Answer:
1:A, D; 2: B, CExplanation:
1.Purine Bases Can Be Synthesized by two pathways: i) de Novo and ii) Salvage Pathways.
2.Purine nucleotides synthesis starts with Phosphoribosyl pyrophosphate (PRPP), and it leads to the synthesis of nucleotide, inosine 5'-monophosphate (IMP). Inosine monophosphate is a branch point for the synthesis of many purine nucleotides amd leads to the synthesis of a variety of purine nucleotides.
3.The first reaction of purine synthesis is catalyzed by the enzyme glutamine phosphoribosylpyrophosphate amidotransferase.
All of the following are autotrophs EXCEPT (Multiple answers possible) a mushroom. the algae living inside a lichen. a giant redwood. a kangaroo. a cyanobacterium.
Autotrophs make their own food from light or chemical energy. In the given list, a mushroom and a kangaroo are not autotrophs, they are heterotrophs, needing to consume other organisms for energy. On the other hand, the algae inside a lichen, a giant redwood, and a cyanobacterium are autotrophs.
Explanation:In the provided choices, a mushroom and a kangaroo are not autotrophs. The term Autotroph refers to organisms that can produce their own food using inorganic materials and energy from the sun or from inorganic chemical reactions, a process known as photosynthesis or chemosynthesis. Examples are the algae living inside a lichen or a cyanobacterium. Redwood trees are autotrophs as well, as they photosynthesize. In contrast, mushrooms, which are fungi, and kangaroos, which are animals, are heterotrophs. Heterotrophs cannot produce their own food and must consume other organisms for energy.
Learn more about Autotrophs here:https://brainly.com/question/12867185
#SPJ6
You must read the New York Times article "Diabetes Study Ends Early With a Surprising Result" found in the pre-lab notes before answering the pre-lab quiz questions this week The hypothesis for the study presented in this article is a. Diet and exercise impacts likelihood of becoming diabetic. b. Diabetes impacts likelihood of developing heart disease. c. Diet and exercise impact blood sugar levels, blood pressure, and cholesterol levels in diabetics. d. Diet and exercise impact rates of heart attacks, strokes, and cardiovascular deaths in diabetics.
Explanation:
Diabetes is a disease which happens when our blood glucose or blood sugar amount in the body is too high.The main source of energy to carry out other activities of body is Blood Glucose. This Blood Glucose comes from the food we eat.The hormone named Insulin, which is made by the pancreas, helps the glucose which is taken from the food to get into the cells and is used for energy.The regular exercise and control diet reduces the rate of heart attacks, cardiovascular deaths in diabetics and strokes.
Processes of Mechanical Weathering The processes of mechanical weathering transform rocks exposed at the surfaceover time. In frost wedging, seasonal freezing of water causes expansion of cracks in rock. Salt crystal growth within fissures or cracks in rock similarly causes expansion and mechanical weathering. Sheeting occurs when large sheets of rock dome upward and peel off when overlying rocks are eroded away,decreasing pressure. Biological activity can also cause mechanical weathering ofrocks when living things such as the roots of plants or bacteria cause rocks to break apart. Fill in the sentences below to explore the four different mechanical weathering processes. Climatehas a crucial influence on the rates of all types of mechanical weathering.Salt crystal growthcan contribute to crumbing roadways in areas where saltis spread to melt ice and snow in winter. The fissures formed as a result of Sheetingin exfoliation domes can be further enlarged by Frost wedgingin areas subjected to seasonal freeze-thaw cycles. The break down of rock by moving fresh materials to the surface by burrowing animals is an example of mechanical weathering due to Biologicalactivity.
3.Considering the following list, which is not an example of chemical weathering?
a.Exfoliation
4.What is the definition of physical weathering?
a.Mechanical processes break substances into smaller pieces.
Physical weathering, or mechanical weathering, is the process by which rocks are broken down into smaller pieces through mechanical forces. Chemical weathering is not an example of physical weathering.
Explanation:Physical weathering, also known as mechanical weathering, is the process by which rocks are broken down into smaller pieces through mechanical forces. This is typically caused by factors such as temperature changes, freeze-thaw cycles, or the growth of plants and animals. It does not involve any chemical reactions. Examples of physical weathering include frost wedging, salt crystal growth, sheeting, and biological activity.
Learn more about Physical Weathering here:https://brainly.com/question/33716850
#SPJ3
Sally's estimated energy requirement, based upon her age, height, and weight, is approximately 2000 kcalories per day. What is the maximum number of kealories per day that she can consume to lose 3 pounds per month? Assume 1 month is 3o days. a. 1650 kcalories b. 1400 kcalories c. 1700 kcalories d. 1530 kcalories e. 1200 kcalories
Answer:
A. 1650 kcalories per day.
Explanation:
Given:
Energy requirement = 2000 kcalories per day
Number of pounds loss per day = 3 pounds per month
Since 3,500 kcal = 1 lb,
= 10, 500 kcalories per month
Since 30 days = 1 month,
Energy requirement per month = 2000 × 30
= 60,000 kcalories per month
Number of kcalories consumed per month = 60000 - 10500
= 49,500 kcalories ÷ 30 days
= 1650 kcalories per day.
The dynamics are different when the advantageous allele is rare, compared to when it is near 100%. Explain what happens when a recessive advantageous allele is rare versus near fixation
Answer:
An advantageous allele might be dominant or recessive in population. In case of dominant advantageous allele the dynamics is relatively simple because being dominant the allele is expressed both in homozygous and heterozygous condition. Combined with the advantage of natural selection, its frequency increases rapidly.
However, recessive advantageous allele does not increase rapidly because despite being advantageous it gets masked by the dominant allele. When it is rare, it is present in very less number of recessive homozygotes and in slightly more number as heterozygotes. Over the generations, natural selection selects the recessive allele so the number of heterozygotes start to increase slowly. Recessive homozygotes are still rare because they need both the copies of recessive allele. Eventually recessive homozygotes also start increasing in number which leads to the fixation of recessive allele in the population.
The infants in the strange situation who waver as they move from mother to toys, are hesitant to explore, are cautious when meeting the stranger, are very upset when mother leaves, and push their mother away at the reunion are the category of
Answer:
Insecurely attached.
Explanation:
Infants that are insecurely attached have learned that adults are not to be trusted. Children who have had negative encounters with their caregivers tend to develop insecure attachment.
Children with insecure attachment refuse to associate with others, show fear and anger.
Which of the following does not describe the structure of DNA?
double helix
o nucleotide polymer
contains adenine guanine pairs
sugar-phosphate backbone
Answer:
contains adenine-guanine pairs
Explanation:
The statement, that is, adenine pairs with guanine does not describe the structure of DNA.
The structure of DNA:The heredity substance in humans and almost all the other species is DNA or deoxyribonucleic acid. It is situated within the nucleus of the cell. It is a nucleotide polymer, which is aligned in the form of two long strands that produces a spiral shaped composition called double helix.
The structure of the double helix is like a ladder, with the base pair producing the rungs of the ladder and the sugar and phosphate molecules producing the vertical sidepieces of the ladder. In the DNA, the bases pair up with each other, with adenine pairing with thymine and cytosine with guanine.
Thus, the option, that is, it contains adenine guanine pairs is incorrect.
Find out more information about DNA structure here:
https://brainly.com/question/13522078
You are studying a plieotrophic gene in dogs. One trait governed by this gene is tail length. For this trait the T allele is associated with normal length tails and the t allele is associated with short tails. The other trait governed by T/t is viability. In this case, T is associated with normal growth and development; whereas t is associated with embryonic loss of viability. In both cases T is completely dominant to t. You cross two dogs that are Tt heterozygotes. What ratio of offspring do you expect to see as a result of this cross?
a. 3 dogs with short tails : 1 dog with normal tail
b. 2 dogs with normal tails : 1 dog with short tail
c. 3 dogs with normal tails : 1 dog with short tail
d. 2 dogs with short tails : 1 dog with normal tail
e. None of the above
Answer: C
Explanation: 1 dog will be homozygote TT (is homozygote for normal tail length), 2 dogs will be heterozygous Tt (is the gene for embryonic loss of viability with short taill will be recessive or masked by the dominant T. While 1 dog will be homoxygote gene for TT(homozygote gene for embryonic loss of viability with short still.
3 dogs will altogether have normal tail while one will have short tail.
Final answer:
When crossing two Tt heterozygotes in dogs, where T is dominant and associated with normal tail length and viability, the expected viable offspring ratio deviates from the classic Mendelian due to the lethality of the tt genotype, leading to an answer of 'e. None of the above'.
Explanation:
You are studying a pleiotrophic gene in dogs where the T allele is associated with normal tail length and viability, and the t allele is linked to short tails and reduced embryonic viability, with T being completely dominant to t. When crossing two Tt heterozygotes, considering T's complete dominance and its effects on viability, it is expected to see a different outcome than a classic Mendelian 3:1 ratio due to the lethality associated with the tt genotype.
Typically, a Tt x Tt cross would produce a genotypic ratio of 1 TT : 2 Tt : 1 tt. However, since tt results in embryonic loss, those offspring would not be viable, effectively removing them from the postnatal population. Thus, the expected offspring ratio, considering only the viable outcomes, would be 1 TT : 2 Tt, which phenotypically presents as 3 dogs with normal tails (and normal development) to every 0 dogs with short tails (since the short-tailed genotype is lethal). So, none of the presented options accurately reflect the scenario described, making the correct answer e. None of the above.
The Hopi, Zuni, and other Southwest indigenous peopleshave a relatively high frequency of albinism resulting from homozygosity for a recessive allele, a. A normally pigmented man and woman, each of whohas an albino parent, have two children.a.What is the probability that both children are albino?b) What is the probability that at least one of the children is albino?
Answer:
a. Zero percent
b. Fifty percent
Explanation:
As it has been mentioned in the question that both man and woman are normally pigmented and each one have an albino parent thus both will be heterozygous and their allelic makeup will be as follows -
Man - Aa
Woman - Aa
After a cross between Aa × Aa we get the following result-
One AA, Two Aa and One aa
It is clear that only the aa type of offsprings will be albino.
Out of 4 there is probability of only one to be albino so out of two there will be 50% probability of being albino.
The probability of both sons to be albino will be zero percent.
Variation in a trait is a required condition for natural selection to act on a population for that trait. Assuming a population of organisms started with only one form of a trait, what are two ways variation in the trait could be introduced into the population? Explain your answer.
Answer:
1. Mutation
2. Epigenetics
Explanation:
1. Mutation occurs when there is a change in an organism's DNA sequence as a result of mistakes in DNA replication or as a result of environmental factors like smoking. The mutation in a single organism can be passed on to other generations hence causing a genetic variation in the population, this obeys the Darwin's law that inherited traits (genetic) are passed on to other generations
2. Epigenetics are changes in gene expression that doesn't involve changes in the DNA sequences unlike mutation. This changes can be passed on to other generations and hence cause a variation in the population. This obeys the Lamarckian evolution that acquired traits are passed on to other generations.
A mutation is a change that occurs in our DNA sequence, either due to mistakes when the DNA is copied or as the result of environmental factors such as UV light and cigarette smoke.
Variation in a trait can be introduced into a population through mutations, which are random changes in DNA, and sexual reproduction, which shuffles alleles during gamete formation. These variations must be heritable for natural selection to act on them.
Variation in a trait is essential for natural selection to act on a population. Assuming a population starts with only one form of a trait, there are two primary ways that variation could be introduced:
Mutations: Random changes in DNA sequences can create new alleles of a gene, leading to new variations in traits. These mutations can occur due to errors in DNA replication or due to the influence of environmental factors like radiation.
Sexual Reproduction: During the formation of gametes, processes such as crossing over and independent assortment of chromosomes can reshuffle alleles to create new combinations of genes. When individuals with different genetic makeups mate, the offspring inherit a unique set of alleles, contributing to the genetic diversity of the population.
It is important to note that these variations must be heritable and have a genetic basis to contribute to the process of natural selection. Otherwise, natural selection cannot effectively lead to evolutionary change across generations.
If you hiked in Pocahontas State Park 100 times last year and you saw a White-crowned Sparrow 43 times, what is the probability that you will observe a White-crowned Sparrow next time you go hiking at Pocahontas State Park?
Answer: 43/100
Explanation:
Total number of hikes (T) = 100
Number of times White-crowned Sparrow was seen (N) = 43
Then, probability of seeing White-crowned Sparrow again = N / T
= 43/100
Thus, the probability of seeing White-crowned Sparrow again in Pocahontas State Park is 43/100
Answer: 43/100 or 0.43
Explanation:
number of hikes in the period of a year (H) = 100
Number of times you observed White-crowned Sparrow (S) = 43
Therefore, the probability of seeing White-crowned Sparrow again =
S ÷ H
= 43/100 or 0.43
A rare recessive allele inherited in a Mendelian manner causes the disease cystic fibrosis. A phenotypically normal man whose father had cystic fibrosis marries a phenotypically normal woman from outside the family, and the couple consider having children. a.) draw the pedigree as far as described? b.) If the frequency in the population of heterozygotes for cystic fibrosis is 1 in 50, what is the chance the couples first child will have cystic fibrosis? c.) If the first child does have cystic fibrosis, what is the probability that the second child will be normal?
Answers:
a.) draw the pedigree as far as described?
Pedigree:
C/– c/c
C/c C/–
?
b.) If the frequency in the population of heterozygotes for cystic fibrosis is 1 in 50, what is the chance the couples first child will have cystic fibrosis?
Man: has the disease
Wife: 1/50 chance to have the c allele
First child: 1.0 x 1/50 x 1/4 = 1/200 = 0.005
c.) If the first child does have cystic fibrosis, what is the probability that the second child will be normal?
If the first child has the disease, then the mother is a carrier of the
c allele. In consequence, the probability is 3/4
Many exergonic reactions fail to happen at a reasonable rate (e.g. conversion of diamonds to charcoal). This is due to the fact that their activation energy may be too high to overcome. Which of the following correctly describes the reason for this
O The free energy of the transition state is much lower than the free energy of the reactants
O The free energy of the transition state is much higher than the free energy of the reactants.
Many exergonic reactions fail to happen at a reasonable rate (e.g. conversion of diamonds to charcoal). This is due to the The enzyme that catalyzes the reaction needs time to interact chemically with the substrate(s).
The interaction between the enzyme and substrate(s) involve a decrease in entropy, which can't happen input of energy
Answer:
The correct answer is "The free energy of the transition state is much higher than the free energy of the reactants".
Explanation:
Activation vitality is the base measure of vitality required to begin a concoction response. The wellspring of this initiation vitality is generally the warmth from the encompassing. An Enzyme builds the pace of a compound response by bringing down its actuation vitality.
During a compound response, new bonds are made and old ones are broken. Since the bonds are vitality putting away , this prompts arrival of vitality when broken, However, To get the particles into a state where their bonds can be broken, the atom ought to be mad. To accomplish this shape, Activation vitality is required, which is a high-vitality flimsy state.
Because of the above explanation, cells at time couple exergonic reaction(\DeltaG<0) with endergonic reaction(\DeltaG>0), permitting them to continue. This is known as vitality coupling and is unconstrained. At the point when the exergonic response discharges free vitality, consumed by the endergonic response.
A cladogram...a. Represents a hypothesis for the most likely evolutionary relationships among the set of organisms being considered.b. Uses parsimony to align the relationships among the different subgroups being considered.c. Is produced by only one evolutionary process, which is called cladogenesis.d. Represents the true evolutionary history of the set of organisms being considered.e. Was the first form of wireless communication between the East Coast and the West Coast of the United States.
Answer:
The answer is B.
Explanation:
A cladogram is a method that is used in biological research and it can be described as a simple diagram that demonstrates the relationships, similarities/differences between different species of animals.
Among the given options in the question, the correct one is B.
The cladogram uses parsimony to align the relationships among different subgroups of beings. Parsimony is a term that means choosing the simplest explanation for a given question.
I hope this answer helps.
Han takes a shower in his family’s new apartment. He gets the water perfect—not too hot, because that hurts! Then Han hears his son flush the toilet. The water gets very hot, which makes Han feel a lot of pain. After this happens a few times, Han feels afraid when he hears a toilet flush while he is in the shower. When Han is subject to classical conditioning, the unconditioned stimulus (US) is _____; the unconditioned stimulus (CS) is _______; the unconditioned response (UR) is _____; and the conditioned response (CR) is _____.
Answer:
Unconditioned stimuli, US: getting hurt by hot water.Conditioned stimulus, CS: hearing a toilet flush.Unconditioned response, UR: feeling pain after hurting.Conditioned response, CR: being afraid when hearing a toilet flush.Explanation:
Unconditioned stimuli: Biologically significant stimuli that provoke an unlearned or reflex reaction. For example, getting hurt by hot water.Conditioned stimuli: neutral, innocuous or biologically not significant stimuli. For example, hearing a toilet flush.Unconditioned Responses: Unlearned response that is triggered by reflex because of an unconditioned stimulus. For example, feeling a lot of pain after hurting by hot water. Conditioned Responses: These are provoked by conditioned stimuli. This refers to a learned response that reflects the association between conditioned and unconditioned stimuli. For example, being afraid when hearing a toilet flush.Initially, an unconditioned stimulus does not provoke any response, but after enough exposition to conditioned and unconditioned stimuli together, the simple presence of unconditioned stimuli induces conditioned responses. In this aspect, the subject has learned to predict or to anticipate the unconditioned stimulus.
Picornaviruses can avoid detection by synthesizing virally induced vesicles, or replication complexes, formed from the Choose one: A. Golgi apparatus. B. nuclear membrane. C. endoplasmic reticulum. D. lysosome.
Answer:
Option-C
Explanation:
Picornaviruses is the virion or naked particles which cause many animal and human infections.
The mechanism of their action is not explained in detail till now but it has been predicted on the basis of certain research that the virus escapes the immune response by enclosing themselves in the lipid membrane-enclosed vesicles formed by the host cells.
These vesicles are produced by the cells during certain physiological mechanisms from the endoplasmic reticulum of the cells.
Thus, Option-C is correct.
Apoptosis can occur in a cell when the cell is ________________. Group of answer choices no longer needed damaged infected by a virus all of the above (damaged, no longer needed, infected by a virus)
Answer:
all of the above
Explanation:
The programmed cell death which is a part of normal growth and development of the cell is called apoptosis. Apoptosis occurs in multicellular organisms.
By apoptosis, the body eliminated the old cell, unnecessary cells, damages cells, and the cells which are infected by viruses. Caspases are the enzymes that are activated during the time of apoptosis and mediates cell death.
It kills the cell by cleaving some protein present in the cytoplasm and nucleus of the cell. By apoptosis, the body maintains the healthy cell numbers. So the right answer is all of the above.
3. Which of the following statements are accurate?
A. Veins in the pulmonary circuit carry oxygen-rich blood
B. Arteries in the pulmonary circuit deliver oxygen-rich blood to the body tissues.
C. All arteries carry blood away from the heart
D. Arteries in the pulmonary circuit deliver oxygen-poor blood to the lungs.
E. Veins in the systemic circuit return oxygen-poor blood to the heart.
A.) Veins in the pulmonary circuit carry oxygen-rich blood
red blood cells are used to circulate oxygen through out the body, thus it is true.
9. Which of the following statements are accurate?
A. The liquid portion of the blood is known as the hematocrit
B. Platelets function in blood clotting
C. Lymphocytes are the only type of white blood cells and are immune cells.
D. Red blood cells are known as erythrocytes
E. Hemoglobin would be found in white blood cells and function in carrying oxygen to the body tissues
Answer: Option B and D are accurate statements
Option B) Platelets function in blood clotting
Option D) Red blood cells are known as erythrocytes
Explanation:
Option A is not accurate because the liquid portion of the blood is known as the plasma.
Option B is accurate because blood platelets, also known as thrombocytes aid in the clotting of blood.
Option C is not accurate because types of white blood cells include lymphocytes, neutrophils, basophils, eosinophils, and monocytes
Option D is accurate because Red blood cells are also known as erythrocytes and helps in the transport of oxygen in the body.
Option E is not accurate because hemoglobin is found ONLY in red blood cells where they function in carrying oxygen to the body tissues.
Thus, only Option B and D are accurate statements
An antibody has been isolated that binds to F-actin but not to G-actin. What structural feature(s) of F-actin do you suppose the antibody binds (i.e., how is the antibody able to distinguish between these two forms of actin)?
Answer:
F-actin is a double helical filament as opposed to G-actin,which is a globular protein .Each actin filament has two ends,called the plus and
the minus ends, which makes it recognizable from each other.This gives the structure a distinct polarity.
Explanation:
Actin is the most abundant protein that is found in almost all eukaryotic cells.Its a most important part cytoskeleton as its a monomeric subunits(size 42kDa) of two types of filaments i.e. microfilaments and thin filaments in cells. Actin is essentially required to maintain stability and morphogenesis of cell.It is involved in numerous significant processes such as endocytosis,cell division and migration.Actin is present in two forms:
•G-actin
•F-actin
The two forms of actin are different structurally.
G- actin is a globular shaped protein,usually present in free form(a monomer),having a tight binding site for another actin monomer.Each monomer has ATP. Upon polymerization of G-actin monomers, a polymer called F-actin filaments is form. This process is driven by hydrolysis of ATP.
hich of the following occurs during bacterial conjugation? a. The genome is duplicated and then diverges. b. An insertion sequence finds a target site on another DNA strand then uses recombination to insert itself into that strand. c. An F+ plasmid transfers via rolling circle replication through a relaxosome to an F- cell. d. A bacteriophage packages its capsid with degraded host DNA then infects a new host, delivering the previous host’s genes.
Answer: Option D.
An F+ plasmid transfers via rolling circle replication through relaxosome to an F- cell.
Explanation:
Bacteria conjugation is the transfer of DNA between bacteria cell through cell to cell contact or bridge like connection between bacteria cells.
During bacteria conjugation, DNA is transferred from the bacterium donor of a mating pair to the recepient through pilus.
An F+ plasmid which is the donor transfers via rolling circle replication through a relaxosome to an F- cell.
g In rabbits, an allele that produces black fur (B) is dominant over its allele for brown fur (b). The allele of another gene (E) produces long ears which is dominant to floppy ears (e). Suppose a female with brown fur and homozygous for long ears is mated with a floppy-eared male homozygous for black fur.
Expected genotype ratio = 100% BbEe
Expected phenotype ratio = 100% black fur and long ears
Genotype of a female with brown fur and homozygous for long ears = bbEE
Genotype of a floppy-eared male homozygous for black fur = BBee
Crossing the 2 in a 4 x 4 Punnet's square:
Genotype = 100 BbEePhenotype = 100% black fur with long earsThe result of Punnet's square is attached.
The complete question:
In rabbits, an allele that produces black fur (B) is dominant over its allele for brown fur (b). The allele of another gene (E) produces long ears, which is dominant to floppy ears (e). Suppose a female with brown fur and homozygous for long ears is mated with a floppy-eared male homozygous for black fur. What are the expected genotypes and phenotypes of their offspring?
Mismatch repair systems that maintain DNA replication fidelity: Require a protein that detects the damaged base as well as a protein that excises the base from the strand. Rely on DNA glycosylase for proper function. Require a protein that detects the mismatch as well as a protein that recruits an endonuclease to the site of the mismatch. Are responsible for repairing C T point mutations. None of the above
Answer:
Require a protein that detects the damaged base as well as a protein that excises the base from the strand.
Explanation:
The DNA can undergo the process process of mutation during the DNA replication process. The DNA repair process occurs in the body to repair the mismatched DNA.
The mismatch repair system identifies the insertion, deletion and mismatch DNA that can be corrected by mismatch repair system. The Mut S protein is required for the detection of mismatch DNA and mut H then acts as endonuclease to cut the protein and then DNA polymerase fills the gap.
Thus, the correct answer is option (1).
2. There is a mouse inside a cage. Within the cage, there is a light bulb and a lever. You want to teach the mouse to step on the lever each time you turn on the light. When the mouse steps on the lever, you give him a treat (but only when the light turns on). After several attempts, the mouse learns that, "When the light turns on, I must step on the lever in order to receive a treat." Was this associative or instrumental learning? Explain. (2 points).
Answer:
Instrumental learning
Explanation:
Associative learning is a form of learning which is performed when two or more events or stimuli controls the learning behaviour. The instrumental learning is a type of learning in which the learning process is associated with the consequence or result of the action.
In the given question, the mouse learns how to step on the lever as a result of the received food in the form of reward or he learned because he received the treatment, therefore, this act of learning will be considered the instrumental learning.
Thus, Instrumental learning is correct.
When you scratch a mosquito bite, you damage some cells. Damaged cells release histamine, which causes localized swelling. The swelling can crush cells, causing them to release more histamine. This is an example of
Answer:
of a cycle where scratching will cause even more of an itchy sensation
Answer:
Positive feedback.
Explanation:
Positive feedback is a process in which the end product of an action cause more of that action to occur in a feedback loop.
Inflammation is thhe local reaction of bodily tissues to injury caused by physical damage , infection or due to any allergic reaction. Injured tissue mast cells release histamine, which causes surrounding blood vessels to dilate and increase permeability. This allows fluid and cells of immune system to leak from bloodstream through vessel walls and migrate to site of tissue injury or infection where they fight infection and heal injured tissues.
4. Celery has very small flowers clustered into an inflorescence called an umbel. Based on what you noted about flower morphology in the sunflower and the iris, what do you predict would be the morphology of an individual celery flower? (1 pt)
Answer:
Compound Umbel.
Explanation:
Celery is more of an annual crop which is a herbaceous plant usually 60 to 120 cm high with white Flowers.
The Celery plant belongs to the Apiaceae and they are known to be mainly Annual.
Morphology or the shape of the Celery plant is that of a Compound Umbel, in which all Umbel inflorescences arises from a common point and appears to be at the same level.They change from
elongated axes (racemes and panicles) to flattened axes (corymbs and umbels) which results in inflorescences thereby making the flowers been arranged closely together. This close association encourages efficient pollination,and the extreme condensation of the inflorescences, as in the
head, gives rise to an inflorescence that appears
to be a single flower and example of such happen to be the sunflowers commonly found around us.
Answer:
I would predict that celery flower would have a petals of four(4) or five (5)
Explanation:
RNA plays important roles in many cellular processes, particularly those associated with protein synthesis: transcription, RNA processing, and translation. Drag the labels to the appropriate bins to identify the step in protein synthesis where each type of RNA first plays a role. If an RNA does not play a role in protein synthesis, drag it to the "not used in protein synthesis" bin.
Complete question: "RNA plays important roles in many cellular processes, particularly those associated with protein synthesis: transcription, RNA processing, and translation. Drag the labels to the appropriate bins to identify the step in protein synthesis where each type of RNA first plays a role. If an RNA does not play a role in protein synthesis, drag it to the "not used in protein synthesis" bin.
1. transcription/RNA processing
2. translation
3. not used in protein synthesis
a) snRNA
b) tRNA
c) mRNA
d) RNA primers
e) pre-mRNA
f) rRNA
Answer
1. transcription/RNA processing:
a) snRNA
c) mRNA
e) pre-mRNA
2. translation
b) tRNA
f) rRNA
3. not used in protein synthesis
d) RNA primers
Explanation:
There are many RNAs, each in charge of performing a different function.
preRNA is the precursor of the mature mRNA. These molecules possess long intermediate sequences called introns that do not codify for proteins. It occurs a posttranscriptional modification that eliminates introns and makes the RNA to get mature as mRNA. snRNA means "small nuclear RNA". These are small RNA molecules located in the nucleus and are implicated in the mRNA maturation process. They associate with proteins composing the small nuclear ribonucleoproteins, and their function is to contribute to the initial mARN processing that transcribes from DNA and that must maturate to be exported from the nucleus. These molecules eliminate the introns. mRNA means "messenger RNA". These molecules are carriers of the genetic information and are in charge of transporting it from the genome to the ribosomes. They are the mold for the new protein synthesis. Their nucleotide sequence is complementary with the nucleotide sequence of a particular DNA segment. rRNA means "ribosomal RNA". They are the principal ribosomal component. Ribosomes are constituted by two subunits. One of them is a big RNA molecule associated with about 20 proteins. The other subunit is composed of three RNA molecules associated with about 50 proteins. tRNA means "transference RNA". These molecules are in charge of transferring activated amino acids from the cytosol to the ribosomes where the new protein is being synthesized.Protein synthesis is initiated when mRNA meets a free ribosome, the primary structure for protein synthesis. Ribosomes can be found in the rough endoplasmic reticulum or floating in the cytosol. They read the mRNA code and add the correct amino acid using transference RNA to build the protein.
In protein synthesis, mRNA first plays a role in transcription by carrying genetic instructions for protein assembly. rRNA is then involved as a structural component of ribosomes in translation, while tRNA brings amino acids for polypeptide chain elongation. miRNA, though not directly involved in protein chain assembly, regulates gene expression impacting protein synthesis.
Explanation:Roles of RNA in Protein SynthesisDuring protein synthesis, several types of RNA work collaboratively to convert the genetic information within DNA into functional proteins. messenger RNA (mRNA) is synthesized in the nucleus during transcription. It carries the genetic code from DNA and is involved in protein synthesis by translating the genetic instructions. MRNA is the first type of RNA to play a role in this process as it is required for transcription.
Ribosomal RNA (rRNA) is a structural component of ribosomes, which are the sites of protein synthesis in the cell. It comes into play during the assembly of ribosomes and directly assists in the process of translation as part of the ribosome's structure.
Transfer RNA (tRNA) carries amino acids to the ribosome and matches them to the coded mRNA message during translation. TRNA is crucial in the later stages of protein synthesis where it contributes to the elongation of the polypeptide chain.
MicroRNA (miRNA), however, does not have a direct role in the assembly of protein chains. Instead, it is involved in the regulation of gene expression by interacting with mRNA and can thereby influence protein synthesis indirectly.
In ______ , the spindle disappears as the nuclear envelopes form. The plasma membrane furrows to give two complete cells, each of which has the haploid, or N, number of chromosomes. Each chromosome has one chromatid.
Answer: telophase;
Explanation:
In the telophase stage meiosis 2 during cell division, the spindle disappears and the nuclear envelope begins to reform and the cell begins to split into two.
During cytokinesis, the final phase of cell division, the spindle disappears and nuclear envelopes form around each set of decondensed chromosomes. The plasma membrane then furrows to create two separate haploid cells, each with a single set of chromosomes.
Explanation:The subject of your question is referring to the final phase of cell division, which is known as cytokinesis. During cytokinesis, the spindle disappears and nuclear envelopes begin to form around each set of sister chromatids, which have decondensed into chromosomes. The plasma membrane furrows or forms a cleavage furrow to eventually split the cell into two separate cells. Each new cell is haploid, meaning that it has one complete set of chromosomes (N). Therefore, each chromosome indeed consists of a single chromatids.
Learn more about Cytokinesis here:https://brainly.com/question/1995803
#SPJ6
What does a virus do once its inside one of your cells?
3 points
it stays inside for a while, then leaves
it eats up the machinery in the cell
it uses the cells machinery to make copies of itself
it prevents the mitochondria from making ATP
Answer: It uses the cell machinery to make several copies.
Explanation:
Viruses are infectious agents that live, replicates or multiply in an host cell. When virus invade an host cell, it will make the host cell to use it resources or machinery to make copies or replicates copies of it's DNA or itself,thereby causing infections and damages to the host cell.
Answer:
it uses the cells machinery to make copies of itself
Explanation:
Viruses are microscopic organism that lives in our environment always looking for his cell.
They attach themselves to the host cell and make use of the enzymes and protein in the host cell to multiply itself. Virus have a protein covering they helps it attach itself to the his cell. Some virus do not enter the host cell but but releases there content into the cell of the host organism.
Hence, Viruses uses chemical machinery of the host cell to make copies of itself.
Consider two pairs of grandparents. The first pair has 4 grandchildren and the second pair has 32 grandchildren. Which of the two pairs is more likely to have between 40% and 60% boys as grandchildren, assuming that boys and girls are equally likely as children? Why?
Answer:
The second pair of grandparents have approximately 12 to 19 boys as grandchildren.
Explanation:
The probability of a grandchild being a girl or a boy is same, i.e., [tex]\frac{1}{2}[/tex].
The first pair of grandparents have 4 grandchildren.
The second pair of grandparents have 32 grandchildren.
If first pair of grandparents have between 40% to 60% boys as grandchildren then the number of boys are in the limit,
[tex](40\%\ of 4,\ 60\%\ of 4)=(1.6, 2.4)\approx(2, 3)[/tex]
Thus, the first pair of grandparents have approximately 2 to 3 boys as grandchildren.
If second pair of grandparents have between 40% to 60% boys as grandchildren then the number of boys are in the limit,
[tex](40\%\ of 32,\ 60\%\ of 32)=(12.8, 19.2)\approx(13, 19)[/tex]
Thus, the second pair of grandparents have approximately 12 to 19 boys as grandchildren.
So, it is clear that the second pair of grandparents are more likely to have between 40% and 60% boys as grandchildren.
Also according to the law of large numbers as the sample size increases the probability of an event gets closer to the theoretical probability.