that B has occurred = Probability that both A and B occur / Probability that B occurs
Here, A = tails on opposite face and B = heads.
P(A|B) = (1/6) / (3/6)
P(A|B) = 1/3
Write in if-then form: “Being 35 years old is a necessary condition for being President.”
Graph y ≥ -x^2 - 1. Click on the graph until the correct graph appears.
Answer:
The graph in the attached figure
Step-by-step explanation:
we have
[tex]y\geq -x^{2}-1[/tex]
The solution of the inequality is the shaded area above the solid line of the equation of the parabola [tex]y= -x^{2}-1[/tex]
The vertex of the parabola is the point (0,-1)
The parabola open downward (vertex is a maximum)
using a graphing tool
see the attached figure
The perimeter of a playing field for a certain sport is 216 ft. The field is a rectangle, and the length is 48 ft longer than the width. Find the dimensions.
Answer:
The length is 78 feet and the width is 30 feet.
Step-by-step explanation:
The perimeter of a rectangle can be calculated with this formula:
[tex]P=2l+2w[/tex]
Where "l" is the length and "w" is the width.
Since we know that the perimeter of the playing field is 216 feet and its length is 48 feet longer than the width ([tex]l=w+48[/tex]), we can substitute them into the formula and solve for "w":
[tex]216=2(w+48)+2w\\\\216=2w+96+2w\\\\216-96=4w\\\\\frac{120}{4}=w\\\\w=30\ ft[/tex]
Finally, substitute the width into [tex]l=w+48[/tex] to find the length. This is:
[tex]l=30+48\\\\l=78\ ft[/tex]
Final answer:
To find the dimensions of the playing field, we identify the width as w feet and the length as w + 48 feet. By using the perimeter formula and solving the resulting equation, we determine that the width is 30 feet and the length is 78 feet.
Explanation:
The student is asking to find the dimensions of a rectangle given its perimeter and the relationship between its length and width. The perimeter of the rectangle is known to be 216 feet, and the length is specified to be 48 feet longer than the width.
Let's call the width w feet. Then, the length would be w + 48 feet. Since the perimeter of a rectangle is given by the formula P = 2(l + w), where P is the perimeter, l is the length, and w is the width, we can set up the following equation:
2(w + w + 48) = 216
Solving this equation, we find:
4w = 120
Therefore, the width of the playing field is 30 feet. To find the length, add 48 feet to the width:
Length = w + 48 = 30 + 48 = 78 feet.
The dimensions of the playing field are 30 feet in width and 78 feet in length.
The population of a culture of cells grows according to the function P(t)= 90t/ t + 1, where t> or =0 is measured in weeks. Complete parts (a) and (b) below.
What is the average rate of change in the population over the interval [0,24]?
Answer:
The average rate of change is [tex]\frac{18}{5}[/tex]
Step-by-step explanation:
Given function that shows the population of a culture of cells,
[tex]P(t)=\frac{90t}{t+1}------(1)[/tex]
Where, t represents the number of weeks.
Thus, the average rate of change in the population over the interval [0,24],
[tex]m=\frac{P(24)-P(0)}{24-0}[/tex]
From equation (1),
[tex]=\frac{\frac{90\times 24}{24+1}-\frac{90\times 0}{0+1}}{24}[/tex]
[tex]=\frac{\frac{2160}{25}-\frac{0+1}{0}}{24}[/tex]
[tex]=\frac{2160}{25\times 24}[/tex]
[tex]=\frac{2160}{600}[/tex]
[tex]=\frac{18}{5}[/tex]
how the graph does the graph behave as x approaches positive or negative infinity. does it keep going at the same rate or does it approach a value but never touch it ?
The graph approaches positive infinity at a constant rate.
The end behavior of this graph is:
As x → -∞, f(x) → +∞
For the first notation it looks at the behavior of the left side of the graph. As x approaches negative infinity (or positive xs) y or f(x) approaches positive infinity (or positive ys)
and
As x → +∞, f(x) → +∞
For the second notation it looks at the behavior of the right side of the graph. As x approaches positive infinity (or positive x's) y or f(x) approaches positive infinity (or positive ys)
Hope this helped!
~Just a girl in love with Shawn Mendes
Answer: The graph approaches positive infinity at a constant rate.
Step-by-step explanation:
Your manager asks you to find out how unusual it is among baggage delays of exactly 10 minutes that the mechanical delay is 8 minutes or more. That is, given that the total delay is 10 minutes, what is the probability that the mechanical delay is > 8 minutes
Answer:
481/600
Step-by-step explanation:
Since the delay is exactly 10 min, or 600 seconds, the delay must be more than 480. Taking this, the probability of it not being 480 seconds or less becomes 481/600. (Since you can't have 480)
The probability is 481/600
Since the delay is exactly 10 min, or 600 seconds, the delay must be more than 480. Taking this, the probability of it not being 480 seconds or less becomes 481/600. (Since you can't have 480)
What is problem-solving?Problem-solving is the act of defining a problem; figuring out the purpose of the trouble; identifying, prioritizing, and selecting alternatives for an answer; and imposing an answer.
Problem-solving starts with identifying the issue. As an example, a trainer may need to parent out a way to improve a scholar's overall performance on a writing talent test. To do that, the instructor will overview the writing exams looking for regions for improvement.
Learn more about Problem-solving here: brainly.com/question/13818690
#SPJ2
if u are 4/7 mile from your home and u can walk 4 5/7 miles per hour , How long will it take for u to walk to your home ????? A) 4/33 hour B) 80/49 hours C) 20/231 hour D) 80/49 hours E) 132/49 hours Which one is the best Answer ..
Answer:
A) 4/33 hour
Step-by-step explanation:
This is a distance = rate * time problem
We are given the distance and the rate, now we need to solve for the time:
[tex]\frac{4}{7}=4\frac{5}{7}t[/tex]
Let's change that mixed fraction into an improper one:
[tex]\frac{4}{7}=\frac{33}{7}t[/tex]
Now to solve for t we can multiply the 33/7 by its recirocal:
[tex](\frac{7}{33})\frac{4}{7}=\frac{33}{7}(\frac{7}{33})t[/tex]
Multiplying a fraction by its reciprocal = 1, so that leaves only a t on the right:
[tex](\frac{7}{33})\frac{4}{7}=t[/tex]
The 7's cancel out on the left and that leaves you with
[tex]t=\frac{4}{33}hr[/tex]
Multiply Conjugates
(r+1/4)r-1/4)
Answer:
[tex]\large\boxed{\left(r+\dfrac{1}{4}\right)\left(r-\dfrac{1}{4}\right)=r^2-\dfrac{1}{16}}[/tex]
Step-by-step explanation:
[tex]\text{Use}\ (a+b)(a-b)=a^2-b^2\\\\\left(r+\dfrac{1}{4}\right)\left(r-\dfrac{1}{4}\right)=r^2-\left(\dfrac{1}{4}\right)^2=r^2-\dfrac{1^2}{4^2}=r^2-\dfrac{1}{16}[/tex]
[tex](a+b)(a-b)=a^2-b^2[/tex]
[tex]\left(r+\dfrac{1}{4}\right)\left(r-\dfrac{1}{4}\right)=r^2-\dfrac{1}{16}[/tex]
Two fire-lookout stations are 190 miles apart, with station A directly south of station B. Both stations spot a fire. The bearing of the fire from station A is Upper N 55 degrees Upper E and the bearing of the fire from station B is Upper S 60 degrees E. How far, to the nearest tenth of a mile, is the fire from each lookout station?
Step-by-step explanation:
Let's say the position of the fire is point C.
Bearings are measured from the north-south line. So ∠BAC = 55°, and ∠ABC = 60°.
Since angles of a triangle add up to 180°, ∠ACB = 65°.
Using law of sine:
190 / sin 65° = a / sin 60° = b / sin 55°
Solving:
a = 181.6
b = 171.7
Station A is 181.6 miles from the fire and station B is 171.7 miles from the fire.
Find(f/g)(x)for the following functions.
Answer:
[tex]x^{2} \neq -\frac{1}{14}[/tex]
Step-by-step explanation:
The equation will hold true as long as the denominator does not equal zero:
so take the denominator and set it equal to zero and find x. when you find x, that will be your answer:
-14x^2 -1=0
-14x^2=1
-x^2=1/14
x^2=-1/14
You are ordering a hamburger and can get up to 7 toppings, but each topping can only be used once. You tell the cashier to surprise you with the toppings you get. What is the probability that you get 1 topping? Express your answer as a fraction or a decimal number rounded to four decimal places.
Final answer:
The probability of getting exactly one topping on a hamburger, when up to 7 toppings are possible and each choice is unique, is 1 in 8 or 0.125.
Explanation:
When considering the probability of getting exactly one topping on a hamburger when the toppings could range from 0 to 7, and each topping is unique, we apply the concept of theoretical probability. The scenario implies there are 8 different events that could occur - getting no toppings to getting all 7 toppings. We are interested in the event where we get exactly one topping. Since each of these events - from getting 0 toppings to 7 toppings - is equally likely, the probability of getting exactly one topping is 1 in 8 or 0.125, when expressed as a decimal number rounded to four decimal places.
Smalltown Elevator produces elevator rails. To meet specifications, an elevator rail must be between 0.995 inches and 1.005 inches in diameter. Suppose that the diameter of an elevator rail follows a normal random variable with mean of 1 inch and standard deviation of 0.003 inches. Rounded to the nearest one tenth of one percent, what fraction of all elevator rails will meet specifications?
Answer: 90.5%
Step-by-step explanation:
Given: Mean : [tex]\mu = 1\text{ inch}[/tex]
Standard deviation : [tex]\sigma = 0.003\text{ inch}[/tex]
The formula to calculate z is given by :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x= 0.995
[tex]z=\dfrac{0.995-1}{0.003}=-1.66666666667\approx-1.67[/tex]
The P Value =[tex]P(z<-1.67)=0.0474597[/tex]
For x= 1.005
[tex]z=\dfrac{1.005-1}{0.003}=1.66666666667\approx1.67[/tex]
The P Value =[tex]P(z<1.67)= 0.9525403[/tex]
[tex]\text{Now, }P(0.995<X<1.005)=P(X<1.005)-P(X<0.995)\\\\=P(z<1.67)-P(z<-1.67)\\\\=0.9525403-0.0474597=0.9050806[/tex]
In percent ,
[tex]P(0.995<X<1.005)=0.9050806\times100=90.50806\%\approx90.5\%[/tex]
the probability that an elevator rail will meet the specifications is about 90.5%, which is 0.9525 - 0.0475.
The student is asking for the fraction of all elevator rails produced by Smalltown Elevator that will meet the given specifications, assuming that the diameter of an elevator rail follows a normal distribution with a mean of 1 inch and a standard deviation of 0.003 inches. To meet specifications, the diameter must be between 0.995 inches and 1.005 inches.
The z-score for the lower specification limit (0.995 inches) is calculated as: (0.995 - 1) / 0.003. This gives us a z-score of -1.67. The z-score for the upper specification limit (1.005 inches) is calculated as: (1.005 - 1) / 0.003. This gives us a z-score of 1.67.
Using the standard normal distribution table, we find that the cumulative probability for a z-score of 1.67 is approximately 0.9525, and for -1.67 is approximately 0.0475. Thus, the probability that an elevator rail will meet the specifications is about 90.5%, which is 0.9525 - 0.0475.
For each of the following statements, state whether it is true (meaning, always true) or false (meaning, not always true): Let X and Y be two binomial random variables. (a) If X and Y are independent, then X+Y is also a binomial random variable.
Answer:
yes
Step-by-step explanation:
it is absolutely true that biononmials always gives biononmials when added
If X and Y are independent, then X+Y is not a binomial random variable and so it is a false statement.
What is the sum of independent binomial random variables?This term is known to be a binomial random variable that occurs when all the parts of the variables is said to have similar success probability.
The best method to check if two random variables are said to be independent is through the calculation of the covariance of the two specific random variables.
Note that if If the variables are said to be independent (X and Y), then their difference is said to be not binomially distributed.
Learn more about binomial random variable from
https://brainly.com/question/14446233