Answer:
To better understand the data you're working with
Step-by-step explanation:
Note that, the sample is a subset of your whole population (population here is a general definition, it could be a population of cars for example), which means that if you want to understand your population your best "bet" would be using a sample to try to estimate some unknown characteristics of your population. Let's suppose you want to estimate the true mean of your population, then you would need a sample, and if this sample is big enough you could approximate the estimative to the true mean.
It's hard to say exactly what this survey could mean, but the general idea is to understand your data a little more, see if there is any pattern, if a certain value occurs more than others, to calculate the sample mean, median and standard deviation, and so on...
Hope it helped!
Answer:
For b, the answer is that your trying to find out what the type of funtion may be. It could be either exponential, linear, or quadratic.
Step-by-step explanation:
That's what the lesson in edg is all about.
What is the probability of drawing three black cards, one at a time with replacement, from a standard deck of 52 cards?
A.'3/52
Its not b
C.1/8
d.75/676
Answer: I think it is A.
Step-by-step explanation:
Please help!!
If θ is an angle in standard position whose terminal side passes through (3, 4), evaluate tan1/2θ
1/4
3/10
1/2
4/5
Answer:
1/2 is the answer (actually, it's ±1/2)
Step-by-step explanation:
The identity you need here is for a half angle of tangent. That identity is as follows:
[tex]tan(\frac{\theta }{2})=[/tex]±[tex]\sqrt{\frac{1-cos\theta }{1+cos\theta } }[/tex]
If we need the cos of that angle, we need to find the missing hypotenuse. Applying Pythagorean's Theorem to that right triangle, we get that the hypotenuse is 5. The cos of the angle is 3/5. Filling in the formula, using only the principle root since you have not allowed for the negative in the choices you gave:
[tex]tan(\frac{\theta }{2})=\sqrt{\frac{1-\frac{3}{5} }{1+\frac{3}{5} } }[/tex]
Turning each one of those 1's into 5/5 we combine the fractions to simplify to:
[tex]tan(\frac{\theta }{2})=\sqrt{\frac{\frac{2}{5} }{\frac{8}{5} } }[/tex]
Bringing up the lower fraction and flipping to multiply gives us:
[tex]tan(\frac{\theta }{2})=\sqrt{\frac{2}{5}*\frac{5}{8} }[/tex]
Canceling out the 5's and reducing the remaining fraction gives us
[tex]tan(\frac{\theta }{2})=\sqrt{\frac{1}{4} }[/tex]
and since the square root of 4 is 2, we end with a solution of 1/2
Miles rode his mountain bike over some trails in a state park. He biked a total of 5 1/2 miles. How many yards did miles bike? There are 1,760 yards in a mile.
9680 yards. Miles biked a total of 9680 yards.
The key to solve this problem is coverting the Mixed Fraction to Improper Fraction, and make the conversion from miles to yards.
Convert the Mixed Fraction 5 1/2 to an Improper Fraction:
- Multiply the whole number 5 by the denominator
5 x 2 = 10
- Add the result to the numerator
1 + 10 = 11
- Write the Improper Fraction with the same denominator of the Mixed Fraction, and the numerator with the result above
5 1/2 miles ----------> 11/2 miles
To convert miles to yard with mile = 1760 yards:
11/2 * 1760 yards = 19360 yards/2 = 9680 yards
Final answer:
Miles biked for a total of 5 1/2 miles. By converting miles to yards using the fact that there are 1,760 yards in one mile, Miles biked a total of 9,680 yards.
Explanation:
The student has asked how many yards Miles biked if he rode a total of 5 1/2 miles. To find the answer, we need to convert miles to yards. Since there are 1,760 yards in a mile, we can multiply the number of miles by this conversion factor.
First, let's represent 5 1/2 miles as an improper fraction: 5 1/2 = 11/2 miles. Next, we multiply 11/2 by 1,760:
11/2 miles
= 11/2
* 1760 yards/mile
= 11*880 yards
= 9,680 yards.
Therefore, Miles biked a total of 9,680 yards.
I WILL LITERALLY GIVE BRAINLIEST IF YOU ANSWER CORRECTLY
Part A: In your own words, describe the relationship between the temperature of the city and the number of ice cream cones sold.
Part B: Describe how you can make the line of best fit. Write the approximate slope and y-intercept of the line of best fit. Show your work.
Temperature can relate to how cold the ice cream cone is.
The ice cream cone(s) can relate to all the buildings in the city.
Step-by-step explanation:
A car dealer wants to draw a Pie Graph representing the different types of cars he sold in a given month. He sold a total of 90 this month with 15 of those cars being convertables. How many degrees should be used to represent convertables in the Pie Graph? (You do not have to use the degree symbol in your answer.)
Answer:
60°
Step-by-step explanation:
Here we are given that the number of convertibles cars. Total number of cars owned by the dealers is 90. We have to draw the pie graph for above ratio. The pie chart is a circular statistical graph , where the different portion in form of sectors on the circle showing the amount of different entities.
The angle covered by an entity is in the same proportion as its number is in ration to the total number of all the entities.
Hence
[tex]\frac{15}{90}=\frac{\theta}{360}\\\\\theta=\frac{15*360}{90}\\\theta=\frac{15*4}{1}\\\theta=60\\[/tex]
Hence we will represent 60 degrees in order to represent 15 cars in our chart.
To represent convertibles on the pie graph, calculate the proportion of convertibles sold to the total number of cars sold (15/90) and multiply by the total degrees in a circle (360). Convertibles should be represented by a 60-degree slice on the pie graph.
The question is asking how to calculate the degree measure for the convertibles slice in a pie chart based on the total sales in a month. We know that a pie chart represents 100% of a data set, with the entire chart being a 360-degree circle. To find the degree measure for the convertibles, we would perform a proportion calculation based on the number of convertibles sold (15) out of the total number of cars sold (90). The calculation is as follows:
Proportion of convertibles to total sales = (Number of convertibles sold / Total cars sold) = 15 / 90
Now, multiply this proportion by the total degrees in a circle to get the degree measure for convertibles:
Degree measure for convertibles = Proportion of convertibles imes Total degrees in a circle = (15 / 90) * 360 = 1/6 * 360 = 60 degrees
Therefore, the convertibles should be represented by a 60-degree slice on the Pie Graph.
Use a calculator to find the values of the inverse trigonometric functions. Round to the nearest degree.
sin–1 (2/3) = °
tan–1(4) = °
cos–1(0.1) = °
Answer:
A. [tex]\text{sin}^{-1}(\frac{2}{3})\approx 42^{\circ}[/tex]
B. [tex]\text{tan}^{-1}(4)\approx 76^{\circ}[/tex]
C. [tex]\text{cos}^{-1}(0.1)\approx 84^{\circ}[/tex]
Step-by-step explanation:
We have been given inverse trigonometric functions. We are asked to find the value of each function.
A. [tex]\text{sin}^{-1}(\frac{2}{3})[/tex]
We will use inverse sin to solve our given equation as:
[tex]\text{sin}^{-1}(\frac{2}{3})=41.81^{\circ}[/tex]
Round to nearest degree:
[tex]\text{sin}^{-1}(\frac{2}{3})\approx 42^{\circ}[/tex]
B. [tex]\text{tan}^{-1}(4)[/tex]
We will use inverse tann to solve our given equation as:
[tex]\text{tan}^{-1}(4)=75.963756^{\circ}[/tex]
Round to nearest degree:
[tex]\text{tan}^{-1}(4)\approx 76^{\circ}[/tex]
C. [tex]\text{cos}^{-1}(0.1)[/tex]
We will use inverse cosine to solve our given equation as:
[tex]\text{cos}^{-1}(0.1)=84.2608295^{\circ}[/tex]
Round to nearest degree:
[tex]\text{cos}^{-1}(0.1)\approx 84^{\circ}[/tex]
To solve the problem we must know about the concept of trigonometry.
The value of [tex]\rm sin^{-1} (2/3), tan^{-1}(4), and\ cos^{-1}(0.1)[/tex] is 42, 76, and 85 degrees respectively.
What is trigonometry?Trigonometry deals with the relationship between the sides and angles of a right-angle triangle.
Given
[tex]\rm sin^{-1} (2/3), tan^{-1}(4), and\ cos^{-1}(0.1)[/tex] are the trigonometric function.
To find
The value of the [tex]\rm sin^{-1} (2/3), tan^{-1}(4), and\ cos^{-1}(0.1)[/tex].
How to get the value of the trigonometric function?[tex]\rm 1. \ \ sin^{-1} (2/3) = 41.81^o = 42^o\\\\ 2. \ \ \ \ \ tan^{-1}(4) = 75.96^o = 76^o \\\\3. \ \ cos{-1}(0.1)= 84.26^o = 85^o[/tex]
The value of [tex]\rm sin^{-1} (2/3), tan^{-1}(4), and\ cos^{-1}(0.1)[/tex] is 42, 76, and 85 degrees respectively.
More about the trigonometry link is given below.
https://brainly.com/question/22698523
Which ordered pair makes both inequalities true? y < –x + 1 y > x Which ordered pair makes both inequalities true? y < –x + 1 y > x (–3, 5) (–2, 2) (–1, –3) (0, –1) (–3, 5) (–2, 2) (–1, –3) (0, –1) Mark this and return
Answer:
(-2, 2)
Step-by-step explanation:
You can graph the equations and points and see which points fall into the doubly-shaded area. The only one that does is (-2, 2).
___
You can also evaluate the inequalities at the given points to see which might work. The inequality y > x is the simplest to evaluate, and it immediately eliminates the last two choices:
-3 > -1 . . . not true
-1 > 0 . . . not true
So, we can check the first two choices in the first inequality:
-(-3) +1 > 5 . . . not true
-(-2) +1 > 2 . . . TRUE
The ordered pair (-2, 2) makes both inequalities true.
Answer:
2nd Option is correct.
Step-by-step explanation:
Given Inequalities are,
y < x + 1 .....................(1)
y > x .....................(2)
To find: Ordered pair which makes he inequalities true.
Pair 1:
x = -3 , y = 5
Inequality (1),
LHS = 5
RHS = -(-3) + 1 = 4
⇒ LHS > RHS
Thus, this pair does not satisfy the pair of inequalities.
Pair 2:
x = -2 , y = 2
Inequality (1),
LHS = 2
RHS = -(-2) + 1 = 3
⇒ LHS < RHS
Inequality (2),
LHS = 2
RHS = -2
⇒ LHS > RHS
Thus, this pair satisfies the pair of inequalities.
Pair 3:
x = -1 , y = -3
Inequality (1),
LHS = -3
RHS = -(-1) + 1 = 0
⇒ LHS < RHS
Inequality (2),
LHS = -3
RHS = -1
⇒ LHS < RHS
Thus, this pair does not satisfy the pair of inequalities.
Pair 4:
x = 0 , y = -1
Inequality (1),
LHS = -1
RHS = -(0) + 1 = 1
⇒ LHS < RHS
Inequality (2),
LHS = -1
RHS = 0
⇒ LHS < RHS
Thus, this pair does not satisfy the pair of inequalities.
Therefore, 2nd Option is correct.
Factor this expression:
mn - 4m - 5n + 20
Answer:
(m-5) (n-4)
Step-by-step explanation:
mn - 4m - 5n + 20
We will factor by grouping
mn -5n -4m +20
Factor an n out of the first 2 terms and a -4 out of the last 2 terms
n (m-5) -4(m-5)
Now factor out a m-5
(m-5) (n-4)
Bills truck goes 18 miles on one gallon of gas.! How many miles can bill go on 6 gallons
Answer:
108 miles
Step-by-step explanation:
you multiply the 18 miles he can go on one mile of gas by 6, and you reach 108 miles
Find the value of x so that the line passing through (x, 10) and (-4, 8) has a slope of 2/3.
Thanks yall!
Answer:
x=-1
Step-by-step explanation:
General equation of line is y=mx+n where m is slope. So, if we use point (-4, 8) and slope in equation we have 8= 2/3.(-4)+n
Then we have n=8+8/3, that is n=32/3
Therefore equation of our line is y=2/3.x + 32/3
For the point (x,10) in equation 10=2/3.x + 32/3
Then we have 2/3.x = - 2/3 then x= -1
Answer:
x = - 1
Step-by-step explanation:
Using the slope formula to find the slope m
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (x , 10) and (x₂, y₂ ) = (- 4, 8)
m = [tex]\frac{8-10}{-4-x}[/tex] = [tex]\frac{2}{3}[/tex], that is
[tex]\frac{-2}{-4-x}[/tex] = [tex]\frac{2}{3}[/tex] ( cross- multiply )
2(- 4 - x) = - 6 ( divide both sides by 2 )
- 4 - x = - 3 ( add 4 to both sides )
- x = 1 ( multiply both sides by - 1 )
x = - 1
A boat is 122 meters from the base of a lighthouse that is 34 meters above sea level. What is the angle of elevation from the boat to the top of the lighthouse? Round to the nearest degree.
Answer: [tex]15.57\°[/tex]
In order to understand better this problem, we can use the figure attached, in which we have a right triangle (with a 90 degree angle), where [tex]c[/tex] is its hypotenuse, [tex]a[/tex] is the adjacent side to the angle of elevation [tex]\theta[/tex] from the boat to the top of the lighthouse and [tex]b[/tex] is the opposite side to [tex]\theta[/tex].
Knowing this, we will use the tangent trigonometric function to find [tex]\theta[/tex]:
[tex]tan\theta=\frac{oppositeside}{adjacentside}=\frac{b}{a}[/tex] (1)
[tex]tan\theta=\frac{34m}{122m}[/tex] (2)
[tex]tan\theta=0.278[/tex] (3)
[tex]\theta={tan}^{-1} (0.278)[/tex] (4)
Finally:
[tex]\theta=15.572\°[/tex]
Answer:
16
Step-by-step explanation:
A boat is 122 meters from the base of a lighthouse that is 34 meters above sea level. What is the angle of elevation from the boat to the top of the lighthouse? Round to the nearest degree.
HELP ASAP PLEASE!!!!
Describe the transformations required to obtain the graph of the function f(x) from the graph of the function g(x). F(x)=-5.8sin x. G(x)=sin x. A: Vertical stretch by a factor of 5.8, reflection across y-axis. B: Vertical stretch by a factor of 5.8,reflection across x-axis. C: Horizontal stretch by a factor of 5.8, reflection across x-axis. D:Horizontal stretch by a factor of 5.8 reflection across y-axis.
Answer:
Vertical stretch by a factor of 5.8 , reflection across x-axis ⇒ answer B
Step-by-step explanation:
* Lets revise the vertical and horizontal stretch with reflection
- A vertical stretching is the stretching of the graph away from the
x-axis
- If k > 1, the graph of y = k•f(x) is the graph of f(x) vertically stretched
by multiplying each of its y-coordinates by k.
- If k should be negative, the vertical stretch is followed by a reflection
across the x-axis
- A horizontal stretching is the stretching of the graph away from
the y-axis
- If 0 < k < 1 (a fraction), the graph of y = f(k•x) is f(x) horizontally
stretched by dividing each of its x-coordinates by k.
- If k should be negative, the horizontal stretch or shrink is followed
by a reflection in the y-axis
* Lets solve the problem
∵ G(x) = sin x
∵ F(x) = -5.8 sin x
∴ F(x) = -5.8 G(x)
- From the rule above
∴ G(x) is stretched vertically by scale factor -5.8
∵ The scale factor is negative
∴ The vertical stretch is followed by a reflection across the x-axis
* The transformation is:
Vertical stretch by a factor of 5.8 , reflection across x-axis
To obtain the graph of f(x) = -5.8sin x from g(x) = sin x, a vertical stretch by a factor of 5.8 and a reflection across the x-axis are required.
Explanation:To transform the graph of the function g(x) = sin x into the graph of f(x) = -5.8sin x, two main transformations are required:
A vertical stretch by a factor of 5.8. This is due to the coefficient of the trigonometric function being 5.8, thereby stretching the graph vertically by 5.8 times its original height.A reflection across the x-axis. This is a result of the negative sign in front of the 5.8 which means that every point on the graph of g(x) is reflected over the x-axis, changing the sign of the corresponding y-coordinates on the graph of f(x).Option B (vertical stretch by a factor of 5.8 and reflection across the x-axis) correctly describes the required transformations to obtain the graph of f(x) from the graph of g(x).
$20000 is invested in an account that earned 6% p.A. Compounding yearly for 3 years. The interest rate then went up to 8% p.A. For the next 4 years. After this period the amount of money in the account would be?
[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount \underline{for the first 3 years}} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$20000\\ r=rate\to 6\%\to \frac{6}{100}\dotfill &0.06\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{per annum, thus once} \end{array}\dotfill &1\\ t=years\dotfill &3 \end{cases}[/tex]
[tex]\bf A=20000\left(1+\frac{0.06}{1}\right)^{1\cdot 3}\implies A=20000(1.06)^3\implies \boxed{A=2382.032} \\\\[-0.35em] ~\dotfill\\\\ ~~~~~~ \textit{Compound Interest Earned Amount \underline{for the next 4 years}}[/tex]
[tex]\bf A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$2382.032\\ r=rate\to 8\%\to \frac{8}{100}\dotfill &0.08\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{per annum, thus once} \end{array}\dotfill &1\\ t=years\dotfill &4 \end{cases}[/tex]
[tex]\bf A=2382.032\left(1+\frac{0.08}{1}\right)^{1\cdot 4}\implies A=2382.032(1.08)^4\implies \boxed{A\approx 3240.73} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{amount for this period}}{2382.032+3240.73}\implies 5622.762[/tex]
What intervals would you use to determine where
the function is positive and negative?
Answer:
B.
Step-by-step explanation:
The function is positive when it is above the x-axis
The following x values are where the function has positive y coordinates:
(-2,0)
(4,inf)
The function is negative when it is below the x-axis
The following x values are where the function has negative y coordinates:
(-inf,-2)
(0,4)
So you should see all of these intervals listed in choice B
Answer:
B
Step-by-step explanation:
If Train A is moving 66 mph and is 456 miles from the station while Train B is moving 72 mph and is 502 miles away, which train arrives at the station first?
Answer: train A arrives first
Step-by-step explanation:
If (x, y) is a solution to the system of equations above, then what is the value of x - y?
A. 1/4
B. 1
C. 3
D. 18
1. The first step to solving this problem is to find the values of x and y. This can be done in a multitude of different ways, however I will go with the method of substitution.
Thus, the first thing we must do is write out both equations and rearrange one of them so that either x or y is the subject of the equation. Looking at the two equations, I can see that in the second equation this would be easier, and that we could also simplify the first equation a little further. Thus:
a) Collecting like terms to simplify equation 1:
4x + 3y = 14 - y
4x + 4y = 14 (Add y to both sides)
b) Rearranging equation 2 to make x the subject:
x - 5y = 2
x = 2 + 5y (Add 5y to both sides)
Now, we can substitute x = 2 + 5y into the first equation:
4x + 4y = 14
if x = 2 + 5y:
4(2 + 5y) + 4y = 14
8 + 20y + 4y = 14 (Expand 4(2 + 5y))
8 + 24y = 14 (Add 20y and 4y)
24y = 6 (Subtract 8 from both sides)
y = 1/4 (Divide both sides by 24)
Now that we know that y = 1/4, we can substitute this back into x = 2 + 5y:
x = 2 + 5y
if y = 1/4: x = 2 + 5(1/4)
x = 2 + 5/4
x = 13/4
2. So now we know that x = 13/4 and y = 1/4. Given these values, we can now solve x - y as such:
x - y = 13/4 - 1/4
= 12/4
= 3
Thus, the value of x - y is 3 (answer C).
What is (2+2+3+10)x(8+9+-9+7)
Answer:
255
Step-by-step explanation:
(2+2+3+10) × (8+9+-9+7)
First, remove the brackets:
2 + 2 + 3 + 10 × 8 + 9 + -9 + 7
Now calculate like so:
2 + 2 + 3 + 10 = 17
8 + 9 + -9 + 7 = 15
(17) × (15) = 17 × 15 = 255
PLEASE DO MARK ME AS BRAINLIEST UWU
Answer:
Your answer for this question is 255.
Step-by-step explanation:
To solve this problem, we must remember how to use PEMDAS. This tells us that we must simplify what is in parentheses first, exponents next, then multiplication and division, and finally addition and subtraction. In this case, this means that we must first perform the operations inside of the parentheses before the multiplication of the two groups of parentheses.
If we simplify within both groups of parentheses, we get:
(2+2+3+10) * (8+9+-9+7)
= (17) * (15)
We get the above simplification by performing the addition of all of the constants in the first group of parentheses and performing the addition and subtraction in the second group (notice that the +9 and -9 cancel each other out).
Now, we must simply multiply together our final two values to obtain our final answer.
17 * 15 = 255
Therefore, your answer is 255.
Hope this helps!
Need help with a math question
Answer:
57%
Step-by-step explanation:
We are given the results of survey of one thousand families to determine the distribution of families by their size.
We are to find the probability (to the near percent) that a given family has 3, 4 or 5 people.
Frequency of families with 3, 4 or 5 people = 200 + 245 + 125 = 570
Total frequency = 1000
P (families with 3, 4 or 5 people) = (570 / 1000) × 100 = 57%
The temperature in Miami, Florida is 22 degrees warmer than three times the temperature in Bangor, Maine. The temperature in Miami is 82 degrees. Write an equation to determine the temperature in Bangor. 3x + 82 = 22 3x + 22 = 82 3x ? 22 = 82 3x ? 82 = 22
Answer:
[tex]82=3x+22[/tex]
The temperature in Bangor is [tex]x=20\°[/tex]
Step-by-step explanation:
Let
x -----> the temperature in Bangor
y ----> the temperature in Miami
we know that
The linear equation that represent this situation is
[tex]y=3x+22[/tex] ----> equation A
[tex]y=82[/tex] ----> equation B
substitute equation B in equation A and solve for x
[tex]82=3x+22[/tex]
[tex]3x=82-22[/tex]
[tex]3x=60[/tex]
[tex]x=20\°[/tex]
Answer:
3x + 22 = 82
Step-by-step explanation:
I am positive its correct
Which equation represents the line that passes through the points and (4, 10) and (2, 7)?
y = 3/2x - 11
y = 3/2x +4
y = - 3/2x + 19
y = - 3/2x + 16
Answer:
y=(3/2)x+4
Step-by-step explanation:
step 1
Find the slope m
we have
the points (4, 10) and (2, 7)
The slope is equal to
m=(7-10)/(2-4)
m=3/2
step 2
Find the equation into slope point form
y-y1=m(x-x1)
we have
m=3/2
(x1,y1)=(2,7)
substitute
y-7=(3/2)(x-2)
y=(3/2)x-3+7
y=(3/2)x+4
please help will mark brainliest for whoever answers this question first
Tia measured the daily high temperature in Kats, Colorado for each of the 303030 days in April. She then created both a dot plot and a box plot to display the same data (both diagrams are shown below).
Which display can be used to find how many days had a high temperature above 15^{\circ}\text{C}15
∘
C15, degree, C?
Choose 1 answer:
Choose 1 answer:
(Choice A)
A
The dot plot
(Choice B, Checked)
B
The box plot
Which display makes it easier to see that the first quartile is 9^{\circ}\text{C}9
∘
C9, degree, C?
Choose 1 answer:
Choose 1 answer:
(Choice A)
A
The dot plot
(Choice B)
B
The box plot
Which display can be used to find how many days had a high temperature above 15 deg?
Answer: A The dot plot
In the dot plot, you can see each temperature since each temperature is represented by 1 dot.
Which display makes it easier to see that the first quartile is 9 deg?
Answer: B The box plot
The box plot shows where the upper and lower quartiles are.
Answer:
First question: A . The dot plot
Second question: B . The box plot
Step-by-step explanation:
In the dot plot it is easy to count 7 values above 15.
In the box plot are shown (in this order): the minimum value; the lower quartile, called Q1; the median, the upper quartile, also called Q3; and the maximum value. As can be seen in the graph, the the first quartile is 9 °C
Can someone please explain to me how to solve this problem? Thank you.
The average for the 5 tests is a 74.
The total of the 5 grades needs to equal 5 x 74 = 370
The total of the 4 graded tests is : 76 +80 + 69 + 71 = 296
Subtract that from the first total: 370 - 296 = 74
The grade needs to be a 74
The length of a rectangle is units greater than its width. If the width is w, which expression gives the perimeter of the rectangle in terms of its width?
Answer: 2l+2w
Step-by-step explanation:
Answer:21 plus 2w
Step-by-step explanation:
The sum of first three terms of a finite geometric series is -7/10 and their product is -1/125. [Hint: Use a/r , a, and ar to represent the first three terms, respectively.] The three numbers are _____, _____, and _____.
Answer:
-1/10, -1/5 , -2/5 or -2/5, -1/5 , -1/10
Step-by-step explanation:
let a/r, a, ar be the first 3 terms of the geometric series
their product would be equal to a^3
a^3=-1/125
a=-1/5
Substitute a=-1/5 into the first 3 terms
-1/5r + -1/5+-r/5=-7/10
Multiply the terms such that they have a common denominator:
-1/5r +-r/5r + -r^2/5r = -3.5r/5r
Multiply both sides by 5r
-r^2-r-1=-3.5r
Add 3.5r to both sides and multiply the equation by 2
-2r^2 + 5r -2=0
Factorize the equation
(2r-1)(r-2)=0
r=0.5 or r-2
For the first three terms where r=0.5
-2/5, -1/5 , -1/10
For the first three terms where r=2
-1/10, -1/5 , -2/5
Use the Binomial Theorem and Pascal’s Triangle to write each binomial expansion.
(X +4)2
HELP IN NEED ASAP ):
Answer:
x² + 8x + 16
Step-by-step explanation:
You can draft the Pascal's Triangle as below;
Exponent
1-----------------------0
1 1 -------------------1
1 2 1 ------------------2
1 3 3 1 -----------------3
According to the question, we use values for exponent 2 because (a+b)²
Given (x+4)²...................................expand
x² × 4⁰ + x¹ × 4¹+ x⁰ × 4²
x² × 1 + x × 4 + 1 × 16
x² + 4x + 16---------------------------------introduce values in exponential 2 of the table which are 1 2 1
x² × 1 + 2 × 4x + 16 × 1
⇒ x² + 8x + 16
I can't tell the difference!! :(
Answer:
the first one is 350 inches (350 in) and the second on is 350 square inches (350 in2)
Step-by-step explanation:
What are the possible numbers of positive, negative, and complex zeros of f(x) = −3x4 −
5x3 − x2 − 8x + 4?
Select one:
a. Positive: 2 or 0; negative: 2 or 0; complex: 4 or 2 or 0
b. Positive: 1; negative: 3 or 1; complex: 2 or 0
c. Positive: 3 or 1; negative: 1; complex: 2 or 0
d. Positive: 4 or 2 or 0; negative: 2 or 0; complex: 4 or 2 or 0
Answer:
b.
Step-by-step explanation:
We have to look at sign changes in f(x) to determine the possible positive real roots.
[tex]f(x)=-3x^4-5x^3-x^2-8x+4[/tex]
There is only one sign change here, between the -8x and the +4. So that means there is only 1 possible real positive root.
Now we have to look at sign changes in f(-x) to determine the possible negative real roots.
[tex]f(-x)=-3x^4+5x^3-x^2+8x+4[/tex]
There are 3 sign changes here. That means there are either 3 negative roots or 3-2 = 1 negative root. So we have:
1 positive
3 or 1 negative
We need to pair them up now with all the possible combinations.
If we have 1 positive and 1 negative, we have to have 2 imaginary
If we have 1 positive and 3 negative, we have to have 0 imaginary
Keep in mind that the total number or roots--positive, negative, imaginary--have to add up to equal the degree of the polynomial. This is a 4th degree polynomial, so we will have 4 roots.
Find the area 6m, 3m
Check the picture below.
Determine which consecutive integers the real zeros of f(x) = x^3 - 2 are located
the answer is A) between 1&2
Answer:
The real zero is between 1 and 2.
Step-by-step explanation:
The given function is:
[tex]f(x)=x^3-2[/tex]
To find the zeros of this function, we set f(x)=0.
[tex]\implies x^3-2=0[/tex]
Add 2 to both sides to obtain:
[tex]\implies x^3=2[/tex]
Take the cube root of both sides
[tex]\implies x=\sqrt[3]{2}[/tex]
[tex]\implies x=1.26[/tex]
Therefore the real zero is between 1 and 2.
New help with this question
Answer:
8
Step-by-step explanation:
Answer:
8
Step-by-step explanation: