Answer:
d. 1/4
Step-by-step explanation:
The common ratio will be the ratio of any two adjacent terms:
(3/12)/(3/3) = (1/4)/1 = 1/4
Answer:
d
Step-by-step explanation:
If the sequence is geometric then a common ratio r will exist between consecutive terms.
[tex]\frac{3}{12}[/tex] ÷ 1 = [tex]\frac{3}{12}[/tex] = [tex]\frac{1}{4}[/tex]
[tex]\frac{3}{48}[/tex] ÷ [tex]\frac{3}{12}[/tex] = [tex]\frac{1}{4}[/tex]
[tex]\frac{3}{192}[/tex] ÷ [tex]\frac{3}{48}[/tex] = [tex]\frac{1}{4}[/tex]
[tex]\frac{3}{768}[/tex] ÷ [tex]\frac{3}{192}[/tex] = [tex]\frac{1}{4}[/tex]
A common ratio of r = [tex]\frac{1}{4}[/tex]
Hence sequence is geometric
after undergoing a displacement of 18.4m, an object has a final position of 53.5.what was its initial position (unit=m)
Answer:
The initial position was 35.1 m
Step-by-step explanation:
Let
x -----> the initial position
we know that
The linear equation that represent this problem is equal to
x+18.4=53.5
Solve for x
Subtract 18.4 both sides
x=53.5-18.4
x=35.1 m
How do you do this question?
Answer:
(B) only I and II
Step-by-step explanation:
An odd relation is symmetrical about the origin. All of the relations are odd.
An even relation is symmetrical about the y-axis. Only the first two relations are even.
_____
The graph shows the first relation is that of a circle. It is symmetrical about its center at the origin and about any diameter, including the y-axis.
The second relation is a degenerate hyperbola. It graphs as the pair of lines y=x and y=-x. It is symmetrical about both the origin and the y-axis. (It also has other lines of symmetry.)
The third relation is a line with slope -1 (represented by dots). It is symmetrical about the origin, but not the y-axis. It is only an odd relation.
Find the area of the kite
For this case we have that the area of the kite is given by the area of two triangles, the triangles share the same base of 3 + 3 = 6 meters and one has height of 2m and the other height of 4m.
So, the total area is given by:
[tex]A = \frac {1} {2} * 6 * 2 + \frac {1} {2} * 6 * 4\\A = \frac {1} {2} 12+ \frac {1} {2} *24\\A = 6 + 12\\A = 18[/tex]
Thus, the area of the kite is [tex]18m ^ 2[/tex]
ANswer:
[tex]18m ^ 2[/tex]
Muscles, a membership-only gym is hoping to open a new branch in a small city in Pennsylvania that currently has no fitness centers. According to their research approximately 12,600 residents live within driving distance of the gym. Muscles sends out surveys to a sample of 300 randomly selected residents in this area (all of who respond) and finds that 40 residents say they would visit a gym if one was located in their area. Based on the past survey research, Muscles estimates that approximately 30% of these respondents would actually join the gym if they opened one in the area. Based on this information and the results of the sample survey, about how many residents should Muscles expect to join its new branch?
A) 134
B) 504
C) 1,680
D) 3,780
Answer:
B) 504
Step-by-step explanation:
They should expect 30% of 40 out of every 300 of the 12,600, so ...
0.30 × 40/300 × 12,600 = 504
About 504 residents might be expected to join.
To estimate the number of residents that Muscles can expect to join its new branch, multiply the total number of residents within driving distance by the percentage of respondents who would actually join the gym. Muscles can expect about 1,680 residents to join its new branch.
Explanation:
To estimate the number of residents that Muscles can expect to join its new branch, we can multiply the total number of residents within driving distance by the percentage of respondents who would actually join the gym.
First, we need to calculate the percentage of respondents who would join the gym:
Percentage = (Number of respondents who would join the gym / Total number of respondents) * 100
Percentage = (40 / 300) * 100 = 13.33%
Next, we multiply the estimated percentage by the total number of residents within driving distance:
Number of residents who would join the gym = (Percentage / 100) * Total number of residents within driving distance
Number of residents who would join the gym = (13.33 / 100) * 12,600 = 1,678.5
Therefore, Muscles can expect about 1,680 residents to join its new branch.
Learn more about Calculating the number of residents who would join the gym here:https://brainly.com/question/35865378
#SPJ2
The parabola opens: y=√x-4 (principal square root) up down right left
Answer:
right towards positive x axis
Step-by-step explanation:
In order to find the orientation of the parabolas we can follow following steps.
1. if in the equation x is squared , the parabola opens up. Also if its coefficient is negative it opens down.
2. If y is squared , the parabola opens right , and its coefficient is negative , it opens left
but before that we have to convert our function in standard form of the parabola. Our equation is
[tex]y=\sqrt{x-4}[/tex]
hence we square on both sides
[tex]y^2=x-4[/tex]
which is now into one of the standard form of a parabola. here y is squared and its coefficient is not negative hence it opens towards right.
Please help me with this problem
For a system of linear equations to have a solution, it means that they would cross over at some point, thus if we are looking for a system of linear equations that do not have a solution (ie. they do not cross over), we are looking for two parallel lines.
Now for two lines to be parallel, they must have the same gradient. Thus, we must find the value of a for which both the equations have the same gradient. In order to do this, we should first write both equations in the form y = mx + c, where m is the gradient and c the y-intercept.
1) Equation 1:
(1/2)x - (2/3)y = 7
(3/4)x - y = 21/2 (Multiply both sides by 3/2)
(3/4)x = 21/2 + y (Add y to both sides)
(3/4)x - 21/2 = y (Subtract 21/2 from both sides)
Thus, the first equation may be written as y = (3/4)x - 21/2
2) Equation 2:
ax - 8y = -1
(a/8)x - y = -1/8 (Divide both sides by 8)
(a/8)x = -1/8 + y (Add y to both sides)
(a/8)x + 1/8 = y (Add 1/8 to both sides)
Thus, the second equation may be written as y = (a/8)x + 1/8
Now that we know the equations of the two lines, we can compare their gradients.
Equation 1: m = 3/4
Equation 2: m = a/8
Remember, for the two lines to be parallel, their gradients must be the same. Thus, we must equate the two gradients above to find the value of a:
3/4 = a/8
24/4 = a (Multiply both sides by 8)
6 = a
Therefor, if the system of linear equations has no solution, and a is a constant, the value of a is 6 (answer D).
Determine the ordered pair numbers for each letter.
Point Ordered Pair
A __________
B ___________
C __________
D __________
E ___________
Answer:
A. (1,2)
B. (3,1)
C.(4,4)
D. (6,6)
E. (8,4)
Step-by-step explanation:
Answer:
Answer:
A. (1,2)
B. (3,1)
C.(4,4)
D. (6,6)
E. (8,4)
Step-by-step explanation:
(PLEASE dont ignore, NEED help❗️❗️❗️)
Answer:
Part 21) The distance from Football Field to the Park is [tex]10.95\ miles[/tex]
Part 22)
a) The value of a is [tex]20\ units[/tex]
b) The value of b is [tex]20.10\ units[/tex]
Step-by-step explanation:
Part 21)
Let
A -----> Football Field
B -----> Park
C -----> Home
D -----> Library
x -----> the distance from Football Field to the Park
In the right triangle ABD
[tex]cos(A)=10/x[/tex] -----> equation A
In the right triangle ABC
[tex]cos(A)=x/12[/tex] ----> equation B
equate equation A and equation B
[tex]10/x=x/12[/tex]
solve for x
[tex]x^{2}=120\\ \\x=10.95\ miles[/tex]
Part 22)
see the attached figure with letter to better understand the problem
step 1
Find the value of a
In the right triangle ABD
[tex]tan(ABD)=a/200[/tex] ----> equation A
In the right triangle ADC
[tex]tan(DAC)=2/a[/tex] ----> equation B
remember that angle ABD is congruent with angle DAC
therefore
equate equation A and equation B
[tex]a/200=2/a[/tex]
solve for a
[tex]a^{2}=400\\ \\a=20\ units[/tex]
step 2
Find the value of b
In the right triangle ADC
Applying the Pythagoras Theorem
[tex]b^{2}=a^{2}+2^{2}[/tex]
substitute the value of a
[tex]b^{2}=20^{2}+2^{2}[/tex]
[tex]b^{2}=404[/tex]
[tex]b=20.10\ units[/tex]
What is the circumstance of the circle P .
Answer:
6π ft
Step-by-step explanation:
I believe you meant CIRCUMFERENCE, the distance around the outer edge of this circle. The appropriate formula for the circumference is C = 2πr, where r is the radius. In the illustration we see that line segment PA has length 3 ft. Thus, the circumference of this circle is C = 2π(3 ft) = 6π ft (the next to last answer choice).
Answer:
=6π ft
Step-by-step explanation:
The circumference of a circle is calculated using the formula C=2πr where r is the radius and C the circumference of the circle.
In the circle provided r= 3ft
C= 2π × (3ft)
=6π ft
We do not use the approximate value of pi as the question demands us to leave pi unsolved.
6. what is the parimeter of triangle ABC
8. What is the value of x
Answer:
Perimeter = 20 units
x = 120°
Step-by-step explanation:
We are given a triangle ABC with known side lengths for all three sides and an inscribed circle.
We are to find the perimeter of triangle ABC and the value of x.
Perimeter of triangle ABC = 2 + 2 + 5 + 5 + 3 + 3 = 20 units
The kite shape at the end is a quadrilateral which has a sum of angles of 360 degrees.
Two out of four angles are right angles and one is 60 so we can find the value of x.
x = 360 - (90 + 90 + 60) = 120°
Answer:
6. 20 8. 120
Step-by-step explanation:
add the side measurements up of the triangle:
2+5+2+3+3+5=7+5+8=20
That shape where the x is a quadrilateral so is't interior angles must add to 360 so you have 90+90+60+x=360
Solving: 230+x=360
So x=360-240=120
Consider the quadratic function shown in the table below. x y 0 0 1 3 2 12 3 27 Which exponential function grows at a faster rate than the quadratic function for 0
Answer:
Graph D last graph
Step-by-step explanation:
Please help, lots of points! Please answer the question in the picture.
Answer:
Im positive the answer is A: x^3-3x+2
Answer:
a x^3-3x+2
Step-by-step explanation:
f(x) = -3x+2
g(x)= x^3
(f+g)(x)= -3x+2+x^3
= x^3-3x+2
what is the illustrated property of the statement
if 5n=15,then 15=5n ?
BRAINLIEST
This would be the symmetric property!
Hope this helped!
~Just a girl in love with Shawn Mendes
Answer:
The property illustrated here is symmetric property .
Explanation:
Symmetric Property of Equality. The following property: If if a = b then b = a. This is one of the equivalence properties of equality. See also. Reflexive property of equality, transitive property of equality, transitive property of inequalities.
There are 7 people on a cycling team. Their coach mush pick two of them to be Co - Captain. How many different pairs can the couch choose?
What is the value of the discriminant, b2 ? 4ac, for the quadratic equation 0 = x2 ? 4x + 5, and what does it mean about the number of real solutions the equation has?
Answer:
Discriminant D = -4 , no real solution
Step-by-step explanation:
Here our equation is
[tex]x^{2}-4x+5=0[/tex]
Discriminant (D)= [tex]b^2-4ac[/tex]
where
a = coefficient of term containing [tex]x^{2}[/tex]
b= coefficient of the term containing [tex]x[/tex]
c is the constant term
hence
a=1 , b =-4 and c=5
Hence
[tex]D=b^2-4ac\\D=(-4)^2-4*1*5\\D=16-20\\D=-4\\[/tex]
Hence D is less than 0 , therefore we do not have any real solution to this quadratic equation.
Answer:
b on edge-The discriminant is −4, so the equation has no real solutions.
Step-by-step explanation:
The table shows values for the functions f(x) and g(x). What are the solutions of X where f(x) = g(x)?
Step-by-step explanation:
You need to look for where f(x) and g(x) have the same value. That's at x=0 and x=2.
Answer: If you want to see in what value of x there is true that f(x) = g(x), you need to see in the table when f(x) and g(x) has the same value, this is lock in in table when the second and third values are the same.
This is true for x = 2, where f(2) = 0 and g(0) = 2, and for x = 0, wher f(0) = -3 and g(0) = -3.
Which equation gives the length of an arc, s, intersected by a central angle of 3 radians in a circle with a radius of 4 in.?
Answer:
12 in
Step-by-step explanation:
the arc length formula is s = rФ, where Ф is the central angle in radians.
Here, the arc length is s = (4 in)(3 radians) = 12 in
Answer:
D on edge
Step-by-step explanation:
PLEASE HELP ME
3x - 8y = 29
3x + y = -2
Question 4 options:
(0.5, -3.5)
(0, -2)
(0.75, -2.25)
(0, -3.75)
Answer:
Solution to pair of linear equations
Step-by-step explanation:
Subtract second equation from the first
[tex]3x-8y=29\\3x+ y=-2\\[/tex]
subtraction eqn 2 from 1 we get
[tex](3x-3x)+(-8y-y) = (29-(-2))\\-9y=31\\y=-\frac{31}{9} \\y= - 3.44[/tex]
In order to find the value of x we will put this value of y in anyof the above equation and solve it for x
[tex]3x-\frac{31}{9} = -2\\3x=-2+\frac{31}{9} \\3x=\frac{-18+31}{9} \\3x=\frac{13}{9} \\x=\frac{13}{9*3} \\x=\frac{13}{27} \\x=0.4814[/tex]
The Correct answer which is solution two the above linear pair of equations is
x=0.4814
y=-0.344
En una comunidad se intercambian productos alimenticios A, B, C y D con la modalidad del trueque, utilizando un mismo recipiente llamado a "medida" para cada producto. Si una medida de A más una de C se cambia por 5 medidas de B; una medida de A más una de B se cambia por una de C; y una medida de B más una de C se cambia por una de D, ?Cuántas medidas de B se cambian por una de D?
Answer: se necesitan 4 medidas de B para obtener una de D
Step-by-step explanation:
Las medidas serán entendidas como unidades de.. (A , B o C)
Entonces, de esta manera
1A + 1C = 5B
1A + 1B = 1 C
1B + 1C = 1D
Para lograr el cometido debo combinar las 3 relaciones de cambio de tal manera que se cancelen totalmente las partes A y C utilizando los multiplicadores adecuados
Entonces,
Uso 5 unidades de B para conseguir una de A y una de C
5B = 1A + 1C
Con esa A y otra de B obtengo otra C
1A + 1B = 1C
Por último con esas dos unidades de C y dos unidades mas de B consigo 2 de D
2B+ 2C = 2D
En total utilicé 5 + 1 + 2 = 8 unidades de B para obtener 2 de D
Entonces para obtener una de D necesitaría 4 unidades de B
please help asap urgent brainliest
Answer:
24 units cubed
Step-by-step explanation:
Volume is just length x width x height
so the width is 2 units and the height is 2 units and the length is 6 units: 2 x 2 = 4
4 x 6 = 24 units cubed
One unit cube = 1 by 1 by 1.
In the long picture, we have 2 by 2 by 6.
Volume = 2 x 2 x 6
Volume = 4 x 6
Volume = 24 units^3
Please answer this multiple choice question for 22 points and brainliest!!
Answer:
A
Step-by-step explanation:
Degree: that's the power on the x term. 2
Coefficient on the x term. That is 3
Constant term. That has no x -4
The minus is included.
The answer is A
Colin and Brian scored 59. Brian scored 59 more points than Colin ,so what are Colin and brain scored combine together ? Colin scored 62 points
Answer:
59
Step-by-step explanation:
Let c and b represent the scores of Colin and Brian respectively. Then
c + b = 59. Since brian scored 59 more points than Colin, that means c = 0 and b = 59. Their combined score is 0 + 59 = 59.
Brainliest!, write an algebraic expression to represent the verbal expression
the cube of the quotient of a number and 24
Answer:
(n/24)^3
Step-by-step explanation:
If "n" represents "a number," then "the quotient of a number and 24" means ...
(n/24)
The cube of that is ...
(n/24)^3
These tables represent a quadratic function with a vertex at (0, -1). What is the average rate of change for the interval from x = 9 to x = 10?
Answer:
A. -19
Step-by-step explanation:
There are lots of ways to get there. One of them is to realize that the average rate of change between two adjacent numbers is the negative of their sum. -(9+10) = -19.
__
Another is to extend the table:
6 to 7 : -13
7 to 8 : -15
8 10 9 : -17
9 to 10 : -19
__
Yet another is to write an equation for the function, and compute the average rate of change:
f(x) = -x^2 -1
average rate of change from 9 to 10 = (f(10) -f(9))/(10 -9) = (-101 -(-82))/(10 -9) = -19
Answer:
A. -19
Step-by-step explanation:
find f’(x).
1. f(x)=x^2-5x+1
2. f(x)=10/x
Answer:
1) 2x-5 2) -10/x^2
Step-by-step explanation:
Use power rule and constant rule for the first one:
1) f(x)=x^2-5x^1+1 (x^n)'=nx^(n-1) and (c)'=0
f'(x)=2x^1-5(1)x^0+0
f'(x)=2x-5(1) x^0=1
f'(x)=2x-5
Use just power rule for last one after a rewrite
2) f(x)=10/x
f(x)=10x^(-1) now use power rule
f'(x)=-10x^(-2) =-10/x^2
Michael has never taken a foreign language class, but is doing a story on them for the school newspaper. The school offers French and Spanish. Michael has a list of all 25 kids in the school enrolled in at least one foreign language class. He also knows that 18 kids are in the French class and 21 kids are in the Spanish class. If Michael chooses two kids at random off his list and interviews them, what is the probability that he will be able to write something about both the French and Spanish classes after he is finished with the interviews? Express your answer as a fraction in simplest form.
Answer:
112/125
Step-by-step explanation:
If we know all 25 are in at least one foreign language class then we can assume that exactly 4 of the 18 kids in French only take French to add up to 25 and this means that the 14 left take both classes. Now we can create three fractions for each case which are 7/25 (Spanish only) 4/25 (French only) and 14/25 (Both) and we can know say that if he goes down the route of getting a Spanish only as his first he needs one of the 18 other students the chances of this happening are 7/25 * 18/25 = 126/625 the same thing is done with the French only and we get 4/25 * 21/25 = 84/625 and then we have the possibility of just getting a student that does both which is 14/25 or 350/625. now we add them all together to get 560/625 which is simplified to 112/125.
Hope this helps please mark brainliest :)
What equation can be written from this sequence -50,-33,-16,1
Answer: [tex]a_n=-50+(n-1)17[/tex]
Step-by-step explanation:
The Arithmetic Sequence Formula is:
[tex]a_n=a_1+(n-1)d[/tex]
Where:
[tex]a_n[/tex] is the [tex]n^{th}[/tex] term of the sequence.
[tex]a_1[/tex] {a_1} is the first term of the sequence.
[tex]n[/tex] is the term position.
[tex]d[/tex] is the common difference of any pair of consecutive numbers.
We can observe that the first term is:
[tex]a_1=-50[/tex]
Now, we need to find "d". This is:
[tex]d=-16-(-33)\\d=-16+33\\d=17[/tex]
Then, substituting, we get the following equation:
[tex]a_n=-50+(n-1)17[/tex]
Blake and Ned work for a home remodeling business. They are putting the final touches on a home they renovated. Working alone, Blake can paint one room in 9 hours. Ned can paint the same room in 6 hours. How long will it take them to paint the room if they work together? (SHOW WORK)
Answer: 3.6 hours
Step-by-step explanation:
Given : The time taken by Blake to paint the room : [tex]t_1=9\text{ hours}[/tex]
The time taken by Ned to paint the room : [tex]t_2=6\text{ hours}[/tex]
Then , the time taken (T) by both of them to paint the room if they work together is given by :-
[tex]\dfrac{1}{T}=\dfrac{1}{t_1}+\dfrac{1}{t_2}\\\\\Rightarrow\ \dfrac{1}{T}=\dfrac{1}{9}+\dfrac{1}{6}\\\\\Rightarrow\dfrac{1}{T}=\dfrac{5}{18}\\\\\Rightarrow\ T=\dfrac{18}{5}=3.6\text{ hours}[/tex]
Hence, it will take 3.6 hours to the two companies if they working together .
How many real and imaginary solutions does the equation X^2+x=11 contains?
Answer:
Two
Step-by-step explanation:
x² + x = 11
The degree of a polynomial will always tell us the maximum number of solutions
You have a second degree polynomial, so there are two possible solutions.
They are
[tex]x = \dfrac{1}{2} \left (-1 - 3\sqrt{5} \right )[/tex]
and
[tex]x = \dfrac{1}{2} \left (-1 + 3\sqrt{5} \right )[/tex]
The diagram below shows that the zeros are at (-3.854,0) and (2,854, 0), which are the decimal equivalents of the roots.
What is the area of the figure? The diagram is not drawn to scale.
A. 528 in^2
B. 1,056 in^2
C. 1184 in^2
D. 1,221 in^2
Answer: The answer is B.
Step-by-step explanation:
Area of parallelogram = B*H (base times height)
Here, the base is 32 inches and the height is 33 inches.
32*33=1,056in^2
Answer:b
Step-by-step explanation:
We multiply base and height