Suzy drops a rock from the roof of her house. Mary sees the rock pass her 2.7 m tall window in 0.129 sec. From how high above the top of the window was the rock dropped? The acceleration of gravity is 9.8 m/s 2 . Answer in units of m.

Answers

Answer 1

Answer:

h = 22.35 m

Explanation:

given,

initial speed of the rock,u = 0 m/s

length of the window,l = 2.7 m

time taken to cross the window,t = 0.129 s

Speed of the rock when it crosses the window

[tex]v = \dfrac{l}{t}[/tex]

[tex]v = \dfrac{2.7}{0.129}[/tex]

  v = 20.93 m/s

height of the building above the window

using equation of motion

v² = u² + 2 g h

20.93² = 0² + 2 x 9.8 x h

h = 22.35 m

Hence, the height of the building above the top of window is equal to h = 22.35 m


Related Questions

Solar wind particles can be captured by the Earth's magnetosphere. When these particles spiral down along the magnetic field into the atmosphere, they are responsible for ?

Answers

Answer:

Solar wind particles can be captured by the Earth's magnetosphere. When these particles spiral down along the magnetic field into the atmosphere, they are responsible for?

Answer is Aurorae.

Explanation:

Solar Wind:

A planet's magnetic filed forms a shield to protect the surface of planet from energetic and charged particles coming from sun and other planets. The sun is continuously  sending out charged particles , called Solar wind.

Magnetosphere of planet:

If a planet has a magnetic field then it will interact with the solar wind and deflect the charged particles in the wind. Due to which an elongated cavity in solar wind formed. This cavity is called magnetosphere of the planet.

When Solar wind particles run in a magnetic field , they are  deflected and spiral down along magnetic field lines into the atmosphere.

Most of the solar wind particles deflected around the planet but a few particles manage to leak into the magnetic filed and become trapped in the magnetic field of the planet, to create Radiation Belts or Charged Particles Belts.

Variable Solar Wind can give some radiation belt particles with enough energy to spiral down along the magnetic filed into the atmosphere and Create Aurorae

Here Aurorae is an atmospheric phenomenon consisting of Bands, streamers of light, usually yellow , green or red , that move across the sky in the polar regions.

 

Final answer:

The charged particles from the solar wind spiral down along the Earth's magnetic field lines toward the poles, causing the atmospheric gases they collide with to emit light, resulting in auroras, commonly known as northern and southern lights.

Explanation:

When charged particles, known as the solar wind, emitted from the Sun encounter the Earth's magnetosphere, they can get trapped and follow the magnetic field lines towards the Earth's poles. Upon interacting with atmospheric gases, these charged particles cause a natural light display in the sky known as the auroras. These spectacular light shows are called the aurora borealis, or northern lights, in the Northern Hemisphere, and the aurora australis, or southern lights, in the Southern Hemisphere.

These auroras are more than just beautiful; they represent the interaction between the Sun's energy and our planet's protective magnetic field. During periods of intense solar activity, the solar wind is stronger, leading to more significant and vibrant auroral displays. These geomagnetic storms caused by solar activity can also have consequential effects on power grids, satellite operations, and communication systems.

A stuntman with a mass of 82.5 kg swings across a pool of water from a rope that is 12.0 m. At the bottom of the swing the stuntman's speed is 8.65 m/s. The rope's breaking strength is 1,000 N. Will the stuntman make it across the pool without falling in?

Answers

Answer:

The stuntman will not make it

Explanation:

At the bottom of the swing, the equation of the forces acting on the stuntman is:

[tex]T-mg = m\frac{v^2}{r}[/tex]

where:

T is the tension in the rope (upward)

mg is the weight of the man (downward), where

m = 82.5 kg is his mass

[tex]g=9.8 m/s^2[/tex] is the acceleration due to gravity

[tex]m\frac{v^2}{r}[/tex] is the centripetal force, where

v = 8.65 m/s is the speed of the man

r = 12.0 m is the radius of the circule (the length of the rope)

Solving for T, we find the tension in the rope:

[tex]T=mg+m\frac{v^2}{r}=(82.5)(9.8)+(82.5)\frac{8.65^2}{12.0}=1322 N[/tex]

Since the rope's breaking strength is 1000 N, the stuntman will not make it.

The distance between two successive crests of a certain transverse wave is 1.40 m. 25 crests pass a given point along the direction of travel every 12.4 s. Calculate the wave speed. Answer in units of m/s.

Answers

Answer: 2.82m/s

Explanation:

Wave speed(v) is the product of the frequency (f) of a wave and its wavelength (¶)

V = f¶

Since wavelength is the distance between two successive crests or trough, the wavelength given is 1.40m i.e ¶ = 1.40m

If the total crest is 25, this means that 25 oscillations occurs in 12.4s.

Since the number of oscillation made in one second is the frequency, frequency = 25/12.4 = 2.01cycle/seconds

Speed of the wave v = 2.01×1.4

V =

Wave speed is 2.82m/s

Force is defined as mass times acceleration. Starting with SI base units, derive a unit for force. Using SI prefixes suggest a convenient unit for the force resulting from a collision with a 10-ton trailer truck moving at 55 miles per hour. (Assume 1 second deceleration time)

Answers

Final answer:

Force is derived from the equation F = ma, resulting in units of Newtons (N). For a 10-ton truck decelerating over 1 second from 55 mph, we convert mass to kg and speed to m/s to calculate force, likely resulting in a force measured in kilonewtons (kN) or meganewtons (MN) due to the large mass and deceleration involved.

Explanation:

The subject of this question is how to derive a unit for force starting with SI base units, and finding a convenient unit for the force resulting from a specific collision scenario. Starting from the base, force (F) can be defined using Newton's second law, F = ma (force equals mass times acceleration), where mass has units of kilograms (kg), and acceleration is measured in meters per second squared (m/s²). Thus, the unit of force in the SI system is the Newton (N), defined as the force needed to accelerate a 1-kg object by 1 m/s².

To find a convenient unit for the force resulting from a collision with a 10-ton trailer truck moving at 55 miles per hour and assuming a 1 second deceleration time, we first convert the truck's mass to kilograms (10 tons = 9,071.85 kg, assuming 1 ton = 907.185 kg) and its speed to meters per second (55 mph ≈ 24.5872 m/s, assuming 1 mile = 1.60934 km and 1 hour = 3600 seconds). The deceleration rate (a) can be calculated assuming the final velocity (v) is zero and the time (τ) is 1 second, giving us a = -24.5872 m/s² (negative sign denotes deceleration). Thus, applying F = ma, the force of the collision can be calculated, and due to the large numbers involved, units such as kilonewtons (kN) or meganewtons (MN) may be more convenient depending on the exact outcome of the calculation.

The force resulting from the collision with a 10-ton trailer truck moving at 55 miles per hour is approximately 245.87 kN.

Starting with the equation for force, F = ma, where:

- F represents force,

- m represents mass,

- a represents acceleration.

In the International System of Units (SI), the base units are:

- Mass ( m ) is measured in kilograms (kg).

- Acceleration ( a ) is measured in meters per second squared [tex](\( \mathrm{m/s^2} \)).[/tex]

Therefore, the unit of force ( F ) in the SI system is:

[tex]\[ \mathrm{kg \cdot m/s^2} \][/tex]

This unit is commonly known as the Newton (N).

Now, let's calculate the force resulting from a collision with a 10-ton trailer truck moving at 55 miles per hour with a deceleration time of 1 second.

First, we need to convert the mass of the trailer truck from tons to kilograms:

[tex]\[ 1 \text{ ton} = 1000 \text{ kg} \][/tex]

So, [tex]\( 10 \text{ tons} = 10,000 \text{ kg} \).[/tex]

Next, let's convert the speed from miles per hour to meters per second:

[tex]\[ 1 \text{ mile} = 1609.34 \text{ meters} \][/tex]

[tex]\[ 1 \text{ hour} = 3600 \text{ seconds} \][/tex]

So, [tex]\( 55 \text{ miles per hour} \)[/tex] is equivalent to:

[tex]\[ \frac{55 \times 1609.34}{3600} \text{ meters per second} \approx 24.587 \text{ m/s} \][/tex]

Given that deceleration time ( t ) is [tex]\( 1 \text{ second} \)[/tex], we can use the formula for acceleration:

[tex]\[ a = \frac{v}{t} \][/tex]

where v is the change in velocity.

Since the truck is decelerating, the change in velocity is from [tex]\( 24.587 \text{ m/s} \) to \( 0 \text{ m/s} \).[/tex]

[tex]\[ a = \frac{0 - 24.587}{1} \text{ m/s}^2 = -24.587 \text{ m/s}^2 \][/tex]

Now, we can calculate the force:

[tex]\[ F = m \times a = 10,000 \text{ kg} \times (-24.587 \text{ m/s}^2) \][/tex]

[tex]\[ F \approx -245,870 \text{ N} \][/tex]

Since force is a vector quantity and its direction is opposite to the direction of motion, the negative sign indicates that the force is acting in the opposite direction of the truck's motion.

For convenience, we can express this force in kilonewtons ( kN ):

[tex]\[ -245,870 \text{ N} = -245.87 \text{ kN} \][/tex]

So, the suggested convenient unit for the force resulting from the collision is [tex]$\mathrm{kN}$[/tex].

Complete Question:

Force is defined as mass times acceleration. Starting with SI base units, derive a unit for force. Using SI prefixes suggest a convenient unit for the force resulting from a collision with a 10-ton trailer truck moving at 55 miles per hour. (Assume 1 second deceleration time)

a. MN

b. GN

c. mN

d. kN

e. TN

Sound is more effectively transmitted into a stethoscope by direct contact than through the air, and it is further intensified by being concentrated on the smaller area of the eardrum. It is reasonable to assume that sound is transmitted into a stethoscope 100 times as effectively compared with transmission though the air. What, then, is the gain in decibels produced by a stethoscope that has a sound gathering area of 15.0 cm2, and concentrates the sound onto two eardrums with a total area of 1.00 cm2 with an efficiency of 37.0%?

Answers

Answer:

Δβ = 28.2 dB

Explanation:

Attached is the explanation

A 16 V battery does 1705 J of work transferring charge. How much charge is transferred? Answer in units of C.

Answers

Answer:

Explanation:

Given

Voltage [tex]V=16\ V[/tex]

Work done [tex]W=1705\ J[/tex]

Work is Equivalent to energy

We know that Charge is given by

[tex]Q=I\cdot t[/tex]

where I=current

t=time

Energy [tex]E=P\times t[/tex]

P=power

P=V\times I

V=Voltage

I=current

Also Energy [tex]E=V\cdot I\cdot t[/tex]

[tex]I=\frac{E}{V\cdot t}[/tex]

Substitute the value of I in charge

[tex]Q=\frac{E}{V\cdot t}\times t[/tex]

[tex]Q=\frac{E}{V}[/tex]

[tex]Q=\frac{1705}{16}[/tex]

[tex]Q=106.56\ C[/tex]        

Why are biogeochemical cycles important? Earth is a closed system. That means the amount of rocks, metals, carbon, nitrogen, oxygen, and water on Earth.... So, it is essential that biogeochemical cycles..... these materials as they move through Earth's subsystems.

Answers

Answer:

The earth is considered to be a closed system, where the concentration of rocks, metals, C, N, O and H₂O on earth remains constant.

So, it is essential that the biogeochemical cycle renews these materials while moving through the earth subsystems.

Explanation:

The biogeochemical cycle is usually defined as the circulation of chemical components such as Carbon, Nitrogen, Phosphorous, Oxygen, rocks, and metals within the different spheres and interaction of biotic and non-biotic factors.

These components are continuously in motion from one sphere to another. For example, the organism takes up the elements through food and some of these components such as carbon is released into the atmosphere in the form of CO₂. After the death of the organisms, the decomposers feed on these elements, where some of it is consumed by them and the remaining is eliminated into the atmosphere.

So, this is how the elements are renewed, and they are conserved. The total concentration of these elements remains constant considering the earth to be a closed system.

Thus, the correct answers are given above.

Answer:

remains constant and renews

Explanation:

What does the slope of gravitational potential energy vs velocity^2 graph represent?

Answers

Explanation:

Mechanical energy (the sum of potential and kinetic energy) is constant:

ME = PE + KE

ME = PE + ½ mv²

PE = ME − ½ mv²

So the slope of the line is -½ of the mass.

Final answer:

In a gravitational potential energy vs velocity^2 graph, the slope symbolizes the mass of the object. The graph represents the conversion of energies - kinetic and gravitational throughout a motion course. Peaks correspond to max potential energy and min kinetic energy, and vice-versa.

Explanation:

The slope of the gravitational potential energy vs the square of the velocity graph represents the object's mass in specific physical circumstances. This is because the equation for kinetic energy (which this graph is showing an indirect relationship with) is (1/2)mv^2, where m is mass and v is velocity. The slope can be interpreted as mass due to the rearrangement of this formula into the form used for this graph (Potential energy = 1/2 * m * v^2), wherein the slope (m) symbolizes the mass of the object.

Moreover, the information encapsulated in the potential energy graph as a whole represents energy conversion from kinetic to gravitational and vice versa. At the peak of a slope/motion course, potential energy is at its maximum and kinetic energy at its minimum. The opposite occurs at the bottom of the slope: both kinetic energy and potential energy reach their minimum values.

Learn more about gravitational potential energy here:

https://brainly.com/question/23134321

#SPJ3

Which answer most completely describes the difference/s between the gravitational force and the electrostatic force? Question 6 options:
The gravitational force is much weaker than the electrostatic force
The gravitational force is weaker and can only attract objects but the electrostatic force is strong and can both attract and repel
The gravitational force occurs throughout the universe but the electrostatic force only occurs on Earth
The gravitational force can only attract but the electrostatic force can attract or repel

Answers

I believe the answer would be D

The gravitational force is weaker and can only attract objects but the electrostatic force is strong and can both attract and repel. - This is the most completely describes the differences between the gravitational force and the electrostatic force.

What are the differences between  gravitational force and  electrostatic force?

The main differences are:

Electrostatic force acts on particles with charge, whereas gravitational force acts on particles with mass.While the electrostatic force can be either attracting or repulsive, the gravitational force is always attractive.While the electric potential can be either negative or positive, the gravitational potential is always negative.Gravitational force is weak but has low range whereas electrostatic force is strong bur short ranged.

Learn more about electrostatic force here:

https://brainly.com/question/9774180

#SPJ3

One of the moons of a planet is at an average distance of 0.7 AU from the planet and its period of revolution is 27.8 earth days. What is the period of revolution of another moon of the same planet that is at 1.2 AU from in?
a. 62.3 earth days
b. 128.4 earth days
c. 224 earth days
d. 27.8 earth days

Answers

Answer:

option A

Explanation:

given,

distance of the moon 1 from planet = 0.7 AU

Time period of moon 1 = 27.8 earth days

distance of the moon 2 from the planet = 1.2 AU

time period of the moon 2 = ?

using Kepler's formula

[tex]T^2 = \dfrac{4\pi^2}{GM}\ R^3[/tex]

now,

only variable in the formula is time period and distance.

so,

[tex]\dfrac{T_2^2}{T_1^2}=\dfrac{R_2^3}{R_1^3}[/tex]

[tex]\dfrac{T_2^2}{27.8^2}=\dfrac{1.2^3}{0.7^3}[/tex]

  T₂² = 3893.49

  T₂ = 62.3 earth days

Hence, the correct answer is option A

The rate of change of speed of the belt is given by 0.06(10 - t) m/s^2, where t is in seconds. The speed of the belt is 0.8 m/s at t = 0. When the normal acceleration of a point in contact with the pulley is 40 m/s^2, determine (a) the speed of the belt; (b) the time required to reach that speed; and (c) the distance traveled by the belt.

Answers

Answer:

a) speed of belt = 0.8114m/s

b) time required = 0.02secs

c) distance traveled = 0.016m

Explanation:

The detailed and step by step calculation is as shown in the attached files.

Railroad cars are loosely coupled so that there is a noticeable time delay from the time the first and last car is moved from rest by the locomotive. Discuss the advisability of this loose coupling and slack between cars from the point of view of impulse and momentum.

Answers

Answer:

Without this slack, a locomotive might simply sit still and spin its wheels. The loose coupling enables a longer time for the entire train to gain momentum, requiring less force of the locomotive wheels against the track. In this way, the overall required impulse is broken into a series of smaller impulses. (This loose coupling can be very important for braking as well).

Explanation:

A baseball pitcher throws a baseball horizontally at a linear speed of 42.5 m/s (about 95 mi/h). Before being caught, the baseball travels a horizontal distance of 16.0 m and rotates through an angle of 44.5 rad. The baseball has a radius of 3.67 cm and is rotating about an axis as it travels, much like the earth does. What is the tangential speed of a point on the "equator" of the baseball?

Answers

Answer:

The tangential speed of a point on the "equator" of the baseball is 4.33 m/s.

Explanation:

Given that,

Linear speed of base ball = 42.5 m/s

Distance = 16.0 m

Angle = 44.5 rad

Radius of baseball = 3.67 cm

We need to calculate the flight time

Using formula of time

[tex]t=\dfrac{d}{v}[/tex]

Put the value into the formula

[tex]t=\dfrac{16.0}{42.5}[/tex]

[tex]t=0.376\ sec[/tex]

We need to calculate the number of rotation

Using formula of number of rotation

[tex]n=\theta\time 2\pi[/tex]

[tex]n=\dfrac{44.5}{2\pi}[/tex]

[tex]n=7.08[/tex]

We need to calculate the time for one rotation

Using formula of time

[tex]T=\dfrac{t}{n}[/tex]

Put the value into the formula

[tex]T=\dfrac{0.376}{7.08}[/tex]

[tex]T=0.053\ sec[/tex]

We need to calculate the circumference

Using formula of circumference

[tex]C=2\pi\times r[/tex]

Put the value into the formula

[tex]C=2\pi\times3.67\times10^{-2}[/tex]

[tex]C=0.23\ m[/tex]

The tangential speed is equal to the circumference divided by the time. it takes to complete one rotation.

We need to calculate the tangential speed

Using formula of tangential speed

[tex]v=\dfrac{C}{T}[/tex]

Put the value into the formula

[tex]v=\dfrac{0.23}{0.053}[/tex]

[tex]v=4.33\ m/s[/tex]

Hence, The tangential speed of a point on the "equator" of the baseball is 4.33 m/s.

A 6110-kg bus traveling at 20.0 m/s can be stopped in 24.0 s by gently applying the brakes. If the driver slams on the brakes, the bus stops in 3.90 s. What is the average force exerted on the bus in both these stops?

Answers

Answer:

For 24 seconds force exerted is 5092 N towards opposite direction of motion of bus.For 3.90 seconds force exerted is 31333 N towards opposite direction of motion of bus.

Explanation:

We have equation of motion v = u + at

     Initial velocity, u = 20 m/s

     Final velocity, v = 0 m/s    

Case 1:-

     Time, t = 24 s

     Substituting

                      v = u + at  

                      0 = 20 + a x 24

                      a = -0.8333 m/s²

     Force = Mass x Acceleration = 6110 x -0.8333 = -5092 N

     Force exerted is 5092 N towards opposite direction of motion of bus.

Case 2:-

     Time, t = 3.90 s

     Substituting

                      v = u + at  

                      0 = 20 + a x 3.90

                      a = -5.13 m/s²

     Force = Mass x Acceleration = 6110 x -5.13 = -31333 N

     Force exerted is 31333 N towards opposite direction of motion of bus.

Final answer:

The average force exerted on the bus with gentle braking is approximately -5092 N, and with slamming the brakes, it is approximately -31342 N. Negative values indicate the force direction is opposite to the motion.

Explanation:

To calculate the average force exerted on the bus during both stops, we will use Newton's second law of motion, which states that the force applied to an object is equal to the mass of the object multiplied by the acceleration (F = ma). Here, the acceleration can be calculated using the formula for deceleration since the bus is coming to a stop:

For gentle braking: Deceleration = (Final velocity - Initial velocity) / Time = (0 - 20.0 m/s) / 24.0 s = -0.8333 m/s2.For slamming the brakes: Deceleration = (Final velocity - Initial velocity) / Time = (0 - 20.0 m/s) / 3.90 s = -5.1282 m/s2.

Now, we can calculate the average force (F) exerted in both cases by multiplying the mass of the bus (m = 6110 kg) by the deceleration (a).

Gentle braking average force: F = m × a = 6110 kg × -0.8333 m/s2 = -5092 N (approximately).Slamming the brakes average force: F = m × a = 6110 kg × -5.1282 m/s2 = -31342 N (approximately).

Since the bus is stopping, the negative sign indicates the direction of the force is opposite to the initial direction of motion.

In a nuclear power plant, the temperature of the water in the reactor is above 100°C because of what?

Answers

Answer:

The temperature of the water increases because the nuclear reactor heats it producing steam

Explanation:

The nuclear power plants are usually defined as those thermal plants where the nuclear reactors are used in order to generate heat that eventually leads to the rotating of the turbines and produces electricity. Here the nuclear reactor heats the water, and it increases above a temperature of 100°C, where this heat energy plays a key role in the entire process. It is an efficient method as it does not lead to the emission of any green house gases that are harmful to the environment.

An elevator packed with passengers has a mass of 1950 kg.
(a) The elevator accelerates upward (in the positive direction) from rest at a rate of 2 m/s2 for 2.05 s. Calculate the tension in the cable supporting the elevator in newtons.
(b) The elevator continues upward at constant velocity for 8 s. What is the tension in the cable, in Newtons, during this time?
(c) The elevator experiences a negative acceleration at a rate of 0.45 m/s2 for 2.6 s. What is the tension in the cable, in Newtons, during this period of negative accleration?
(d) How far, in meters, has the elevator moved above its original starting point?

Answers

Answer:

a) Fa= Tension in the cable= 23010N

b) 19110N

c) 18232.5N

d=41.28m ,final velocity=0

Explanation:

a) Newtons 2nd law is given by Fnet=EF=ma

Fa= m(a + g)

Fa= 1950 (2+9.8)

Fa= 1950×11.8= 23010N

b) Fnet=0

Therefore Fb= W= 1950×9.8= 19110N

c) Fc= m(g - a)

Fc= 1950(9.8 - 0.45)

Fc= 18232.5N

d) First distance

ya= vt + 0.5at^2 = 0 + (0.5)(2)(2.05)^2

ya= 4.203m

yb= vt= 4.203×8=33.62m

yc = vt - (0.5at^2)

yc= 4.203×2.6) - (0.5×0.45×8^2)

yc = 10.93-14.4

yc =-3.46m

Dtotal = -3.46+33.62+4.203

Dtotal=41.28m

Explanation:

Below is an attachment of the solution.

One of the many steps in the production of toothpaste is to screw the caps on the tubes, which is still a manual process, performed by on man, Mr. Bucket. Which statement about this situation is BEST?

A) This is most appropriate for an output measure of capacity.
B) In this case, the capacity of this step is not the maximum rate of output.
C) This is most appropriate for an input measure of capacity.
D) Utilization of the worker at this process step cannot be measures as it is a manual process.

Answers

Answer:A) This is most appropriate for an output measure of capacity.

Explanation: Toothpaste is a paste used to promote oral health and hygiene, Most toothpaste contain an active agent(floride) and it acts as an abrasive agent which helps to remove dental plaques or unwanted attachments to the teeth.

Among the options the Option(A) which says that THIS IS MOST APPROPRIATE FOR THE MEASURE OF CAPACITY is the statement that best Describes the situation. Toothpastes have a long history as it can be traced to about 4000years ago.

You find a bag labeled "10 kg of lead-210". Its contents now weigh 1.25 kg. How many half-life periods have there been since the bag was weighed and labeled? Lead-210 is a radioisotope with a half-life of about 22 years.

Answers

Answer : The number of half-life periods will be, 3

Explanation :  Given,

Initial amount of lead = 10 kg

Amount of lead after decay = 1.25 kg

Half-life = 22 years

Formula used :

[tex]a=\frac{a_o}{2^n}[/tex]

where,

a = amount of reactant left after n-half lives

[tex]a_o[/tex] = Initial amount of the reactant

n = number of half lives

[tex]t_{1/2}[/tex] = half-life

Now put all the given values in the above formula, we get:

[tex]1.25=\frac{10}{2^n}[/tex]

[tex]2^n=8[/tex]

[tex]2^n=2^3[/tex]

[tex]n=3[/tex]

Thus, the number of half-life periods will be, 3


Two cars are traveling along a straight road. Car A maintains a constant speed of 95 km/h and car B maintains a constant speed of 121 km/h. At t = 0, car B is 41 km behind car A.

(a) How much farther will car A travel before car B overtakes it?km
(b) How much ahead of A will B be 30 s after it overtakes A?km

Answers

Final answer:

Car A will travel 150.1 km further before Car B overtakes it, and 30 seconds after Car B overtakes Car A, Car B will be 1.005 km ahead of Car A.

Explanation:

This is a physics problem involving relative speed and time. We are trying to find out how much farther Car A will travel before Car B catches up, as well as Car B's lead distance 30 seconds after it overtakes Car A.

a) How much farther will car A travel before car B overtakes it?

First, we calculate the Relative Speed of the two cars: Relative Speed = Speed of B - Speed of A = 121 km/h - 95 km/h = 26 km/h. Then we find out how long it takes for Car B to close that 41 km gap at this relative speed: Time = Distance/Speed = 41km / 26km/h = 1.58 hours. Therefore, in this duration, Car A will travel Distance = Speed * Time = 95km/h * 1.58h = 150.1 km.

b) How much ahead of A will B be 30 s after it overtakes A?

Here we just calculate the distance Car B travels in 30 seconds (converted to hours). Distance = Speed * Time = 121km/h * (30s / 3600s/h) = 1.005 km.

Learn more about Relative Speed and Time here:

https://brainly.com/question/31850020

#SPJ12

Car A will travel approximately 150.1 km before Car B overtakes it. Car B will be approximately 0.22 km ahead of Car A 30 seconds after overtaking. The solution involves calculating the time taken for Car B to close the initial gap and then the additional distance traveled in the subsequent 30 seconds.

Part (a)

To determine how much farther Car A will travel before Car B overtakes it, we can set up an equation based on the relative speeds of the two cars and the distance between them.

Let the time taken for Car B to overtake Car A be t hours.

In time t, Car A travels 95t km.

In time t, Car B travels 121t km.

At the point of overtaking, the distance covered by Car A plus the initial 41 km (since Car B started 41 km behind) will be equal to the distance covered by Car B:

95t + 41 = 121t

Solving for t:

121t - 95t = 41

26t = 41

t = 41/26 ≈ 1.58 hours

The distance Car A travels in this time is:

95 km/h × 1.58 hours ≈ 150.1 km

Part (b)

To find out how far ahead Car B will be 30 seconds after overtaking Car A:

Convert 30 seconds to hours:

30 seconds = 30/3600 hours = 1/120 hours.

In 1/120 hours :

Car A travels: 95 km/h × 1/120 hours ≈ 0.79 km.

Car B travels: 121 km/h × 1/120 hours ≈ 1.01 km.

The difference in distance traveled by Car B and Car A:

1.01 km - 0.79 km ≈ 0.22 km.

So, Car B will be approximately 0.22 km ahead of Car A 30 seconds after overtaking it.

A swimmer is determined to cross a river that flows due south with a strong current. Initially, the swimmer is on the west bank desiring to reach a camp directly across the river on the opposite bank. In which direction should the swimmer head?

Answers

Answer:

Swim in a strong north easterly direction so the the river carries him right across

Explanation:

The swimmer is on the west river bank with intentions of reaching the east river bank directly across him. If he just swims towards the east, the current of the river will carry him downstream landing him in a south easterly position, below where he intended to go. So the right thing to do would be to swim in a strong north easterly direction so the the river carries him right across.

Final answer:

To reach directly across the river from the west bank, the swimmer should head northeast to counteract the southward current of the river. This balancing act of velocities ensures they reach their desired location.

Explanation:

This question deals with the concept of Relative Velocity in Physics. When a swimmer attempts to cross a river, they must take into account the current of the river pushing them downstream. The velocity of the swimmer relative to the water needs to be added to the velocity of the river to get the resultant velocity, which describes the direction the swimmer actually travels relative to the shore.

In this scenario, if the current of the river is flowing due south, the swimmer on the west bank should not aim directly for the point across the river. They should aim slightly upstream to the north to counteract the force of the current. Hence, the swimmer should head in a northeasterly direction, which when combined with the river current, will get them directly across to the eastern shore.

Learn more about Relative Velocity here:

https://brainly.com/question/34025828

#SPJ12

A wind turbine is initially spinning at a constant angular speed. As the wind's strength gradually increases, the turbine experiences a constant angular acceleration of 0.100 rad/s2. After making 2844 revolutions, its angular speed is 140 rad/s.

Answers

Complete answer

A wind turbine is initially spinning at a constant angular speed. As the wind's strength gradually increases, the turbine experiences a constant angular acceleration of 0.100rad/s2. After making 2844 revolutions, its angular speed is 140rad/s

(a) What is the initial angular velocity of the turbine? (b) How much time elapses while the turbine is speeding up?

Answer:

a) 126.59 radians per second

b) 134.1 seconds

Explanation:

We can use the rotational kinematic equations for constant angular acceleration.

a) For a) let’s use:

[tex]\omega^{2}=\omega_{0}^{2}+2\alpha\varDelta\theta [/tex] (1)

with [tex] \omega_{0}[/tex] the initial angular velocity, [tex] \omega[/tex] the final angular velocity, [tex] \alpha[/tex] the angular acceleration and [tex] \Delta \theta [/tex]the revolutions on radians (2844 revolutions = 17869.38 radians). Solving (1) for initial velocity:

[tex]\sqrt{\omega^{2}-2\alpha\varDelta\theta}=\omega_{0} [/tex]

[tex]\omega_{0}^2=\sqrt{(140)^2 -(2)(0.100)(17869.38)=126.59 \frac{rad}{s}}[/tex]

b) Knowing those values, we can use now the kinematic equation

[tex] \omega=\omega_{0}+\alpha t[/tex]

with t the time, solving for t:

[tex]t=\frac{\omega-\omega_0}{\alpha}=\frac{140-126.59}{0.1} [/tex]

[tex] t=134.1 s[/tex]

The outside of a picture frame has a length which is 3 cm more than width. The area enclosed by the outside of the picture frame is 154 square cm. Find the width of the outside of the picture frame.

Answers

Answer:

To me it would only make sense for it to be 51.33

Explanation:

w≈51.33

Length  3

Area  154

The width of the outside of the picture frame is 11 cm.

What is width?

The distinction between a figure's length and width is that length denotes a figure's longer side, while width denotes its shorter side.

Given

L = w + 3

L w = 154

(w+3)w = 154

w² + 3 w - 154 = 0

(w+14)(w-11) = 0

w = 11 cm

To know more about width refer to :

https://brainly.com/question/4192452

#SPJ2

If a trapeze artist rotates once each second while sailing through the air, and contracts to reduce her rotational inertia to one fourth of what it was, how many rotations per second will result?

Answers

Answer:

There are finally 4 rotations per second.

Explanation:

If a trapeze artist rotates once each second while sailing through the air, and contracts to reduce her rotational inertia to one fourth of what it was. We need to find the final angular velocity. It is a case of conservation of angular momentum such that :

[tex]I_1\omega_1=I_2\omega_2[/tex]

Let [tex]I_1=I[/tex] , [tex]I_2=\dfrac{I}{4}[/tex] and [tex]\omega_1=1[/tex]

So,

[tex]\omega_2=\dfrac{I_1\omega_1}{I_2}[/tex]

[tex]\omega_2=\dfrac{I\times 1}{(I/4)}[/tex]

[tex]\omega_2=4\ rev/sec[/tex]

So, there are finally 4 rotations per second. Hence, this is the required solution.

Final answer:

When a trapeze artist reduces their rotational inertia to one fourth while rotating, their rotational speed increases to four times its original rate to conserve angular momentum, resulting in 4 rotations per second.

Explanation:

The question pertains to the conservation of angular momentum, which is a principle in physics stating that if no external torque acts on an object, the total angular momentum will remain constant. For a trapeze artist or any rotating body, if the moment of inertia decreases, the rotational speed (number of rotations per second) must increase proportionally to conserve angular momentum.

If a trapeze artist is rotating once each second and contracts to reduce the rotational inertia to one fourth, her rotational speed must increase to four times what it was to conserve angular momentum. Therefore, the new rotation rate will be 4 rotations per second.

A child in danger of drowning in a river is being carried down-stream by a current that flows uniformly with a speed of 2.20 m/s . The child is 500 m from the shore and 1100 m upstream of the boat dock from which the rescue team sets out.

If their boat speed is 7.30 m/s with respect to the water, at what angle from the shore must the boat travel in order to reach the child?

Answers

Final answer:

To reach a child being carried by a river current, the rescue boat, with a speed of 7.30 m/s versus water, must aim at a specific angle upstream accounting for the current's speed of 2.20 m/s. The calculation involves vector addition and trigonometry to counteract the current and ensure a direct path to the child.

Explanation:

The question involves calculating the angle at which a rescue boat must travel to reach a child being carried away by a river current. The river flows at a speed of 2.20 m/s, while the boat's speed in still water is 7.30 m/s. Given the distances from the shore to the child (500 m) and from the boat dock upstream to the child (1100 m), we need to determine the angle relative to the shore for the boat to make a direct rescue.

To solve this, we need to use the concept of vector addition, where the boat's velocity vector and the river's current vector combine to create a resultant vector that points directly to the child's location. The angle can be calculated using trigonometry, particularly the tangent function. However, since the specific calculations and steps to obtain the angle are not provided in the question or the previous examples, it is crucial to understand the principles of vectors and relative motion to approach this problem.

Essentially, the rescue team needs to aim the boat at an angle upstream to counteract the river's flow. The effect of the river's current will adjust the boat's path towards the child. It's a classic application of relative motion in two dimensions, requiring careful consideration of both the magnitude and direction of the vectors involved.

Two mountain bikers are rolling down a hill. They both have the same mass, but one is taller and has more air drag (friction, etc.) than the shorter one. Which will reach the bottom first?

Answers

Answer:The Taller one

Explanation: Air drag(friction) also known as air resistance,the opposing force acting against the force of gravity, if a falling Object have a high air drag it will mean the object have a high air resistance. The higher the air resistance the higher the impact of the force of gravity on an object. The force of gravity will act to want to overcome the opposing force in order to bring the Object or the taller person down.

In a situation with no energy losses, an object sliding without rolling will reach the bottom of an incline first since all its energy goes into descending speed. For two mountain bikers with the same mass, the one with less air resistance will reach the bottom first.

The question concerns the concept of rolling motion versus sliding motion and its effect on the speed at which objects descend an incline. In an ideal scenario with no energy losses, an object that is rolling will have some of its energy in rotational kinetic energy in contrast to an object that is sliding which will only have translational kinetic energy. As a result, the object sliding without rolling, given the same initial conditions, will reach the bottom first due to having all of its energy contributing to its descent speed.

In the case of two mountain bikers with the same mass but differing in air resistance, the biker with less air drag will reach the bottom first. Air resistance acts as a form of friction that takes away some of the energy that could otherwise be converted into speed, thereby slowing down the biker.

The decibel level of an orchestra is 90 db, and the violin section achieves a level of 80 dB. How does the sound intensity from the full orchestra compare to that from the violin section alone?

Answers

Final answer:

The sound intensity of the full orchestra is ten times greater than that of the violin section alone because a 10 dB increase corresponds to a tenfold increase in intensity.

Explanation:

The decibel level (dB) measures sound intensity on a logarithmic scale, where each 10 dB increase represents a tenfold increase in intensity. To compare the sound intensity of the full orchestra at 90 dB to the violin section at 80 dB, we can use the fact that an increase of 10 dB corresponds to a tenfold increase in intensity. Therefore, the full orchestra's sound intensity is ten times greater than that of the violin section alone.

This simplifies to 10, meaning that the sound intensity from the full orchestra is 10 times greater than that from the violin section alone.

In simpler terms, when comparing sound intensities, every 10 dB increase corresponds to a tenfold increase in intensity. Therefore, the difference of 10 dB between the full orchestra and the violin section results in the orchestra being 10 times louder in terms of sound intensity.

The sound intensity from the full orchestra is [tex]\( {10} \)[/tex] times greater than the sound intensity from the violin section alone.

To compare the sound intensities of the full orchestra and the violin section, we need to understand the relationship between decibels (dB) and sound intensity [tex]\( I \)[/tex].

The decibel scale is logarithmic and relates to sound intensity [tex]\( I \)[/tex] in the following way:

[tex]\[ \text{dB} = 10 \log_{10} \left( \frac{I}{I_0} \right) \][/tex]

where [tex]\( I \)[/tex] is the sound intensity of interest and [tex]\( I_0 \)[/tex] is the reference intensity (typically [tex]\( I_0 = 10^{-12} \)[/tex] W/m[tex]\(^2\))[/tex].

Step 1: Convert dB to intensity ratio

Given:

- Orchestra sound level [tex]\( L_{\text{orchestra}} = 90 \)[/tex] dB

- Violin section sound level [tex]\( L_{\text{violin}} = 80 \)[/tex] dB

The difference in decibel levels between the orchestra and the violin section gives us the intensity ratio:

[tex]\[ L_{\text{orchestra}} - L_{\text{violin}} = 90 \, \text{dB} - 80 \, \text{dB} = 10 \, \text{dB} \][/tex]

The intensity ratio in terms of decibels is related by:

[tex]\[ 10 \log_{10} \left( \frac{I_{\text{orchestra}}}{I_0} \right) - 10 \log_{10} \left( \frac{I_{\text{violin}}}{I_0} \right) = 10 \][/tex]

Step 2: Calculate the ratio of sound intensities

To find [tex]\( \frac{I_{\text{orchestra}}}{I_{\text{violin}}} \)[/tex]:

[tex]\[ \frac{I_{\text{orchestra}}}{I_{\text{violin}}} = 10^{10 / 10} \][/tex]

[tex]\[ \frac{I_{\text{orchestra}}}{I_{\text{violin}}} = 10^{1} \][/tex]

[tex]\[ \frac{I_{\text{orchestra}}}{I_{\text{violin}}} = 10 \][/tex]

A car is traveling at 22 m/s and slows to 4.9 m/s in 4.0 seconds. What is the acceleration? Give the answer to one decimal place.

Answers

Answer:

a= - 4.2 m/s².

Explanation:

Given that

u = 22 m/s

v= 4.9 m/s

t= 4 s

The average acceleration = a

We know v = u +at

v=final velocity

u=initial velocity

Now by putting the values in the above equation

4.9= 22 + a x 4

[tex]a=\dfrac{4.9-22}{4}\ m/s^2[/tex]

a= - 4.2 m/s².

Therefore the acceleration will be - 4.2 m/s².

a= - 4.2 m/s².

Negative indicates that velocity and acceleration is is opposite direction.

an electron aquires 3.45 e-16j of kinetic energy when it is accelerated by an electric field from plate a to b in a computer monitor what is the potential difference between the plates and which plate has the higher potential?

Answers

Answer:

Potential difference will be equal to 2156.25 volt

Explanation:

We have given kinetic energy of electron [tex]KE=3.45\times 10^{-16}J[/tex]

Charge on electron [tex]e=1.6\times 10^{-19}C[/tex]

Let the potential difference is V

So energy electron will be equal to [tex]E=qV[/tex], here q is charge on electron and V is potential difference

This energy will be equal to kinetic energy of the electron

So [tex]1.6\times 10^{-19}\times V=3.45\times 10^{-16}[/tex]

V = 2156.25 volt

So potential difference will be equal to 2156.25 volt

A gas occupies 97 mL at 130 kPa. Find its volume at 225 kPa You must show all of your work to receive credit. .

Answers

Answer:

The answer to your question is 56 ml

Explanation:

Data

V1 = 97 ml

P1 = 130 kPa

V2 = ?

P2 = 225 kPa

Formula

Use Boyle's law to solve this problem because it relates to the volume and the pressure.

                     V1P1 = V2P2

Solve for V2

                     V2 = (V1P1) / P2

Substitution

                     V2 = (97 x 130) / 225

Simplification

                     V2 = 12610 / 225

Result

                     V2 = 56 ml                      

A man (weighing 763 N) stands on a long railroad flatcar (weighing 3513 N) as it rolls at 19.8 m/s in the positive direction of an x axis, with negligible friction. Then the man runs along the flatcar in the negative x direction at 4.68 m/s relative to the flatcar. What is the resulting increase in the speed of the flatcar?

Answers

Answer:

0.8m/s

Explanation:

Weight of mas,F=763 N

Mass of man=[tex]\frac{F}{g}=\frac{763}{9.8}=77.86 kg[/tex]

By using [tex]g=9.8m/s^2[/tex]

Weight of flatcar=F'=3513 N

Mass of flatcar=[tex]\frac{3513}{9.8}=358.5 Kg[/tex]

Total mass of the system=Mass of man+mass of flatcar=77.86+358.5=436.36 kg

Velocity of system=19.8m/s

Let v be the velocity of flatcar with respect to ground

Velocity of man relative to the flatcar=[tex]-4.68m/s[/tex]

Final velocity of man with respect to ground=v-4.68

By using law of conservation of momentum

Initial momentum=Momentum of car+momentum of flatcar

[tex]436.36(19.8)=77.86(v-4.68)+358.5v[/tex]

[tex]8639.928=77.86v-364.3848+358.5v[/tex]

[tex]8639.928+364.3848=436.36 v[/tex]

[tex]9004.3128=436.36v[/tex]

[tex]v=\frac{9004.3128}{436.36}[/tex]

[tex]v=20.6 m/s[/tex]

Initial speed of flatcar=Speed of system

Increase in speed=Final speed-initial speed=20.6-19.8=0.8m/s

Other Questions
Clarissa wants to fund a growing perpetuity that will pay $10,000 per year to a local museum, starting next year. She wants the annual amount paid to the museum to grow by 5% per year. Given that the interest rate is 9%, how much does she need to fund this perpetuity?A) $250,000.00 B) $125,000.00 C) $300,000.00 D) $200,000.00 Each person should list one cognitive bias (anchoring, for example) that is mentioned or referred to in the readings for this week. Define it (you can Google for additional definitions), and provide an example of how this bias might come into play in a digital security or privacy scenario. Which of the following is stressed in the professional code of ethics? a. Personal morality b. High levels of competition c. Respect for people's right to privacy d. Research protocols with humans only In a high school graduating class of 128 students, 52 are on the honor roll. Of these, 48 are going on to college; of the other 76 students, 56 are going on to college. What is the probability that a student selected at random from the class is (a) going to college, (b) not going to college, and (c) not going to college and on the honor roll? I need to find what the variable is in this equation -7+m=-9 why did so many people in germany buy into hitlers ideas?or did they? T__________ is the 1967 supreme court ruling held that juveniles accused of delinquent acts have many of the same rights afforded to adults under the 6th and 14th amendments. Partha owns a qualified annuity that cost $52,000. Under the contract, when he reaches age 65, he will receive $500 per month until he dies. Partha turns 65 on June 1, 2018, and receives his first payment on June 3, 2018. Refer to the Annuity payment table to answer the following question. Partha will report gross income of $______ from the annuity payments in 2018. When choosing health products and services, which of the following is false?Ask your doctorTalk to the nurse on call for suggestions Do not worry about taking more than one medication for more than one illnessConsult a pharmacy or your doctor if you are taking more than one medication How does the specific heat capacity of water compare with that of other common substances? Two cards are selected from a standard deck of 52 playing cards. The first card is not replaced before the second card is selected . Find the probability of selecting a black card and selecting a red card. The probability of selecting a black card and then selecting a red card is CNP, Inc. is considering a project that will produce cash inflows of $12,000 in year one, $27,600 in year two, and $48,100 in year three. What is the present value of these cash inflows if the company assigns the project a discount rate of 10.5 percent?a. $69,113.58b. $64,999.91c. $76,370.51d. $58,372.13e. $71,824.90 The famous naturalist ________ based his beliefs in preserving nature on aesthetic and spiritual values, irregardless of how useful nature might be to us. He was the first president of the Sierra Club. Your friend says most credit cards charge people the same interest rate so it doesnt make sense to shop around. Do you agree with him? Why or why not? Christopher is a 17-year-old high school senior who is constantly getting into arguments with his mother. She believes he should have a 9 p.m. curfew and that he should not hang out with certain people in certain neighborhoods. She is fearful he will become a victim of crime. Christopher believes he is a strong man who should not have a curfew and that he can protect himself. Christopher's mother is convinced there are certain places in their community that are deviant because they are home to "demoralized people." All of the following may be considered "demoralized people" except the ______.A. homelessB. drug addictedC. mentally illD. middle class 1. A true-breeding pea plant with green seeds is crossed with another true-breeding pea plant with green seeds. What kind of seeds will the offspring have?yellow seedsgreen seedsyellow-green seedssome of each color2. Which statement best summarizes Gregor Mendel's contribution to science?Factors for traits in pea plants cannot be controlled.Wrinkled seeds grow faster than smooth seeds.Garden pea plants can be grown in a variety of colors.Factors for some traits are inherited from parents.3. Which characteristic of a pea plant is passed from parent to offspring?seed colorpink flowersall plantsmooth seeds4. Which characteristic can be inherited?hair lengthlanguageeye colorscars5. A true-breeding, tall pea plant with purple flowers and smooth, yellow seeds is crossed with a true-breeding, short pea plant with white flowers and green, wrinkled seeds. All the offspring are tall with purple flowers and smooth seeds.Which trait in the cross is a recessive trait?tall plantgreen seedspurple flowerssmooth seeds At how many points does the graph of the function below intersect the x-axis?y = 4x2 - 6x +1Apex Mr Davis buys 30 tickets for the drama club to attend a play. The tickets cost n dollars each for a total of $360 Multiply each equation by a constant that would help to eliminate the y terms.2 x minus 5 y = negative 21. 3 x minus 3 y = negative 18.What are the resulting equations?6 x minus 15 y = negative 63. Negative 15 x + 15 y = 90.6 x minus 15 y = 63. Negative 15 x + 15 y = 90.6 x minus 15 y = negative 63. Negative 15 x + 15 y = negative 90.6 x minus 15 y = negative 63. Negative 15 x + 15 y = 90. The hotel chain Ritz-Carlton uses the phrase "Ladies and gentlemen taking care of ladies and gentlemen" to demonstrate the company's cultural commitment to take care of both employees and customers. Which of the following is the Ritz-Carlton using to express its corporate culture?a. The company is expressing its key corporate value with a slogan.b. The company is using a ceremonial demonstration of its values.c. The company is conveying the value of its employees with a story.d. The company is illustrating its heroes with strong company values.