Answer:
The answer is 16.
Step-by-step explanation:
In this expression 4-2/2^-3, first of all we will solve the numerator.
Subtract 4 and 2
4-2= 2
So, the expression will become 2/2^-3
Now notice that the numerator has the base 2 and exponent 1 where as the denominator has the base 2 and exponent -3. Both the numerator and denominator have the same base
So we will use the property a^m/a^n=a^m-n.
=2/2^-3
=2^1-(-3)
=2^1+3
=2^4
2^4 means that 2 will be multiplied 4 times.
=2*2*2*2
=16
Thus the answer is 16....
Write 5 × 5 × 5 × 5 using exponents. A. 55 B. 54 C. 52 D. 45
Answer:
B: 5^4
Step-by-step explanation:
however many of the same numbers is the little exponent
Exponent means exactly repeated multiplications of the same number: [tex]a^b[/tex] means that you have to multiply [tex]a[/tex] by itself [tex]b[/tex] times.
So, [tex]5\times5\times5\times5[/tex] means to multiply 5 by itself 4 times, which is written as [tex]5^4[/tex].
Ahmet rents a piano for $35 per month. He earns $25 per hour giving piano lessons to students. He wants to know
how many hours of lessons per month he must give to earn a profit of $440.
Which answer describes the correct solution for the situation?
it will cost a student $165^ 1/5 per lesson
It will take 19 days of lessons
It will take 16^1/5 days of lessons.
It will take 19 hours of lessons.
it will cost a student $19 per lesson
it will take 16^1/5 hours of lessons
Answer:
25h-35=440
440+35=25h
475=25h
475÷25=h
h=19
19 hours
It will take 19 hours of lessons.
An equation is formed of two equal expressions. The answer describes the correct solution for the situation It will take 19 hours of lessons. The correct option is D.
What is an equation?An equation is formed when two equal expressions are equated together with the help of an equal sign '='.
Given that Ahmet rents a piano for $35 per month. He earns $25 per hour giving piano lessons to students. Therefore, the profit earned by Ahmet will be,
Profit = Total Earning - Expenditure
Profit = Total Earning - Cost of renting the piano
Profit = $25x - $35
Where x represents the number of hours
Now, since Ahmet wants to earn a profit of $440, this month. Therefore, we can write,
$440 = $25x - $35
$440 + $35 = $25x
$475 = $25x
x = $475 / $25
x = 19
Thus, Ahmet needs to give 19 hours of lessons in order to earn $440 profit.
Hence, the answer describes the correct solution for the situation is It will take 19 hours of lessons.
Learn more about Equation here:
https://brainly.com/question/14686792
#SPJ2
A line passes through (–7, –5) and (–5, 4).Write an equation for the line in point-slope form.
Rewrite the equation in standard form using integers.
Answer:
[tex]\large\boxed{y-4=\dfrac{9}{2}(x+5)}\\\boxed{9x-2y=-53}[/tex]
Step-by-step explanation:
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slope
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points (-7, -5) and (-5, 4).
Calculate the slope:
[tex]m=\dfrac{4-(-5)}{-5-(-7)}=\dfrac{9}{2}[/tex]
Put it and coordinates of the point (-5, 4) to the equation:
[tex]y-4=\dfrac{9}{2}(x-(-5))[/tex]
[tex]y-4=\dfrac{9}{2}(x+5)[/tex] → the point-slope form
Convert to the standard form Ax + By = C :
[tex]y-4=\dfrac{9}{2}(x+5)[/tex] multiply both sides by 2
[tex]2y-8=9(x+5)[/tex] use the distributive property
[tex]2y-8=9x+45[/tex] add 8 to both sides
[tex]2y=9x+53[/tex] subtract 9x from both sides
[tex]-9x+2y=53[/tex] change the signs
[tex]9x-2y=-53[/tex] → the standard form
What is the value of x is?
Answer:
96
Step-by-step explanation:
Answer:
e^x = -3 = -1*3
x = ln(-3) = ln(-1) + ln(3)
= (2n+1)iπ + ln(3)
where n is any integer. For the principal value, choose n=0:
= iπ + ln(3)
Step-by-step explanation:
The perimeter of the original rectangle on the left is 30 meters. The perimeter of the reduced rectangle on the right is 24
meters.
8 m
Not drawn to scale
What is x, the width of the original rectangle on the left? Round to the nearest hundredth if necessary.
5 meters
8 meters
10 meters
12 meters
Answer:
5 meters
Step-by-step explanation:
step 1
Find the scale factor
we know that
If two figures are similar, then the ratio of its perimeters is equal to the scale factor
Let
z -----> the scale factor
P1 -----> the perimeter of the reduced rectangle on the right
P2 ----> the perimeter of the original rectangle on the left
[tex]z=\frac{P1}{P2}[/tex]
substitute
[tex]z=\frac{24}{30}=0.8[/tex]
step 2
Find the width of the reduced rectangle on the right
[tex]P1=2(L+W)[/tex]
substitute the given values
we have
[tex]L=8\ m[/tex] ---> see the attached figure to better understand the problem
[tex]24=2(8+W)[/tex]
[tex]12=8+W[/tex]
[tex]W=4\ m[/tex]
step 3
Find the width of the original rectangle on the left
To find the width of the original rectangle on the left, divide the width of the reduced rectangle on the right by the scale factor
so
[tex]W=4/0.8=5\ m[/tex]
Answer:
A. 5 meters
Step-by-step explanation:
Your a GENIUS if you help me answer this!!!
suppose you selected a random letter from the word Mississippi.
WHAT is the probability of selecting the following letters
a) The letter S?
b) the letter P?
c) the letter M?
d) What is the probability of NOT selecting the letter I?
Answer:
a) 4/11
b) 2/11
c) 1/11
d) 7/11
Find the value of the expression 2x3 + 3y2 − 17 when x = 3 and y = 4
Answer:
85
Step-by-step explanation:
I assume by 2x3 you mean 2x^3 and 3y2 means 3y^2. If so then just plug in the values:
2x^3 + 3y^2 - 17 = ?
2(3)^3 + 3(4)^2 - 17 = ?
2(27) + 3(16) - 7 = ?
54 + 48 - 17
102 - 17 = ?
85 = ?
Evaluate 7+ (-4x^2) for x = 0
If x is zero then you must replace x with zero and use the rules of PEMDAS (Parentheses, Exponent, Multiplication, Division, Addition, Subtraction) to solve
7 + (-4(0)^2)
7 + (-4(0))
7 + 0
7
If x is 0 then the expression equals 7
Hope this helped
~Just a girl in love with Shawn Mendes
Answer:
[tex]\boxed{7}[/tex]
X=0 is 7.
7 is the correct answer.
The answer should have a positive sign.
Step-by-step explanation:
Order of operations
Parenthesis
Exponent
Multiply
Divide
Add
Subtract
from left to right.
Distributive property: a(b+c)=ab+ac
[tex]7+(-4x^2)[/tex]
[tex]7+-4x^2[/tex]
[tex]7-4*0^2[/tex]
Do exponent.
[tex]0^2=0*0=0[/tex]
[tex]7-0=7[/tex]
7 is the correct answer.
Hope this helps you!
Thanks!
Have a nice day! :)
-Charlie
Point C, is a point that is found on AB. AB is translated 3 units up and 10 units to
the right to form APB? Which of the following must be true?
1. Points A', B, and C must be collinear.
II. Ad and 8c must be of equal length.
I. AB and AB? are parallel.
I only
Il only
I and II only
I and III only
Answer:
I and III only
Step-by-step explanation:
step 1
we know that
In this problem
A, B and C are collinear
so
A', B' and C' are collinear too
because the transformation is a translation
The translation does not modify the shape or length of the figure
AB=A'B'
AC=A'C'
BC=B'C'
step 2
The distance
AA'=BB'=CC'
because AB and A'B' are parallel
21. The members of a book club are
33, 33, 38, 35, 57, 37, and 40
years old. To the nearest tenth, what
is the mean of this data set with and
without the outlier?
A 36, 38.8
C 39, 36
B 39, 30.9
D 45.5, 30.9
Answer:
C
Step-by-step explanatio
33 + 33 + 38 + 35 +37 + 40 + 57 = 273
273 / 7 = 39
33 + 33 + 38 + 35 +37 + 40 = 216
216 / 6 = 36
The mean (average) of the data set without the outlier is 36 and including the outlier is 39. The outlier here being the value 57 which deviates most from the other values in data set.
Explanation:To find the mean (or average) of a data set, you add all the values together and then divide by the count of the values.
Firstly, for the mean without the outlier, we add 33+33+38+35+37+40 = 216, which we then divide by the 6 values, giving us 36. So, the mean without considering the outlier is 36.
For the mean considering all values including the outlier (57), calculate 33+33+38+35+57+37+40 = 273, then divide by the 7 values, which gives us approximately 39. The answer to the nearest tenth is 39.0. Therefore, the mean of this data set with the outlier is 39.0 and without the outlier is 36.0.
Learn more about Outlier here:https://brainly.com/question/3631910
#SPJ2
What is the interquartile range of this box plot? And how do you find it?
Please and thank you
Answer:
3.
Step-by-step explanation:
Calculate the median, which is the middle number of an ordered range with an odd number. 3.
Calculate the medians of the bottom and top halves, omitting the middle number. Since these are now even-numbered sets, we'll take the average of the middle two numbers of each. Lower is 1.5, upper is 4.5.
Calculate the difference of the upper median and lower median, so 4.5 - 1.5 = 3.
Three-fourth of x is added to the product of 7 and q.
Translate as algebraic expression
Answer:
3/4x + (7 × Q)
∆
|
That's an x not multiplication
Answer:
[tex]7q + \frac{3}{4}x[/tex]
Step-by-step explanation:
[tex]\begin{array}{rcl}\text{Product of 7 and q} & = & 7q\\\\\text{Three-fourths of x} & = & \frac{3}{4}x \\\\\text{Three fourths of x added to product of 7 and q} & = & 7q + \frac{3}{4}x \\\\\end{array}[/tex]
There are 500 passengers on a train.
7/20 of the passengers are men.
40% of the passengers are women.
The rest of the passengers are children.
Answer:7/20 = 0.35 = 35%=500x.35 =175 men
40%=.40x500 =200 women
200+170=370
500-370
125 children
Step-by-step explanation:
Answer:
There are 175 men, 200 women, and 125 children.
Step-by-step explanation:
7/20 = M/500; M = 175
0.4 x 500 = W; W = 200
175 + 200 + C = 500; C = 125
The function f(x) = –x2 − 2x + 15 is shown on the graph. What are the domain and range of the function? The domain is all real numbers. The range is {y|y < 16}. The domain is all real numbers. The range is {y|y ≤ 16}. The domain is {x|–5 < x < 3}. The range is {y|y < 16}. The domain is {x|–5 ≤ x ≤ 3}. The range is {y|y ≤ 16}.
Answer:
The domain is all real numbers. The range is {y|y ≤ 16}
Step-by-step explanation:
we have
[tex]f(x)=-x^{2}-2x+15[/tex]
This is the equation of a vertical parabola open downward
The vertex is a maximum
Find the vertex of the quadratic equation
[tex]f(x)-15=-x^{2}-2x[/tex]
[tex]f(x)-15=-(x^{2}+2x)[/tex]
[tex]f(x)-15-1=-(x^{2}+2x+1)[/tex]
[tex]f(x)-15-1=-(x^{2}+2x+1)[/tex]
[tex]f(x)-16=-(x^{2}+2x+1)[/tex]
[tex]f(x)-16=-(x+1)^{2}[/tex]
[tex]f(x)=-(x+1)^{2}+16[/tex] -----> equation in vertex form
The vertex is the point (-1,16)
therefore
The domain is the interval ----> (-∞,∞) All real numbers
The range is the interval ----> (-∞,16] All real numbers less than or equal to 16
Answer:
The Answer Is B
Step-by-step explanation:
domain is all real numbers. The range is {y|y ≤ 16}.
Allison can complete a sales route by herself in 6 hours. Working with an associate, she completes the route in 4 hours. How long would it take her associate to complete the route by herself?
Answer:
So, Allison averages 1/6 of the route every hour, right?
1/6 + 1/a = 1/4
Once we apply the common denominator, 12a, we only wirk with the numerators.
2a + 12 = 3a
a = 12
Her associate can finish the route in 12 hours by herself.
Step-by-step explanation:
it would take 12 hours for her associate to complete the route by herself
Further explanationThis problem is related to the speed of completing the route.
To solve this problem, we must state the formula for the speed.
[tex]\large {\boxed {v = \frac{x}{t}} }[/tex]
where:
v = speed of completing the route ( m³ / s )
x = route distance ( m³ )
t = time taken ( s )
Let's tackle the problem!
Allison can complete a sales route by herself in 6 hours.
[tex]\text{Allison Speed} = v_a = x \div t_a[/tex]
[tex]v_a = x \div 6[/tex]
Her associate can complete the route by herself in t_s
[tex]\text{Associate Speed} = v_s = x \div t_s[/tex]
[tex]v_s = x \div t_s[/tex]
Working with an associate, she completes the route in 4 hours
[tex]\text{Total Speed} = v = v_a + v_s[/tex]
[tex]\frac{x}{t} = \frac{x}{t_a} + \frac{x}{t_s}[/tex]
[tex]\frac{1}{t} = \frac{1}{t_a} + \frac{1}{t_s}[/tex]
[tex]\frac{1}{4} = \frac{1}{6} + \frac{1}{t_s}[/tex]
[tex]t_s = \frac{ 6 \times 4 }{6 - 4}[/tex]
[tex]t_s = \frac{ 24 }{2}[/tex]
[tex]t_s = 12 ~ \text{hours}[/tex]
Learn moreInfinite Number of Solutions : https://brainly.com/question/5450548System of Equations : https://brainly.com/question/1995493System of Linear equations : https://brainly.com/question/3291576Answer detailsGrade: High School
Subject: Mathematics
Chapter: Linear Equations
Keywords: Linear , Equations , 1 , Variable , Line , Gradient , Point
If tanθ= -3/4 and θ is in quadrant IV, cos2θ=
33/25
-17/25
32/25
7/25
24/25
Recall that
[tex]\cos2\theta=2\cos^2\theta-1[/tex]
and
[tex]\tan^2\theta+1=\sec^2\theta=\dfrac1{\cos^2\theta}[/tex]
Then
[tex]\cos2\theta=\dfrac2{\tan^2\theta+1}-1\implies\cos2\theta=\boxed{\dfrac7{25}}[/tex]
Answer:
[tex]cos2\theta=\frac{7}{25}[/tex]
Step-by-step explanation:
This is a question of Trigonometric Identities. In addition to this, In quadrant IV the cosine of the angle is naturally negative. This explains the negative value for [tex]tan\theta=-3/4[/tex]
The double angle formula
Let's choose a convenient identity, for the double angle [tex]cos2\theta[/tex]
[tex]\\tan \theta=-3/4 \\ cos2\theta =cos^{2}\theta -sen^{2}\theta\\cos2\theta =2cos^{2}\theta-1\\\\1+tan\theta^{2} =sec^{2}\theta\\\\ 1+(\frac{-3}{4})^{2} =\frac{1}{cos^2 \theta} \\\\\frac{25}{16}=\frac{1}{cos^{2}\theta}\\ cos^{2}\theta=\frac{16}{25}[/tex]
Finally, we can plug it in:
[tex]cos2\theta =2cos^{2}\theta -1\\cos2\theta =2\left ( \frac{16}{25} \right )-1 \Rightarrow cos2\theta=\frac{7}{25}[/tex]
Select the statement that correctly describes the expression below.
(2.+ 5)2
A. the sum of the square of 2 times x and 5
B. the square of the sum of 2 times x and 5
c. the sum of 2 times x and the square of 5
D. the square of 2 times the addition of x and 5
Answer:
option B. the square of the sum of 2 times x and 5
Step-by-step explanation:
we have
[tex](2x+5)^{2}[/tex]
we know that
The algebraic expression [tex](2x)[/tex] is equal to the phrase " Two times x" (the number two multiplied by x)
The algebraic expression [tex](2x+5)[/tex] is equal to the phrase " The sum of two times x and 5" (the number two multiplied by x plus the number 5)
The algebraic expression [tex](2x+5)^{2}[/tex] is equal to the phrase " The square of the sum of two times x and 5"
The graph of f(t)=7•2^t shows the value of a rare coin in year t. What is the meaning of the y-intercept?
A. Every year, the coin is worth 7 more dollars
B. When it was purchased (year 0), the coin was worth $7
C. In year 1, the coin was worth 14$
D. When it was purchased (year 0), the coin was worth $2
Answer:
Option B
When it was purchased (year 0) the coin was worth $7
Step-by-step explanation:
we have
[tex]f(t)=7(2)^{t}[/tex]
This is a exponential function of the form
[tex]y=a(b)^{x}[/tex]
where
a is the initial value
b is the base
In this problem we have
a=$7
b=2
b=1+r
so
2=1+r
r=1
r=100%
The y-intercept is the value of the function when the value of x is equal to zero
In this problem
The y-intercept is the value of a rare coin when the year t is equal to zero
[tex]f(0)=7(2)^{0}[/tex]
[tex]f(0)=\$7[/tex]
therefore
The meaning of y-intercept is
When it was purchased (year 0) the coin was worth $7
which polynomial could be represented by this graph?
Answer:
[tex]x(x+2)(x-1)(x-3)^2[/tex]
Please let me know the choices to better help you.
Step-by-step explanation:
I see zeros at x=-2 , x=0 , x=1 , x=3.
Any time it makes like a little U or upside down U at a zero you are going to have a even power on your factor (for which the zero occurs). If it goes through the zero increasing or decreasing (not making a kind of U shaped upside down or upside right), it is an odd power.
So at x=-2, (x+2) is going to have an odd power
So at x=0, (x-0) or (x+0) or even just x is going to have a odd power
So at x=1, (x-1) is going to have an odd power
So at x=3, (x-3) is going to have an even power
So the polynomial could be represented by
[tex]x(x+2)(x-1)(x-3)^2[/tex]
Solve for x. Enter the number, in decimal form, that belongs in the green box.
Answer:
x = 9.6
Step-by-step explanation:
The figure is a similar figure and the quadrilaterals (4 sides) created are related to each other by the same ratio.
So we can say:
8 goes with x as (8+12) goes with 24
We can setup a ratio and solve for x:
[tex]\frac{8}{x}=\frac{8+12}{24}\\\frac{8}{x}=\frac{20}{24}\\20x=8*24\\20x=192\\x=\frac{192}{20}\\x=9.6[/tex]
So x = 9.6
The value of x in the figure drawn is 9.6
How to solve for xwe can create a proportional expression thus :
8 = x
(8 + 12) = 24
This means
8 = x
20 = 24
cross multiply
20x = 24 × 8
20x = 192
divide both sides by 20 to isolate x
x = 192/20
x = 9.6
Learn more on similar shapes :https://brainly.com/question/32325828
#SPJ3
solve log(x+1)= -x^2 +10
[tex]\boxed{x \approx 3.064}[/tex]
Step-by-step explanation:There is no general property that we can use to rewrite:
[tex]log_{a}(u\pm v)[/tex]
Then, we'll solve this problem graphically. Let's say that we have two functions:
[tex]f(x)=log(x+1) \\ \\ g(x)=-x^2 +10[/tex]
[tex]f(x)[/tex] is a logarithmic function translated one unit to the left of the pattern logarithmic function [tex]log(x)[/tex]. On the other hand, [tex]g(x)[/tex] is a parabola that opens downward and whose vertex is [tex](0,10)[/tex]. So:
[tex]f(x)=g(x)[/tex]
implies that we'll find the value (or values) where these two functions intersect. When graphing them, we get that this x-value is:
[tex]\boxed{x=3.064}[/tex]
Then, for [tex]x=3.064[/tex]:
[tex]f(x)=log(x+1) \\ \\ f(3.064)=log(3.064+1) \\ \\ f(3.064)=log(4.064) \\ \\ Using \ calculator: \\ \\ f(3.064) \approx 0.6 \\ \\ \\ g(x)= -x^2 +10 \\ \\ g(3.064)= -(3.064)^2 +10 \\ \\ g(3.064)=-9.388+10 \\ \\ g(3.064) \approx -0.6[/tex]
Solve for x, y, and z. Please show all steps.
Answer:
I have put my answer in the form (x,y,z)
One solution (3,2,4)
Another solution (-5,-4,-6)
Step-by-step explanation:
I'm going to try to do this by a bunch of substitution.
I'm going to solve first equation for x, second for y, and third for z.
Commutative property x+xy+y=11
Distributive property x(1+y)+y=11
Subtraction property x(1+y)=11-y
Division property x=(11-y)/(1+y)
I'm going to do the other 2 equations in a similar way:
So the second equation solving for y: y=(14-z)/(1+z)
The third equation solving for z: z=(19-x)/(1+x)
I'm going to plug my new first equation into my third equation giving me:
z=(19-[(11-y)/(1+y)])/(1+[(11-y)/(1+y)]
Now I'm going to clean this up by multiplying by compound fraction by (1+y)/(1+y).
z=(19(1+y)-(11-y)]/[1(1+y)+(11-y)]
z=[19+19y-11+y]/[1+y+11-y]
z=[8+20y]/[12]
Simplify
z=(2+5y)/3
Now I'm going to sub this into my non-rewrite of equation 2:
y+(2+5y)/3+y(2+5y)/3=14
Multiply both sides by 3 to clear fractions
3y+(2+5y)+y(2+5y)=42
3y+2+5y+2y+5y^2=42
5y^2+10y+2=42
Subtract 42 on both sides
5y^2+10y-40=0
Divide both sides by 5
y^2+2y-8=0
Factor
(y+4)(y-2)=0
So y=-4 or y=2
If y=-4 then x=(11-(-4))/(1+(-4))=15/-3=-5 and z=(2+5*-4)/3=-18/3=-6
So one solution is (-5,-4,-6)
If y=2 then x=(11-2)/(1+2)=9/3=3 and z=(2+5*2)/3=12/3=4
So another solution is (3,2,4)
What is the volume of the composite figure? Express the
answer in terms of pi.
144pi mm
168pi mm
312pi mm
456pi mm
Answer:
[tex]V=312\pi\ mm^{3}[/tex]
Step-by-step explanation:
we know that
The volume of the composite figure is equal to the volume of a semi-sphere plus the volume of the cone
so
[tex]V=\frac{4}{6}\pi r^{3} +\frac{1}{3} \pi r^{2} h[/tex]
we have
[tex]r=6\ mm[/tex]
[tex]h=14\ mm[/tex]
substitute
[tex]V=\frac{4}{6}\pi (6)^{3} +\frac{1}{3} \pi (6)^{2} (14)[/tex]
[tex]V=144\pi +168\pi[/tex]
[tex]V=312\pi\ mm^{3}[/tex]
Answer:
312 πmm^2
Step-by-step explanation:
On edg
answer both questions for seventeen points and i’ll name you brainliest!! Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s)
Consider the equation below.
-2(Bx - 5) = 16
The value of x in terms of b is:________
The value of x when b is 3 is:________
[tex]\bf -2(bx-5)=16\implies bx-5=\cfrac{16}{-2}\implies bx-5=-8\implies bx=-8+5 \\\\\\ bx=-3\implies \boxed{x=\cfrac{-3}{b}} \\\\[-0.35em] ~\dotfill\\\\ b=3\qquad \qquad x=\cfrac{-3}{\underset{b}{3}}\implies \boxed{b=-1}[/tex]
Given the following formula, solve for h.
V = 1/3 pie-r ^2h
a. h= 3v pie-r ^2
b. h= 3v/ 3 pie-r ^2
c. h= v/3 pie-r ^2
d. h= 1/3 pie-r ^2h
Answer:
[tex]\large\boxed{h=\dfrac{3V}{\pi r^2}}[/tex]
Step-by-step explanation:
[tex]V=\dfrac{1}{3}\pi r^2h\to\text{It's the formula of a volume of a cone}\\\\\text{Solve for}\ h:\\\\\dfrac{1}{3}\pi r^2h=V\qquad\text{multiply both sides by 3}\\\\\pi r^2h=3V\qquad\text{divide both sides by}\ \pi r^2\\\\h=\dfrac{3V}{\pi r^2}[/tex]
opposite angles in parralelograms are?
Answer:
opposite angles in parralelograms are congruent
Step-by-step explanation:
Answer:
equal
Step-by-step explanation:
Opposite angles in parallelograms are equal.
HELP ASAP I NEED IT NOW
Choose all the answers that apply. Sex-linked disorders _____.
affect males more than females
affect females more than males
can be carried by females, without being expressed
are always expressed in males
are caused by genes carried on the X and Y chromosomes
Answer:
affect males more than females
can be carried by females, without being expressed
are caused by genes carried on the X and Y chromosomes
Step-by-step explanation:
What is the distance between the points (-6, 7) and
(-1, 1)? Round to the nearest whole unit.
distance = √(x1 - x2)^2 + (y1 - y2)^2
distance = √(-6 + 1)^2 + (7 - 1)^2
= √25 + 36
= √61
To the nearest whole unit:
√61 = 8
So your answer is:
about 8 units
Answer:
About 8 units
Step-by-step explanation:
I got it right :)
Which graph is the correct one?
Answer:
The upper graph
Step-by-step explanation:
We have two quadratic function here
[tex]y=-x^{2} +3x+5\\y=x^{2} +2x\\[/tex]
If we perform the function f(x) + g(x), which is nothing more than the sum of the two functions, we obtain a linear function, since the quadratic terms are eliminated by themselves
[tex]5x+5[/tex]
Lynda Davis bought a house for $90,000. Her expenses each month
are $70 in depreciation, $50 for property tax, $25 for insurance, $80
for repairs, and $200 for interest. She rents the house for $1,200
per month. (32) What are her total expenses for the month? (33)
– What are her expenses for the year? (34) What is her rental income
for the year? (35) What is her rate of income to the nearest tenth
_ of a percent?
please also tell me how you got the answers. I have to show my work
Final answer:
Lynda Davis' total expenses for the month are $425. Her expenses for the year are $5100. Her rental income for the year is $14400. Her rate of income is approximately 282.35%.
Explanation:
To calculate Lynda Davis' total expenses for the month, we need to add up all of her monthly expenses. These include $70 for depreciation, $50 for property tax, $25 for insurance, $80 for repairs, and $200 for interest. So her total monthly expenses would be $70 + $50 + $25 + $80 + $200 = $425.
To calculate her expenses for the year, we can multiply her total monthly expenses by 12 since there are 12 months in a year. So her annual expenses would be $425 * 12 = $5100.
Her rental income for the year would be the monthly rental income of $1200 multiplied by 12. So her rental income for the year would be $1200 * 12 = $14400.
To calculate her rate of income, we need to find the percentage of her rental income compared to her total expenses. We can use the formula: (rental income / total expenses) * 100. So her rate of income would be ($14400 / $5100) * 100 ≈ 282.35%.