Answer is
Unrelated to AB
Answer:
will be the perpendicular bisector of line segment AB.
Step-by-step explanation:
We know from the construction of a perpendicular bisector of a line segment. If,we draw two arc of the same radii at the ends of a line segment AB.
These arc intersect with each other at distinct point C and point D (as shown in the figure of the question), then the line passes through the point C and point D must be perpendicular to the given line segment AB and bisect the line segment AB.
Five times the sum of a number and 3 equals 4?
Answer:
5 * (n+3) = 4
n = -11/5
Step-by-step explanation:
5 * (n+3) = 4
Distribute
5n +15 =4
Subtract 15 from each side
5n +15-15 = 4-15
5n = -11
Divide by5
5n/5 = -11/5
n = -11/5
HELP ASAP FIRST CORRECT ANSWER GETS BRIANLEST.
solve for the angle C. A=110° B=×° C=(×+10)
Answer:
a = 110
c = 30+10
b = 30
Step-by-step explanation:
3m-n=km-8 solve for m
Answer:
m= -8-n/3-k
Step-by-step explanation:
(3a³ - 5b³) + ? a³+ ? b³ =(a³+b³)
Answer:
[tex]\boxed{-2; 6}[/tex]
Step-by-step explanation:
Think of this as an ordinary addition problem.
What must you add to 3a³ to get 1a³? Answer: add -2a³
3 + (-2) = 1
What must you add to -5b³ to get 1b³? Answer: add 6b³
-5 + 6 = 1
Then, the addition looks like this:
[tex]\begin{array}{rcr}3a^{3} & + & -5b^{3}\\\boxed{-2}a^{3} & + & \boxed{6}b^{3}\\a^{3} & + & b^{3\\\end{array}[/tex]
The numbers in the boxes are -2 and 6.
I need help with #5 an explanation might be nice too!! (will give brainliest!) and 50 points.
Answer:
2600 yd cubed
Step-by-step explanation:
13 times 20 is 260
260 times 10 is 2600
what is 2.405 in word form and expanded form
Answer:
Word Form:
two and four hundred five thousandths
_____________________________________
Expanded Form:
2
+ 0.4
+ 0.00
+ 0.005
Step-by-step explanation:
Answer:
2 and 4 hundredths
its right on god
Write an equation of the line that is perpendicular to the line y = 1 2 x + 8 that passes through the point (4,6)
Answer:
[tex]\large\boxed{y=-2x+14}[/tex]
Step-by-step explanation:
[tex]\text{Let}\ k:y=_1x+b_1\ \text{and}\ l:y=m_2x+b_2.\\\\l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}\\============================\\\\\text{We have}\ y=\dfrac{1}{2}x+8\to m_1=\dfrac{1}{2}.\\\\\text{Therefore}\ m_2=-\dfrac{1}{\frac{1}{2}}=-2.\\\\\text{The equation of the searched line:}\ y=-2x+b.\\\\\text{The line passes through }(4,\ 6).[/tex]
[tex]\text{Put thecoordinates of the point to the equation.}\ x=4,\ y=6:[/tex]
[tex]6=-2(4)+b\\\\6=-8+b\qquad\text{add 8 to both sides}\\\\b=14[/tex]
Answer:
B) y = -2x + 14
Step-by-step explanation:
Solution: y = -2x + 14. To solve this problem, first determine the slope of your line. Since perpendicular lines have slopes that are opposite reciprocals of each other, we know that the slope is -2. Then plug your slope (-2) and point (4,6) into the equation y = mx + b to solve for b. The resulting value for b is 14.
Make a box-and-whisker plot of the data.
Average daily temperatures in Tucson, Arizona, in December:
67, 57, 52, 51, 64, 58, 67, 58, 55, 59
Answer:
Step-by-step explanation:
First, we'll arrange the number sequence from lowest to highest - 0,50,50,51,52,55,57,57,58,58,58,58,59,60,62,63,64,66,67,67.
Second, we'll find the median Q2 - (58+58) / 2 = 58
Third, we'll take the middle numbers before the median as our lower quartile Q1 - (52+55) / 2 = 53.5
Fourth, we'll take the middle numbers after the median as our upper quartile Q3 - (62+63) / 2 = 62.5
Find the slope that is parallel to the equation 2x +3y 15
b) Find the slope that is perpendicular to the equation 2x + 3y 15
Answer:
a) -2
b) 1/2
Step-by-step explanation:
2x + y = 15 Subtract 2x from both sides
y = -2x + 15 The slope is -2
Parallel lines have the same slope.
Perpendicular lines have negative inverse slopes.
-2 flips to 1/2
find the solutions to the equation by compelting the square x^2-6x=7
Answer:
The solution set is {-1, 7}
Step-by-step explanation:
Rewrite x^2-6x=7 as x^2 - 6x = 7.
Identify the coefficient of the x term; it is -6.
Halve this coeff (obtaining -3)
Square this result (obtaining 9)
Add 9 to x^2 - 6x and then subtract 9 from the result: x^2 - 6x + 9 - 9
Then we have:
x^2 - 6x + 9 - 9 = 7. Add 9 to both sides, obtaining
x^2 - 6x + 9 = 16
Rewrite x^2 - 6x + 9 as the square of a binomial: (x - 3)^2
Then we have
(x - 3)^2 = 16
Taking the square root of both sides, we get
x - 3 = ±4, so that: x = 3 + 4 = 7, and x = 3 - 4 = -1.
The solution set is {-1, 7}.
Answer:
To complete the square x^2-6x=7
We take the coefficient of X which is -6
divide it by 2 -3
square that number 9
then add it to both sides of the equation.
x^2 -6x + 9 = 16
(x -3) * (x -3) = 16
We take the square root of both sides:
a) x-3 = 4
b) x-3 = -4
Therefore, x = 7 and x = -1
Step-by-step explanation:
The total cost of a suit and a coat is
$291. The coat cost twice as much as
the suit. How much did the coat cost?
The coat costs $194 while the suit costs $97
To find out how much the coat costs when a suit and a coat together cost $291 and the coat costs twice as much as the suit, we use algebra to deduce that the suit costs $97 and the coat costs $194.
To solve the problem of determining how much the coat costs when the total cost of a coat and a suit is $291, and the coat costs twice as much as the suit, we can set up a system of equations. Let's define s as the cost of the suit and c as the cost of the coat. Following the given information, we have two equations:
s + c = $291 (the total cost of the suit and the coat)c = 2s (the coat costs twice as much as the suit)Substituting the second equation into the first one gives us:
s + 2s = $291
Combining like terms, we get:
3s = $291
Dividing both sides by 3 to solve for s, we find:
s = $97
Now that we have the cost of the suit, we can use the second equation to find the cost of the coat:
c = 2s = 2 times $97 = $194
Therefore, the coat costs $194.
Find the value of x (show work).
17. 144+x2=484
X2=Earp
16.
tan(angle) = Opposite leg / adjacent leg
tan(36) = 12 / x
x = 12 / tan(36)
x = 16.5166
Round answer as needed.
17.
sin(angle) = Opposite leg / Hypotenuse
sin(x) = 12/22
x = arcsin(12/22)
x = 33.056 degrees.
Round answer as needed.
You do not say how the answers need to be rounded, so please round them as needed.
the median and mean of these numbers:
8, 14, 13, 12, 14, 15
20 POINTS ANSWER FASTTT
Answer:
Mean : ≈ 12.7
Median: ≈ 13.5
Step-by-step explanation:
To find the mean you must add all the numbers and divide by the # of numbers in the set.
8+12+13+14+14+15 = 76
76/6 ≈ 12.7
To find the median you have to order the numbers from least to greatest, the middle number should be the median, but in this case two numbers are in the middle.
8, 12, 13, 14, 14, 15
So you have to add 14 and 13, which is 27.
Then divide by 2 which is ≈ 13.5
write a recursive rule for the arithmetic sequence 22,15,8,1
Answer:
a=1
an= an-1 -7
Step-by-step explanation:
A= 1 the answer is A=1
Can someone check my answer please and thank you
im ppretty sure thats correct. Im not a genius though.
Answer:
294 m² is correct
Step-by-step explanation:
The area (A) of a trapezoid is calculated using the formula
A = [tex]\frac{1}{2}[/tex] h (a + b)
where h is the height and a, b the parallel bases
here h = 21, a = 21 and b = 7, thus
A = [tex]\frac{1}{2}[/tex] × 21 × 28 = 294 m²
Write four hundred and twenty-six thousandths in decimal form.
0.426 is the decimal form.
Four hundred and twenty-six thousandths written in decimal form is 0.426. The 'thousandth' place value is three decimal places to the right, which informed our conversion.
Explanation:The student's question, 'Write four hundred and twenty-six thousandths in decimal form' relates to the concept of place value in mathematics. Writing numbers in decimal form is the process of expressing a number in terms of units, tens, hundreds, etc.
Now, to write four hundred and twenty-six thousandths in decimal form: we know that 'thousandths' refers to a place value that's three places to the right of the decimal. Therefore, four hundred and twenty-six thousandths will be written as 0.426 in decimal form. This is because the digit '4' represents four-tenths, '2' for twenty-hundredths, and '6' for six-thousandths.
Learn more about Decimal Notation here:https://brainly.com/question/35871564
#SPJ11
22+n=−12 what is n??
PLEASE ANSWER QUICK I NEED IT IN THE NEXT TWO MINUTES AHHHH I WILL MAKE YOU BRAINLIEST AND GIVE TEN POINTS!!
Answer:
22 + n = 12 N= 10
Step-by-step explanation:
If you were to subtract 22 from 12 you would get 10. If you would like to guess and check you could add 10 and 12 to make sure its 22!
-34
22+-34=-12 N=-34
If you add 22 by -34 your answer will be -12
Hope this helps
Find the distance between the points given. (3, 4) and (4, 7) √(10) 3 2√2
Answer:
Step-by-step explanation:
givens
x1 = 3
x2 = 4
y1 = 4
y2 = 7
formula
d = sqrt( (x1 - x2)^2 + (y1 - y2)^2 )
solution
d = sqrt( (3 - 4)^2 + (4 - 7)^2 )
d = sqrt ( 1 + 3^2)
d = sqrt( 1 + 9)
d = sqrt( 10)
find the value of x that makes triangle LMN congruent to triangle NOL by SSS. A. 1 B. 2.3 C.6 D.7
Answer:
The correct answer is option C. 6
Step-by-step explanation:
It is given that, LMN congruent to triangle NOL by SSS
From the figure we can write, MN = LO
To find the value of x
we have, MN = LO
13x + 1 = 5x + 49
13x - 5x = 49 - 1
8x = 48
x = 48/8 = 6
Therefore x = 6
The correct answer is option C. 6
A lighting Products company has put a new brand of solar lightbulbs on the market the graph shows the estimated revenue in millions of dollars as the selling price of the lightbulb varies.
What selling price is to be expected to produce the maximum revenue
Answer:
$5
Step-by-step explanation:
Answer:
Answer is $5.00.
Step-by-step explanation:
The lighting products company has put a new brand of solar light bulbs on the market.
Graph attached shows the estimated revenue in million dollars at y - axis and selling price of the light bulb represented on x - axis.
Graph analysis
Maximum revenue generated from the graph is given as 3 million dollars.
For this maximum revenue of 3 million dollars price of the bulb was $5.00.
Therefore, $5.00 is the selling price of the bulb for which maximum revenue is expected.
Given the following graph, would the point (1,2) Be a solution of the inequality? Explain.
ANSWER
The point (1,2) is not a solution
EXPLANATION
We could see that, the point (1,2) lies exactly on the boundary line.
Since the boundary line is dashed, the points on the boundary line are not solution.
Alternatively:
We deduce the inequality from the graph to be;
[tex]y < 3x - 1[/tex]
If the point (1,2) is a solution,then it must satisfy the inequality.
[tex]2 \: < \: 3(1) - 1[/tex]
[tex]2 \: < \: 2[/tex]
This statement is false.
Hence, the point (1,2) is not a solution.
Graph the relation shown in the table. Is the relation a function? Why or why not?
A; No; a vertical line passes through two graphed points.
B; Yes; no horizontal line passes through two graphed points.
C; No; a horizontal line passes through two graphed points.
D; Yes; no vertical line passes through two graphed points.
Answer: D; Yes; no vertical line passes through two graphed points.
Step-by-step explanation:
A graph is only considered a function if it passes the vertical line test. The vertical line test is basically when you put a vertical line on any point in the graph, it can’t pass through more than one graphed point. It can only touch the line once. That graph is considered a function because no two points touch a vertical line in the same x-value.
Answer:
Option D.
Step-by-step explanation:
A relation is a function if there exist a unique output for each input value. In other words a relation is a function if there exist a unique value of y for each value of x.
Vertical line test : According to the vertical line test if the graph of a relation intersect any vertical line at most once, then the relation is a function.
From the given table it clear that the ordered pairs of relation are(-5,-5), (-3,-3), (1,1) and (2,2).
For each value of x, there is a unique value of y. It means no vertical line passes through two graphed points. So, the given relation is a function.
Therefore, the correct option is D.
please help!! Factor completely 36x2 − 25.
36x^2-25
use the formula a^2-b^2=(a+b)(a-b)
a=6x b=5
therefore the answer is (6x+5)(6x-5)
may somebody help me please and thank you.
Answer:
See below
Step-by-step explanation:
Eleven
Remark
When you join the midpoints of two sides of a triangle, two properties are true.
The Line segment you have drawn is parallel to the third side.The Line segment you have drawn is 1/2 the size of the third side.For this question, the first property is not as important as the second.
it means that DE is 1/2 the size of GJ
Equation
4x + 5 = 1/2 * (3x + 25)
Solution
Multiply both sides by 2
2(4x + 5) = 2*[1/2*(3x + 25) Simplify
2(4x + 5) = 3x + 25 Remove the brackets on the left
8x + 10 = 3x + 25 Subtract 3x from both sides
8x-3x + 10 = 25 Subtract 10 from both sides.
5x = 25 - 10
5x = 15
x = 3 Answer
DE = 4*3 + 5
DE = 17 Answer
Ten
I wasn't quite sure if you wanted this done.
Givens
MP is the perpendicular bisector of NL
That makes the triangle isosceles.
ML = MN
PL = PN
Solution
ML = MN
7x + 9 = 11x -7 Subtract 11x from both sides.
7x - 11x + 9 = 11x-11x-7
-4x + 9 = - 7 Subtract 9 from both sides.
-4x + 9-9 = -7-9 Combine
-4x = - 16 Divide by - 4
-4x/-4 = - 16/-4
x = 4
==============
PL = PN
2y + 2 = 16 Subtract 2
2y + 2-2 = 16-2 Combine
2y = 14 Divide by 2
2y/2 = 14/2 Combine
y = 7
g(x)=4+1 what is g(3)
Answer:
13
Step-by-step explanation:
Assuming g(x)=4x+1, then g(3) is 4(3)+1=12+1=13. So g(3)=13.
Amanda wants to examine the eating habits of 100 random students at lunch to determine how many students eat in the cafeteria
Answer:
well she can count up the average amount of tables, and the average amount of students in the school, later determine how many kids sit at the tables, for example, if there's five tables, and in each table there are five students, round those up and you have 25 students, only Amanda's answer would be much higher depending on the school and cafeteria
Emilio's savings account had a balance of $621.96 at the end of July. During August, he made three savings account deposits of $83.11, $52.89, and $307.84 and one withdrawal of $129.00. At the end of August his account earned $11.50 in interest. Will Emilio meet his savings account goal of $1,000 by September 1st?
A
Yes, and he will have $51.70 more than expected.
B
No, and he would still need $51.70.
C
Yes, and he will have $77.30 more than expected.
D
No, and he would still need $77.30.
Answer:
B. He would still need 51.50
Step-by-step explanation:
First I added up all the deposits Emilio made
so: 621.96+83.11+52.89+307.84=1065.8
then i subtract 129 from the total (1065.8)
which equals 936.8 and I add the 11.5 interest.
which equals 948.3 which is 51.70 less than 1000. Therefore, Emilio still need 51.70 in order to meet his saving accounts goal.
The ratio of men to women in a movie theater is 3:5. As two more men and one more woman walk in, the ratio of men to women becomes 2:3. How many women were in the theater before these three walked in?
A. 5
B. 6
C. 20
D. 21
Answer:
C. 20
Step-by-step explanation:
Let's say M is the original number of men and W is the original number of women.
M / W = 3 / 5
(M+2) / (W+1) = 2 / 3
Let's cross multiply both equations:
5M = 3W
3(M+2) = 2(W+1)
Let's simplify the second equation:
3M + 6 = 2W + 2
3M + 4 = 2W
From the first equation:
M = 3/5 W
Substitute:
3 (3/5 W) + 4 = 2W
9/5 W + 4 = 2W
4 = 1/5 W
W = 20
There were originally 20 women.
Let's check our answer. That would mean that M = 3/5 W = 12.
After 2 men walk in and 1 woman, W = 21 and M = 14, so 14/21 = 2/3. Looks like the answer is correct!
Answer C.
What is the following product? 3√2(5√8-7√3)
Answer:
3√2(5√8-7√3) = 60 - 21√6
Step-by-step explanation:
We need to find the product of 3√2(5√8-7√3). The distributive property states that: A(B+C) = AB + AC.
Then, by using the distributive propertive we have that:
3√2(5√8-7√3) = 3√2 * 5√8 - 3√2 * 7√3 = 15√8√2 - 21√2√3.
Also, we know that: √A√B = √AB. Using this:
15√8√2 - 21√2√3 = 15√16 - 21√6 = 60 - 21√6.
Answer:
The correct answer is 60 -21√6
Step-by-step explanation:
It is given that,
3√2(5√8 - 7√3)
To find the product
We have
3√2(5√8 - 7√3) = 3√2(5√8) - 3√2(7√3)
= 3*5√(2 * 8) - 3 * 7 √2 * 3
= 15√16 - 21√6
= 15 * 4 - 21√6
= 60 -21√6
Therefore 3√2(5√8 - 7√3) = 60 -21√6
The correct answer is 60 -21√6
What statement about triangles is not true?
Well you haven’t gave me any examples so I will just list some:
All sides add up to 360 degrees They have 4 sidesThere is only one type of triangle And there many more