Answer:
In order to deposit 100 meters of limestone layer, it will take 6,451,600 years
Explanation:
Given that,
The rate of deposition carbonate sediments is 1.55 cm in 1,000 years
⇒ 1.55 cm = 1,000 years
⇒ 1 cm = [tex]\frac{1000}{1.55}[/tex]
⇒ 1 cm = 645.16 years
∵ 1 m = 100 cm
∴ 100 m = 100 × 100 cm
⇒ 100 m = 10,000 cm
So, the time it will take for carbonate to deposit 100 m thick layer of limestone will be-
⇒ 10,000 cm (100 meter) = 645.16 × 10,000 years
⇒ 100 meters = 6,451,600 years
Predict what the cross section of a four-year-old tree trunk would look like if there were drought conditions for the first two years of the tree's life and wet conditions for the most recent two years.
Climate is highly variable but weather is not. Weather varies over long periods - decades or more. True False
Answer:
This statement is false.
Explanation:
The difference between climate and weather is dictated by the period of time over which atmospheric conditions are measured. When conditions in the atmosphere are measured over a short period of time, it is called weather. When behaviour of conditions is measured over a longer period of time, over years, decades and even centuries, it is called climate. Because it is measured over shorter periods, weather tends to be more variable than climate where climate shows changes over long periods of time.
Seismic resonance is responsible for the damage caused to building by earthquakes. Apply the concepts of wave energy and resonance to explain how earthquakes damage the man-made structures.
Answer:
The building will vibrate around one particular frequency known as its natural, frequency, the building and ground share the building frequency its said to be in resonance.
Explanation:
Resonance is the frequency of the system to oscillate with a greater velocity than the others as all buildings have a resonance period which is the number of seconds for a building to vibrate and the ground also shows the seismic resonance frequency, the mismatch of the resonance and the wave frequency. Thus taller buildings will be damaged more than shorter structures. These forces create the lateral accelerations that scientists measure by the G-forces. The sudden movement creates enormous stresses for the building's structure, including the beams, the columns, and the walls and the floors, as well as the joints that hold them together. If that stress is large enough, the building can collapse.Answer:
Earthquakes produce traveling mechanical waves known as seismic waves. These waves propagate by vibrating the ground (solid media), water, and to a lesser degree the air, in areas surrounding the epicenter of the earthquake.Energy from the waves also produces vibrations in buildings. If the frequency of the vibrating ground matches the natural frequency of the building, resonance is produced in the form of standing waves that amplify the vibration to levels that can destroy the structures.
Explanation:
how long has africa and north america moved Africa and North America are moving away from each other at a velocity (rate) of 3 cm/year. b) Africa and North America are presently 6000 km apart.
Answer:
Africa and North America have moved away from each other for 2 × 10⁸ years.
Meaning they were right next to each other 200 million years ago.
Explanation:
Given,
- Africa and North America are moving away from each other at a velocity (rate) of 3 cm/year.
-Africa and North America are presently 6000 km apart.
Speed = distance/time
Time = distance/speed.
Distance = 6000 km = 6000000 m
Speed = 3 cm/year = 0.03 m/year
Time = 6000000/0.03 = 2 × 10⁸ years.
What term describes the sudden decrease of land by flowing water or waves often caused by hurricanes and other storms?
The term for the sudden decrease of land caused by flowing water or waves during storms is called a storm surge. It involves a rapid rise in sea level due to both low pressure at the hurricane's center and wind-driven water piling up along the coast, leading to coastal flooding and associated land damage.
The term that describes the sudden decrease of land caused by flowing water or waves, often caused by hurricanes and other storms, is known as a storm surge. A storm surge is characterized as a temporary condition where a significant rise in sea level along the coast occurs, leading to the inundation of normally dry land areas. This event is typically the result of two processes: a pressure surge created by the hurricane's low-pressure eye, which pulls water upwards, and a wind-driven surge that pushes water onto the shore as the hurricane approaches landfall. These surges can lead to severe coastal flooding and erosion and can be exacerbated by factors like high tide, the geography of the coast, and the hurricane's speed and intensity.
In addition to directly causing flooding, storm surges can also lead to overwash, which is caused by waves that rush over a coastal barrier, whether natural or artificial, during a storm. Furthermore, storm surges are linked to landslides when the force of water saturates the soil on slopes, leading to their collapse. Overall, storm surges represent the most destructive aspect of hurricanes and can result in significant damage to coastal areas and structures, as well as loss of life.
Wetlands are important for all of the following reasons EXCEPT: A. They support high species diversity. B. They reduce flooding by slowing the velocity of runoff water. C. They help recharge groundwater aquifers. D. They contribute to asymmetry in urban communities. E. They sometimes detoxify substances in the water.
Answer:
Wetlands are important for all of the following reasons except option D
Explanation:
Wetland is a ecosystem which contain water that is present either seasonally or permanently and this water body is rich in species diversity as the water body contain high amount of minerals.w
They are natural detoxifier as they have the capability to reduce the effect of harmful substance that may enter into the ponds, lakes or other water body thus it is also called as the natural kidney of ecosystem.
They reduce the chance of flood by temporarily storing the release of storm water which allows the formation of sediments in the bottom of the water body.
Some fresh water wetlands located at a point where surface water enters into the ground water and thus causes recharge of ground water.
Wetlands are significant for many reasons, including biodiversity support, flood control, groundwater supply, and sometimes detoxification. However, they do not contribute to urban asymmetry.
Explanation:Wetlands serve many crucial roles, including supporting high species diversity, reducing flooding by slowing down the velocity of runoff water, recharging groundwater aquifers, and at times, even detoxifying substances in the water. However, they do not contribute to asymmetry in urban communities, so option D is not a correct reason why wetlands are important.
Learn more about Wetlands here:https://brainly.com/question/36476268
#SPJ3
Which of the following sites would have the most dangerous volcanoes? A is on an island arc, B is in the Andes, C is near Hawaii, D is along a mid-ocean ridge.
Answer:A
Explanation:On the island arc
The most dangerous volcanoes are likely to be found at Site A. located on an island arc, due to the process of subduction which leads to more explosive eruptions.
Explanation:The level of danger posed by a volcano largely depends on its location and the type of magma it produces. Considering the given locations - an island arc, the Andes, near Hawaii, and a mid-ocean ridge - Site A located on an island arc would most likely host the most dangerous volcanoes.
This is due to the process of subduction which is common at island arcs: one tectonic plate slides underneath another, creating a significant amount of magma, which can lead to explosive eruptions when it reaches the surface. On the other hand, volcanoes in the Andes and near Hawaii tend to be less explosive, typically resulting in more predictable, slower moving lava flows. The mid-ocean ridge volcanoes, such as at Site D, are usually the least explosive as they occur underwater and their eruptions are therefore less likely to impact human populations.
Learn more about Volcanic Danger here:
https://brainly.com/question/34571046
#SPJ3
The continental shelf is located ________.a. between the continental slope and continental rise.b. between the continental rise and the abyssal plains.c. seaward of the continental sloped. landward of the continental slope
The continental shelf is located landward of the continental slope. This is the relatively flat, shallow underwater area that extends from the edge of the continent to the continental slope.
Explanation:The continental shelf is located landward of the continental slope. The continental shelf is a relatively flat and shallow underwater extension of the continents. Beyond the continental shelf is the continental slope, which drops steeply into the deep-sea floor. The continental rise is the final region that connects the slope to the abyssal plains, farthest from the continent.
Learn more about Continental Shelf here:https://brainly.com/question/34534759
#SPJ6
Brianna is deciding between planting two crops for the coming season: {corn, beans}. The two possible states of Nature are {good weather and bad weather}, and while beans are more weather resistant, corn is more profitable. g
True/False
Answer:
False
Explanation:
The beans are leguminous crops and are sensitive to the cold environment and won't begin to germinate as until the soil temperature reaches 70 F. While the corn is grown in the tropical subtropical and the temperate climates and can be grown in the woodlands and the grasslands. But needs lots of irrigation and its production is limited in the drover areas.You are working in a group taking sediment samples along a transect from a beach, into deeper water. Someone forgot to label the jars and they got mixed up so it is now not clear which sample came from which location. Based on what you know about particle size and transport, how can you arrange the samples in the correct order
Answer:
It is commonly known that the settling time of particles with smaller sizes is higher than that of particles with larger sizes. Therefore, the particles with smaller sizes are moved further offshore. Based on this fact, the proper arrangement will be to arrange the particles according to their sizes from those with the largest sizes (nearshore) to those with the smallest sizes (furthest offshore).
Explanation:
It is commonly known that the settling time of particles with smaller sizes is higher than that of particles with larger sizes. Therefore, the particles with smaller sizes are moved further offshore. Based on this fact, the proper arrangement will be to arrange the particles according to their sizes from those with the largest sizes (nearshore) to those with the smallest sizes (furthest offshore).
Effluent guidelines are: a. part of the Clean Air Act. b. part of the National Environmental Policy Act. c. part of the Clean Water Act. d. developed by the states. e. none of the above
Answer:
The answer is a. part of the Clean Water Act
Explanation:
Effluent guidelines are part of the Clean Water Act which is an act or law passed by the United States federal government to promote clean air and protect public health by establishing air quality standards and placing limits on emissions that pollute air.
Earth's giant water supply stores a huge amount of heat from the sun during warm periods and gives off heat that warms the air during cold periods.
This enables temperatures on the planet to stay within the limits that permit life.
True or False?
Answer:
True
Explanation:
The earth's ocean generates warm and cold current with respect to the location and the time of the year.
Warm ocean currents originates from the equator and flows towards the pole to balance the surrounding temperature whole cold ocean currents rises from the pole towards the equator to balance the hot equator temperature.
The Earth's giant water supply acts as a heat sink, regulating the planet's temperature and preventing extreme fluctuations.
Explanation:The statement is true. The Earth's giant water supply, which includes the oceans, acts as a heat sink, absorbing and storing a large amount of heat from the sun during warm periods. This helps regulate the planet's temperature and prevents extreme fluctuations. In colder periods, the water releases the stored heat, which warms the air and helps maintain livable temperatures.
Learn more about Earth's giant water supply and temperature regulation here:https://brainly.com/question/32148907
#SPJ3
why is it that the west coast of the United States never has problems with tropical cyclones, while tropical cyclones annually cause significant destruction along the east coast of the United States?
Answer:
I believe It's because the Caribbean and Islands further down are more towards the equator since it's warmer. The temperature can have an increase in storms mostly a result of the tropics.
Explanation:
The idea of continental drift was not proposed until the 1960s, when the first evidence to support it was discovered. True False
Answer:
False
Explanation:
The theory of continental drift was first proposed by geophysicist Alfred Wegener who believed that due to origin from same continent million years back, animal and plant species in current time though located on different land parcel have similarity in some or the other way.
However, after the acceptance of plate tectonic theory and series of magnetic surveys conducted in 1960, the idea of theory of continental drift strengthened and the wegner's theory was rectified as he proposed that continents do not originate from the ocean surface.
Hence, the given statement is false
Classify the government of each country by who has the power. Is the government a democracy, a monarchy, or a dictatorship? If it is a monarchy or a dictatorship, explain what kind. (1 point)
a.Japan:The country is ran as a constitutional monarchy ran by the monarchy and checked by the constitution
b.North Korea:North Korea is a dictatorship. Only the dictator holds power.
c.The Philippines:The Philippines are a presidential republic much like the USA
Answer:
Explanation:
Japan: Constitutional monarchy
A form of government in which a non elected monarch functions as the head of the state but within the limits of a constitution is called constitutional monarchy. The power is shared between a government and the monarch. e.g Britain.
Korea: One person Dictatorship
The from of government in which a small group or a person have the absolute power and there are no constitutional limitations on them is called Dictatorship. African nations such as Zimbabwe, Uganda and Asian nation North Korea and Eastern countries such as Syria are dictatorships.
Philippines: Republic democracy
A Presidential system is a a republican and democratic form of government in which the legislative branch is separate form the executive branch and the head of the government leads the executive branch. The head of state is called president and it is a ceremonial post.
A. Japan: Constitutional monarchy
B. Korea: Person Dictatorship
C. Philippines: Republic democracy
A. Japan has a constitutional monarchy where the Emperor serves as a symbolic figurehead, and the government is run by elected officials. The Japanese parliament, known as the National Diet, holds significant authority, and the Prime Minister is the head of government.
B. Korea can refer to two separate countries: North Korea, which operates as a person dictatorship with a single-party rule, and South Korea, a democratic republic with elected leaders and a multi-party system.
C. The Philippines is a republic democracy with an elected President as the head of state and government. The country has a Congress for legislation and an independent judiciary.
Learn more about democracy here:
https://brainly.com/question/30466950
#SPJ3
The original purpose of the Mercator projection was to befuddle introductory physical geography students. for the guidance of intercontinental missiles. for ocean navigation. to make the first map of the world. to produce an accurate, equal area map.
Answer:
Option (3)
Explanation:
The Mercator projection is usually defined as the cylindrical map projection that is mainly used for the purpose of navigation while traveling in the vast oceans. The main drawback of using this map projection is that the size of the objects gets distorted as the latitude increases from the equator to the polar regions.
This map projection is very commonly used for navigation purposes as any straight line that is drawn on it remains a line of constant and true bearings. This means that the angles are perfect and it does not show any error, due to which this chart is suitable for navigation in the oceans.
Thus, the correct answer is option (3).
Oozes generally accumulate ten times faster than clay on the deep seafloor. How long would it take 5 cm of ooze to accumulate?
Answer:
50,000 years
Explanation:
rate of deposition of clay is 1mm per 1000 years so for 5cm or 50mm of ooze it will take 50×1000 years= 50,000 years.
A sound pulse released from an echo sounder returns to the ship in 6.8 seconds. Assuming the speed of sound in ocean water is 4800 ft/sec, how many feet deep is the ocean at this location?
a.16,320
b.There is not enough information to tell
c.353
d.706
e.32,640
Answer:A)16,320ft
Explanation:
Echo is defined as the reflection of sound waves when it hits a hard surface ,in this case the bottom of the ocean.it represents the second sound you hear when you shout or utter a sound in a new empty house or on a silent night.
It is used in determining the depth of the sea or ocean using the formula ,V=2x/t
Where V=velocity of sound=4800ft/s
and t=time taken from ship to bottom of the sea and back=6.8s.
X=V×2x=4800×6.8=16,320ft is the ocean depth
Why do areas of high altitude (e.g., on the Tibetan plateau) have greater than expected UV intensity and areas of constant cloud cover (e.g., Congo Basin) have less than expected?
Explanation:
UV (ultraviolet) levels are high in the areas of high altitudes. Tibetan plateau being the highest plateau of the world is more exposed to the UV radiations as the atmosphere gets thinner in the areas of higher altitude. So it can not filter the maximum of ultraviolet radiations. Tibetan plateau is on 4,500 meters height and the UV level increase by 10-12% upon every 1000 meter elevation.
However in those areas having the constant cloud cover like in Congo Basin the UV level is low as the clouds scatter the most of the UV radiations and they particularly stop the UV-B radiations. Thats why the cloudy areas have less UV level then the areas having a cloudless clear sky.
Final answer:
The increased UV intensity at high altitudes is due to the thinner atmosphere and reduced water vapor content, which allows more UV radiation to reach the surface. In contrast, areas with constant cloud cover experience less UV exposure due to the clouds' reflection and absorption of UV radiation.
Explanation:
The variation in UV intensity at high altitudes such as the Tibetan plateau can be attributed to several factors. Firstly, high altitudes experience less atmospheric interference, meaning there is a thinner layer of atmosphere for the UV rays to penetrate through - leading to a greater intensity of UV radiation reaching the surface. This phenomenon is partly due to the fact that water vapor, which absorbs UV radiation, is less prevalent at higher altitudes. Additionally, the ozone layer, which absorbs a significant amount of UV radiation, particularly harmful UVB and UVC, is less effective with increasing altitude, letting through more UV radiation.
Conversely, in areas with constant cloud cover, such as the Congo Basin, UV intensity is generally lower. Clouds reflect and absorb UV radiation, limiting the amount that reaches the Earth's surface. Moreover, the moisture-heavy atmosphere associated with cloudy regions further reduces UV penetration. The persistent cloudiness acts as a protective barrier, shielding the surface from direct UV exposure.
Mali is a former French colony in West Africa. It has been independent since 1960 but remains heavily dependent upon France for financial assistance, and often has to yield to French political decisions to get aid from France. Mali suffers from a textbook case of
Answer:
Neocolonialism
Explanation:
Neocolonialism is the concept of using capitalism, and economic pressure to yield a former colony to political decisions instead of using the direct colonial method.
What kind of process does the atmospheric air undergo from a cool morning to a warm afternoon, assuming that the air composition and the velocity do not change, and also that no pressure from motion occurs during the day?
The atmospheric air undergoes adiabatic heating from a cool morning to a warm afternoon as it is compressed and warms up due to the sun's influence. This process creates a temperature gradient that allows air near the surface to gradually warm up throughout the day.
Explanation:The process that the atmospheric air undergoes from a cool morning to a warm afternoon is known as adiabatic heating. Adiabatic heating occurs when air is compressed or pushed together, which causes an increase in temperature. In these scenarios, the air composition, velocity, and pressure from motion remain constant.
As the sun rises and warms the Earth's surface, the air in contact with it also warms up. This warm air rises and creates an area of low pressure. As the warm air rises, it expands and cools down due to a decrease in pressure.
Throughout the day, the air near the surface continues to warm up, while the air higher up in the atmosphere remains cooler. This difference in temperature creates a temperature gradient. Thus, the process of adiabatic heating allows for the air to gradually warm up from the cool morning to the warm afternoon.
Learn more about Adiabatic Heating here:https://brainly.com/question/32428037
#SPJ3
Describe radiometric dating and discuss three prerequisites that must be met in order to obtain a reliable radiometric date on a granite batholith. What are the various methods of radiometric dating that may be used?
Answer:
Radiometric dating is usually defined as a method that helps in calculating the age of rock depending on the presence of radioactive isotopes and its rate of decay. In order to calculate this, the half-life of the isotope element must be known. This method is commonly used by geologists.
The conditions that are needed to fulfill in order to determine the age of a granitic batholith are as follows-
The rate at which these materials decay must be a constant There should be an exact amount of both the parent as well as the daughter elements. Since it is a batholith, so it has formed from the crystallization of magma at a certain depth. So, these granitic rocks must have remained within a closed system, right from the time of its formation.The various methods of radiometric dating that can be used to date this granitic batholith are-
Uranium-lead dating- It is an efficient method to date the rocks that are of about 4 to 4.5 billion years. Potassium-argon dating- It is also commonly used to date rocks that are about 4 billion years old.Final answer:
Radiometric dating uses the decay of radioactive isotopes to date rocks and fossils. Three prerequisites for accurate dating include starting with no daughter isotopes, the rock being a closed system, and a consistent decay rate. Various isotopes, such as Uranium-238 to Lead-206, are used for dating.
Explanation:
Radiometric Dating in Geology
Radiometric dating is a technique used by geologists to determine the absolute age of rocks, minerals, and fossils by measuring the decay of radioactive isotopes within them. Three prerequisites for obtaining a reliable radiometric date on a granite batholith are:
Initial Condition: When the rock formed, it must have contained no daughter isotopes, ensuring all measured daughter isotopes came from radioactive decay.
Closed System: Since formation, the rock must have remained a closed system, meaning no parent or daughter isotopes were added or removed.
Consistent Decay Rate: The decay rate of the radioactive isotopes used for dating must be known and constant over time.
Various methods of radiometric dating include using isotopes such as Uranium-238 decaying to Lead-206 for dating very old materials. This U-Pb dating reveals that the oldest rocks on Earth solidified around 3.5 billion years ago. Other radioisotopes may also be used depending on the material and the time period being studied.
What is the overall population density of the Amazon Basin?
a. 501–1000 people per square kilometer
b. 101–250 people per square kilometer
c. fewer than 6 people per square kilometer
d. more than 12,801 people per square kilometer
e. 251–500 people per square kilometer
Final answer:
The overall population density of the Amazon Basin is fewer than 6 people per square kilometer. This is reflective of the large uninhabited areas and isolated indigenous communities spread across the Amazon rainforests.
Explanation:
The overall population density of the Amazon Basin is far lower than the high densities seen in regions such as urban South Asia or highly fertile agricultural lands. The Amazon Basin is known for its vast rainforests and is the least densely populated region in South America due to the presence of large uninhabited areas and indigenous communities living in isolation. Considering the characteristics of the region, such as being home to isolated Amerindian groups and the presence of significant forested areas, the population density is certainly not in the higher brackets.
When comparing the given options with what we know about the Amazon Basin, the best answer is that the Amazon Basin has a population density of fewer than 6 people per square kilometer (option c). This is because, outside of certain urban areas like Manaus, the population is quite sparse and the development within the Basin—such as deforestation, mining, and cattle ranching—has not been as extensive to significantly increase the population density in areas where Amerindian populations and extensive rainforests are present.
Which rocks would be likely to contain olivine. Select one or more: a. basalt b. andesite c. gabbro d. granite e. peridotite
Answer:
Correct option are Basalt, gabbro and peridotite.
Explanation:
Igneous rocks like basalt, gabbro, dunite, diabase, and peridotite contains the olivine mineral. These are the dark coloured rocks and found within the surface of earth mostly in the areas around the tectonic plates. Olivine is known for its crystallization at high temperatures. It crystallize itself from the heat of the earth. Common olivine minerals are Forsterite, Fayalite, Monticellite and Tephroite.
Basalt, gabbro, and peridotite are rock types that would be likely to contain olivine due to their mafic or ultramafic composition, where olivine is commonly found.
Explanation:The rocks which would be likely to contain olivine are predominantly mafic or ultramafic in composition, due to olivine being a mineral commonly found in such rock types. This would include rocks such as basalt (a), an extrusive igneous rock that is fine-grained and dark-colored; gabbro (c), an intrusive counterpart to basalt that is coarser in texture; and peridotite (e), an ultramafic rock with a high percentage of olivine content. It should be noted that while andesite (b) and granite (d) can have some of the same minerals as those rocks that contain olivine, they are generally considered felsic rocks and are less likely to contain significant amounts of olivine.
Rocks may be broken down as a result of biological weathering, which is a change in the minerals that compose rocks when they are exposed to air and water.
O True O False
Answer:
False
Explanation:
Biological Weathering involves and including living organisms not necessarily when they are exposed to air and water.
What type of plate boundary is directly west (and adjacent) to the plate on which Montana is located?
Answer:
Pacific plate boundary.
Explanation:
The Montana falls in the North American boundary and the pacific plate lies west to this plate and is a major tectonic plate and it consists of the hotspots and in the interior and the Hawaiian islands. Being a major oceans plate its motion is northwestwards. And is considered as a divergent boundary.Answer:
Transform plate boundary
Explanation:
Montana is a part of the North American plate. Towards the west of this city Montana, there is a transform plate boundary, where the Pacific plate slide past the North American plate, giving rise to the formation of the world-famous San Andreas fault. A large number of shallow focus destructive earthquakes are generated every year in this region. This is an earthquake-prone zone. This fault about 1200 kilometers long and passes through the city of California, and here the fault is a strike-slip fault which is right-lateral in nature.
Notice that at the divergent boundary, the crust is experiencing tensional stress, which is causing a normal fault that results in seismic activity, and that the volcanic activity is caused by upwelling of mafic lavas from the mantle. On the other hand, convergent boundaries are the result of compression stresses leading to plate collisions, which create numerous thrust and reverse faults that are responsible for seismic activity. Volcanic activity at convergent boundaries is created by andesitic lavas produced by the partial melting of a subducting plate.
Which features and characteristics associated with divergent boundaries and which not, will you determine?
Divergent and convergent boundaries exhibit different features and characteristics. Divergent boundaries are associated with tensional stress, normal faults, and volcanic activity from mafic lavas. Convergent boundaries experience compression stress, create thrust and reverse faults, and exhibit volcanic activity from andesitic lavas.
Explanation:Divergent boundaries are characterized by tensional stress, resulting in normal faults and seismic activity. This type of boundary is also associated with volcanic activity caused by the upwelling of mafic lavas from the mantle. On the other hand, convergent boundaries are the result of compression stresses, leading to plate collisions. These boundaries create thrust and reverse faults and are responsible for seismic activity. Volcanic activity at convergent boundaries is caused by andesitic lavas produced by the partial melting of a subducting plate.
Learn more about Plate Boundaries here:https://brainly.com/question/31720127
#SPJ3
Many types of mining, such as for coal and copper, produce a specific type of water pollution called ________.
A. suspended limestone particles
B. chlorinated pesticides
C. acid drainage
D. radon gas
E. eutrophication
Answer:
C. acid drainage
Explanation:
Many types of mining, such as for coal and copper, produce a specific type of water pollution called ___acid drainage_____.
Answer:D
Explanation:
Europhication: This can be defined simply as the production of organic matter in excess of what an ecosystem is normally adapted to.
In recent years, significant advances have been made in hurricane tracking technology, to the extent that they can be tracked from the moment they form as tropical waves off the coast of West Africa to their landfall in the United States.a. True.b. False.
Answer:
a. True
Explanation:
As scientists has developed a significant advanced technology that enables us to track down the path of motion of the cyclones and hurricanes and help us to identify their formation types and thus enables us to plan out emergency operations in advance and thus can tell when a cyclonic is going to make a land and where.Some of the heat that affects geologic processes comes from the Sun and some comes from inside the Earth What does each of these heat sources play in Earth processes?
(a) If you take off your shoes on a beach or any sandy environment and walk on it on a hot, sunny day is the sand hot or cold? Why?
Now, dig down in the sand just a few inches.
What do you feel now, and why? What does this sugsest about the depth to which heat from the Sun can penetrate the Eartha
Base th Based on this condlusion is the Sun's energy or Earth's intemal heat the cause of melting rock within the Earth? Explain
(b) The deeper down one goes into mines or drill holes, the hotter it gets. This temperature increase is geothermal gradient. Does this phenomenon support or contradict your conclusion in (a)? Explain
Answer:
(a) On a beach or in any sandy environment, on a sunny day, the sand would be hot.
This is caused by conduction. This is the heat transfer from the sun to the sand. However, sand is a poor conductor of heat. Only the parts exposed receives this heat energy from the sun. It restricts the flow of this energy to parts that are hidden from the exposure.
That is why the surface is hot, but when you dig down the sand a few inches, it becomes cool.
Based on this conclusion, it is evident that the Earth's internal heat is the cause of melting rock within the earth (except the earth doesn't have layers of soil but has layers of aluminum instead). Like I explained above, the energy from the sun cannot penetrate to that depth and start melting rocks (it have not even melted surface rocks).
The Earth's internal heat is caused by either radioactive decay, friction forces from the movement of denser core materials and the initial heat when the planet was formed. It is very intense and concentrated at this depth.
(b) It does not contradict my conclusion in (a)
Let us look at it from this angle. Earth's structure. The outer part is the crust. When you start digging or descending from the crust, you get to the mantle which is next to the core. The core is the hottest part in earth with temperatures reaching 5000 degrees Celsius. Now the temperature in this core is even affecting the mantle. This mantle is the liquid outer core. So definitely, the deeper you dig or descend, the hotter it gets. This is caused by the structure of the earth.