In fireworks displays, light of a given wavelength indicates the presence of a particular element. What are the frequency and color of the light associated with each of the following?

Answers

Answer 1

Answer:

The four wavelengths of the problem are not given. Here they are:

a) [tex]Li^+,\lambda=671 nm[/tex]

b) [tex]Cs^+, \lambda=456 nm[/tex]

c) [tex]Ca^{2+}, \lambda=649 nm[/tex]

d) [tex]Na^+, \lambda=589 nm[/tex]

The relationship between wavelength and frequency of light wave is

[tex]f=\frac{c}{\lambda}[/tex]

where

f is the frequency

[tex]c=3.0\cdot 10^8 m/s[/tex] is the speed of light

[tex]\lambda[/tex] is the wavelength

For case a), [tex]\lambda=671 nm = 6.71\cdot 10^{-7}m[/tex] (corresponds to red color), so its frequency is

[tex]f=\frac{3\cdot 10^8}{6.71\cdot 10^{-7}}=4.47\cdot 10^{14}Hz[/tex]

For case b), [tex]\lambda=456 nm = 4.56\cdot 10^{-7}m[/tex] (corresponds to blue color), so its frequency is

[tex]f=\frac{3\cdot 10^8}{4.56\cdot 10^{-7}}=6.58\cdot 10^{14}Hz[/tex]

For case c), [tex]\lambda=649 nm = 6.49\cdot 10^{-7}m[/tex] (corresponds to red color), so its frequency is

[tex]f=\frac{3\cdot 10^8}{6.49\cdot 10^{-7}}=4.62\cdot 10^{14}Hz[/tex]

For case d), [tex]\lambda=589 nm = 5.89\cdot 10^{-7}m[/tex] (corresponds to yellow color), so its frequency is

[tex]f=\frac{3\cdot 10^8}{5.89\cdot 10^{-7}}=5.09\cdot 10^{14}Hz[/tex]

Answer 2
Final answer:

In fireworks displays, the color of light is determined by its wavelength and frequency. The color red has the longest wavelength and the lowest frequency, while the color violet has the shortest wavelength and the highest frequency. Therefore, the order of the given colors from shortest wavelength to longest wavelength is blue, yellow, and red. Similarly, the order of the given colors from lowest frequency to highest frequency is also blue, yellow, and red.

Explanation:

The colors of light in a fireworks display indicate the presence of different elements. The wavelength and frequency of the light determines its color. Within the visible range, our eyes perceive radiation of different wavelengths as light of different colors. The color red corresponds to the longest wavelength and the lowest frequency, while the color violet corresponds to the shortest wavelength and the highest frequency. Therefore, the order of the given colors from shortest wavelength to longest wavelength would be blue, yellow, and red. Similarly, the order of the given colors from lowest frequency to highest frequency would also be blue, yellow, and red.

Learn more about Colors of light in fireworks displays here:

https://brainly.com/question/30183969

#SPJ3


Related Questions

A box weighing 460 N is pushed along a horizontal floor at constant velocity by a force of 270 N parallel to the floor. What is the coefficient of kinetic friction between the box and the floor

Answers

Answer:

μ= F÷N

μ= 270/460= 0.587

Explanation:

The friction force always acts in the opposite direction of the intended or actual motion.

In a Millikan oil-drop experiment, a uniform electric field of 5.71 x 10^5 N/C is maintained in the region between two plates separated by 6.49 cm. Find the potential difference (in V) between the plates.

Answers

Answer:

37057.9V

Explanation:

Electric potential is defined as the work done in moving a unit positive charge from infinity to a point.

Electric potential (E) = Potential Difference (V)/distance between plates(d)

Given; electric field of 5.71 x 10^5 N/C; distance between plates =6.49cm = 0.0649m

Since E = V/d

V = Ed

V = 5.71×10^5×0.0649

V = 37057.9Volts

The potential difference (in V) between the plates is 37057.9V

Answer:

V = 3.71×10⁴ V

Explanation:

Potential difference: This can be defined as the work done in moving a positive charge from infinity to any point in an electric field.

The S.I unit of potential difference is Volt (V).

The expression for potential difference is

V = E×d.............................. Equation 1

Where V = potential difference between the plates, E = Electric field , d = distance of separation between the plates

Given: E = 5.71×10⁵ N/C, d = 6.49 cm = 0.0649 m.

Substitute into equation 1

V = 5.71×10⁵×0.0649

V = 3.71×10⁴ V

A block of mass 2 kg is traveling in the positive direction at 3 m/s. Another block of mass 1.5 kg, traveling in the same direction at 4 m/s, collides elastically with the first block. Find the final velocities of the blocks. How much kinetic energy did the system lose

Answers

Answer:

a. The final velocity of the block of mass 2 kg is 3 m/s or 3.86 m/s. The final velocity of the block of mass 1.5 kg is 4 m/s or 2.86 m/s b. The kinetic energy change is 0 J or -12.235 J. Since the collision is elastic, we choose ΔK = 0

Explanation:

From principle of conservation of momentum,

momentum before impact = momentum after impact

Let m₁ = 2 kg, m₂ = 1.5 kg and v₁ = 3 m/s, v₂ = 4 m/s represent the masses and initial velocities of the first and second blocks of mass respectively. Let v₃ and v₄ be the final velocities of the blocks. So,

m₁v₁ + m₂v₂ = m₁v₃ + m₂v₄

(2 × 3 + 1.5 × 4) = 2v₃ + 1.5v₄

6 + 6 = 2v₃ + 1.5v₄

12 = 2v₃ + 1.5v₄

2v₃ + 1.5v₄ = 12 (1)

Since the collision is elastic, kinetic energy is conserved. So

1/2m₁v₁² + 1/2m₂v₂² = 1/2m₁v₃² + 1/2m₂v₄²

1/2 × 2 × 3² +  1/2 × 1.5 × 4² = 1/2 ×2v₃² + 1/2 × 1.5v₄²

9 + 12 = v₃² + 0.75v₄²

21 = v₃² + 0.75v₄²

v₃² + 0.75v₄² = 21  (2)

From (1) v₃ = 6 - 0.75v₄ (3) . Substituting v₃ into (2)

(6 - 0.75v₄)² + 0.75v₄² = 21

36 - 9v₄ + 0.5625v₄² + 0.75v₄² = 21

36 - 9v₄ + 1.3125v₄² - 21 = 0

1.3125v₄² - 9v₄ + 15 = 0

Using the quadratic formula,

v₄ = [-(-9) ± √[(-9)² - 4 × 1.3125 × 15]]/(2 × 1.3125)

= [9 ± √[81 - 78.75]]/2.625

= [9 ± √2.25]/2.625

= [9 ± 1.5]/2.625

= [9 + 1.5]/2.625 or [9 - 1.5]/2.625

= 10.5/2.625 or 7.5/2.625

= 4 m/s or 2.86 m/s

Substititing v₄ into (3)

v₃ = 6 - 0.75v₄ = 6 - 0.75 × 4 = 6 - 3 = 3 m/s

or

v₃ = 6 - 0.75v₄ = 6 - 0.75 × 2.86 = 6 - 2.145 = 3.855 m/s ≅ 3.86 m/s

b. The kinetic energy change ΔK = K₂ - K₁

K₁ = initial kinetic energy of the two blocks =  1/2m₁v₁² + 1/2m₂v₂²

= 1/2 × 2 × 3² +  1/2 × 1.5 × 4² = 9 + 12 = 21 J

K₂ = final kinetic energy of the two blocks = 1/2m₁v₃² + 1/2m₂v₄². Using v = 3 m/s and v = 4 m/s

= 1/2 × 2 × 3² +  1/2 × 1.5 × 4² = 9 + 12 = 21 J.

ΔK = K₂ - K₁ = 21 - 21 = 0

Using v = 3.86 m/s and v = 2.86 m/s

K₂ = 1/2 × 2 × 3.86² +  1/2 × 1.5 × 2.86² = 14.8996 - 6.1347 = 8.7649 J ≅ 8.765 J

ΔK = K₂ - K₁ = 8.765  - 21 = -12.235 J

Since the collision is elastic, we choose ΔK = 0

An aluminum wire with a diameter of 0.115 mm has a uniform electric field of 0.235 V/m imposed along its entire length. The temperature of the wire is 55.0°C. Assume one free electron per atom. Given that at 20 degrees, rhoo = 2.82x10-8 Ωm and α = 3.9x10-3 /C. Determine:
a) the resistivity of the wire.
b) the current density in the wire.
c) the total current in the wire.
d) the potential different that must exist between the ends of a 2m length of wire if the given electric field is to be produced.

Answers

Answer:

Explanation:

a) To get the resistivity ρ at 50 Celsius, given the resitstivity at 20 Celsisus, use:

ρ = ρo(1 + α(T - To))

where To = 20 Celsius

b) Knowing the resistivity at 50 Celsius, and the (uniform) electric field E, you can determine the current density J using:

E = ρJ

(which is actually a density-averaged version of V = IR)

c) Assuming the current is uniform (which is should be in a uniform electric field and constant-diameter wire), the current i can be calculated using:

J = i/A --> i = JA

where A is the cross-sectional area of the wire (given by πr2); make sure to convert the given diameter to a radius, and the radius to base units

d) Since the electric field is given in volts per meter, and you have two meters of length in the wire, you can determine directly from that how many volts difference you need at the ends of the wire to get 0.2 volts per meter.

0.2 = V/d

with d = 2 m. This corresponds to a uniform electric field being related to voltage by V = Ed, where d is distance along the field line.

Explanation:

Below are attachments containing the solution.

You push a 45 kg wooden box across a wooden floor at a constant speed of 1.0 m/s. The coefficient of kinetic friction is 0.25. Now you double the force on the box. How long would it take for the velocity of the crate to double to 2.0 m/s

Answers

Final answer:

To double the velocity of the wooden box, you need to double the force applied to it. Use the equation Force = coefficient of kinetic friction x normal force to calculate the force required to push the crate at a constant speed. Then, double this force to find the force required to double the velocity.

Explanation:

To double the velocity of the crate to 2.0 m/s, you need to double the force applied to the crate. The force required to push the crate at a constant speed can be calculated using the equation:

Force = coefficient of kinetic friction x normal force

The normal force is equal to the weight of the crate, which is given by:

Normal force = mass x gravity

With the given values of the mass of the crate (45 kg), the coefficient of kinetic friction (0.25), and the acceleration due to gravity (9.8 m/s²), you can calculate the force required to push the crate at a constant speed. Then, you can double this force to find the force required to double the velocity.

What is the coefficient of static friction between the coin and the turntable?

Answers

Answer:The coefficient of static friction between the turntable and the coin is 0.1

Explanation:

The coefficient of static friction is the friction force between two objects when neither of the objects is moving. ... A value of 1 means the frictional force is equal to the normal force. It is a misconception that the coefficient of friction is limited to values between zero and one.

Which is true about the spacing of the streamlines in a wire?

Answers

The statement " Close spacing represents greater current densities" is true about the spacing of the streamlines in a wire (option F)

Why is this correct?

In a scenario where a conductor is wider on the left and narrower on the right, the electric field lines and current density are depicted by streamlines. With current flowing from the wider end to the narrower end, the total charge and current remain constant. However, the current density fluctuates, being higher at the narrower end.

Hence, when observing streamlines, closer spacing within the wire signifies a higher current density, specifically in the narrower sections compared to the wider ones.

Complete question:

Which is true about the spacing of the streamlines in a wire?

A. Wide spacing represents faster random-motion velocities.

B. Wide spacing represents greater electric field vectors.

C. Wide spacing represents greater current densities.

D. Close spacing represents faster random-motion velocities.

E. Close spacing represents greater electric field vectors.

F. Close spacing represents greater current densities.

A bungee jumper attains a speed of 30 m/s just as the bungee cord begins to stretch. If the period of stretch is 2 s while coming to a halt, the jumper's average deceleration in g’s is about ______?

Answers

Answer:[tex]1.53g[/tex]

Explanation:

average deceleration= ?

inial velocity: [tex]u=0[/tex]

final velocity: [tex]v=30m/s[/tex]

time: [tex]t=2seconds[/tex]

The first law of kinematics :

[tex]v=u+at[/tex]

find a the subject of the formula

[tex]a=v-u/ t[/tex]

[tex]a=\frac{0-30} 2[/tex]

[tex]a=-30/2[/tex]

[tex]a=-15m/s^{2}[/tex]

The deceleration about g(acceleration due to gravity) will be:

[tex]15/9.8[/tex]

[tex]1.53g[/tex]

Final answer:

The bungee jumper's average deceleration in g's is approximately -1.53 g's.

Explanation:

To find the average deceleration, we need to calculate the change in velocity and divide it by the time it took to come to a halt. The change in velocity is the final velocity minus the initial velocity, which is 0 m/s minus 30 m/s, giving us -30 m/s. The time is given as 2 s. Plugging these values into the formula for average deceleration, we get:

Average Deceleration = (Change in Velocity) / (Time)

Average Deceleration = (-30 m/s) / (2 s) = -15 m/s²

To convert this to g's, we need to divide by the acceleration due to gravity (9.8 m/s²).

Average Deceleration in g's = (-15 m/s²) / (9.8 m/s²) ≈ -1.53 g's

Learn more about Bungee jumper's average deceleration here:

https://brainly.com/question/32891755

#SPJ3

\ describes the size and distance relationship of our sun and the nearest star?

Answers

Answer: Two marbles separated by 300 kilometers

Explanation: Hope i helped have a great day and please mark brainliest i would appreciate it!

Which conditions are usually the effect of a low air pressure system?

Answers

The given question is incomplete as the options are missing. The options related to this question are as follows-

(A) clear dry weather

(B) hot dry weather

(C) cloudy wet weather

(D) cold dry weather

Answer:

Option (C)

Explanation:

The surface temperature often increases because of increased absorption of solar radiation, the air present at the surface gets heated up more readily, as a result of which the air becomes less dense, and eventually rises up. This gives rise to the creation of a low air pressure system. It often forms clouds comprising of increase relative humidity, and generates wind and thereby causes precipitation. It also causes heavy storms when the atmospheric conditions are too intense.

Thus, the type of weather associated with this is wet and cloudy weather.

Hence, the correct answer is option (C).

Answer:

D

Explanation:

Cloudy wet weather

Consider two uniform solid spheres where one has twice the mass and twice the diameter of the other. The ratio of the larger moment of inertia to that of the smaller moment of inertia is:_________.a) 2b) 8c) 4d) 10e) 6

Answers

Answer:

b) 8.

Explanation:

Below is an attachment containing the solution.

Two small, irregularly-shaped moons, Phobos and Deimos, orbit Mars. They are believed to be captured asteroids. What are the approximate orbital periods of Phobos and Deimos respectivelyA. 7 days, 12 hours; 1 day, 2 hours

B. 7 hours 35 minutes; 1 day, 6 hours

C. 14 days, 10 minutes; 2 days, 12 hours

D. 15 hours; 2 days, 12 hours

Answers

Answer:

Option B

Explanation:

The orbital periods of Phobos and Deimos can be calculated using the Newton's form of Kepler's third law:  

[tex] T^{2} = \frac {4 \pi^{2}}{G*M_{m}} \cdot a^{3} [/tex]  

where T: is the period, G: is the gravitational constant = 6.67x10⁻¹¹ m³kg⁻¹s⁻², Mm: is the mass of Mars = 6.42x10²³ kg, [tex]a_{P}[/tex]: is the average radius of orbit for the satellite Phobos = 9376 km, and [tex]a_{D}[/tex]: is the average radius of orbit for the satellite Deimos = 23463 km.  

The orbital period of Phobos is:

[tex] T = \sqrt {\frac {4 \pi^{2}}{6.67 \cdot 10^{-11} m^{3} kg^{-1} s^{-2}*6.42 \cdot 10^{23} kg} \cdot (9.376 \cdot 10^{6} m)^{3}} = 2.75 \cdot 10^{4} s = 7 hours 36 min [/tex]        

The orbital period of Deimos is:

[tex] T = \sqrt {\frac {4 \pi^{2}}{6.67 \cdot 10^{-11} m^{3} kg^{-1} s^{-2}*6.42 \cdot 10^{23} kg} \cdot (2.35 \cdot 10^{7} m)^{3}} = 1.09 \cdot 10^{5} s = 1 day 6 hours [/tex]      

Therefore, the approximate orbital periods of Phobos and Deimos are 7 hours 35 minutes and 1 day 6 hours, respectively, so the correct answer is option B.    

I hope it helps you!      

A photovoltaic array of (solar cells) is 10.0% efficient in gathering solar energy and converting it to electricity. show answer Incorrect Answer 50% Part (a) If the average intensity of sunlight on one day is 710 W/m2, what area, in square meters, should your array have to gather energy at the rate of 75 W

Answers

Answer:

[tex]A = 1.056\,m^{2}[/tex]

Explanation:

The portion of solar energy converted into electric energy is given by the following equation:

[tex]\dot E = \eta \cdot I\cdot A[/tex]

The area needed to produce energy is derived by clearing the corresponding variable:

[tex]A = \frac{\dot E}{\eta \cdot I}[/tex]

[tex]A = \frac{75\,W }{(0.1)\cdot (710\,\frac{W}{m^{2}} )}[/tex]

[tex]A = 1.056\,m^{2}[/tex]

The total power consumption by all humans on earth is approximately 1013 W. Let’s compare this to the power of incoming solar radiation. The intensity of radiation from the sun at the top of the atmosphere is 1380 W/m2. The earth's radius is 6.37×106 m.

Answers

Answer:

Power coming from solar radiations is 6.94 * 10^14 times higher that the power consumption of all humans.

Explanation:

Intensity of sunlight = I = 1380 w/m^2

Area of earth  = A = 4*pi*r^2 = 4*pi*(6.37*10^6)^2 = 5.09*10^14 m^2

he intensity is defined as the total power spread over the area of earth (Area of Sphere with radius equal to distance between earth and sun) and given by the following formula:

                        Intenity of sunlight = Power/Area of earth

                                                 I = P/A

                                                 P = IA

                                                 P = (1380)(5.09*10^14)

                                                 P =  7.036*10^17 W

if we take ratio:

                                                 7.036*10^17/1013 = 6.94 * 10^14

Hence, power coming from solar radiations is 6.94 * 10^14 times higher that the power consumption of all humans.

Explain Rutherford's experiment?

Answers

Answer:

Rutherford bombarded aluminum foil with beam of light known as alpha particles. The mass of this alpha particle is equivalent to helium atom.

Explanation:

Rutherford bombarded aluminum foil with beam of light known as alpha particles. The mass of this alpha particle is equivalent to helium atom.

When this alpha particles were made to strike the aluminum foil, some passed through the foil, some were reflected and speed others changed.

The ones reflected encountered heavier particle known as the nucleus, preventing them from passing through it. The whole observations indicated that atom is not is uniformly charged sphere as proposed by J.J Thomson.

Rutherford proposed new model known as the Planetary model of atom, which described atom as containing a nucleus which is revolved by electron, just like planets revolve round the sun. And this nucleus contains opposite charge to electron which is proton, to balance the motion.

Star A and star B appear equally bright in the sky. Star A is twice as far away from Earth as star B. How do the luminosities of stars A and B compare?

Answers

Answer:

The answer to the question is

The luminosity of stars A is four times that of star B

Explanation:

Flux (F) produced by a source of light is directly proportional to the brightness or Luminosity (L), and varies inversely to its distance d, that is [tex]F \alpha \frac{L}{d^2}[/tex]

Therefore if the two stars present the same flux then we have

[tex]\frac{L_1}{d_1^2} = \frac{L_2}{(2d_1)^2}[/tex] then crossing out like terms gives [tex]\frac{L_1}{1} = \frac{L_2}{2^2}[/tex] or 4·L₁ = L₂

The luminosity of  star A is 4 times the that of star B

Final answer:

Star A, being twice as far away from Earth as Star B but appearing equally bright, must have a luminosity that is four times greater than Star B's luminosity, due to the inverse square law of light.

Explanation:

When comparing the luminosities of two stars that appear equally bright from Earth, but one is twice as far away as the other, we must account for the inverse square law of light. This law dictates that the intensity (brightness) of light from a source (in this case, a star) decreases proportionally to the square of the distance from the source.

Therefore, if Star A is twice as far away from Earth as Star B, yet they appear to have the same brightness, Star A must have a luminosity four times greater than that of Star B. This is because, to compensate for the increased distance, Star A must emit more light to be perceived as equally bright as Star B from Earth.

The ball was kicked in the air and it iss about to hit the . if horizonta componenet of its final velocity is 10m/s and vertical component of its final velocity is -10m/s .what is the magnotide of th final vellocity of the ball?

Answers

Answer:

The total velocity of the ball will be 14.14 m/s.

Explanation:

Horizontal Velocity component = 10 m/s

Vertical Velocity component = -10 m/s

Total velocity of the ball will be found from the following equation:

(Total velocity) ^2 = (Horizontal Velocity) ^2 + (Vertical Velocity) ^2

Total Velocity ^2 = 10^2 + (-10)^2

Total Velocity^2 = 100 + 100

Total Velocity = [tex]\sqrt{200}[/tex]

Total Velocity = 14.14 m/s

Two points are located on a rigid wheel that is rotating with decreasing angular velocity about a fixed axis. Point A is located in the rim of the wheel and pint B is halfway between the rim and the axis. Which one of the following statements concerning this situation is true?
1. The angular velocity at point A is greater than that of point B
2. Both points have the same centripetal acceleration
3. Both points have the same tangential acceleration4. Both points have the same instantaneous angular velocity
5. Each second, point A turns through a greater angle than point B

Answers

Answer:

4. Both points have the same instantaneous angular velocity

Explanation:

Angular velocity is a measure of the the number of rotations per unit time. This does not depend on the radius of the wheel. Hence, all points on the wheel have the same angular velocity. This invalidates option 1.

The centripetal acceleration is given by the product to the square of the angular velocity and the radius or distance from the centre. A and B are located at different distances from the centre. Hence, they have different centripetal acceleration. This invalidates option 2.

The tangential acceleration depends on the linear velocity which itself is a product of the angular velocity and the distance from the centre. Hence, it is different for both points because they are at different distances from the centre.

Since both A and B are fixed points on the wheel, they move through equal angles in the same time. In fact, for any other fixed point, they all move through the same angle in the same time. This invalidates option 5.

Final answer:

All points on a rotating wheel share the same instantaneous angular velocity; however, points farther from the axis will experience greater centripetal acceleration. The correct statement is that both points have the same instantaneous angular velocity.

Explanation:

The question concerns the properties of points located at different radii of a rotating wheel, specifically relating to angular velocity, centripetal acceleration, and tangential acceleration. We can address the situation by considering the principles of circular motion. When a rigid wheel is rotating about a fixed axis, all points on the wheel have the same instantaneous angular velocity since every point on the wheel rotates through the same angle in the same amount of time.

Centripetal acceleration is proportional to the radius and the square of the angular velocity. Since point A, being at the rim, is farther from the axis than point B, point A experiences a greater centripetal acceleration. On the other hand, tangential acceleration is related to the angular acceleration and the radius. If the wheel is rotating with decreasing angular velocity, both point A and B experience the same tangential acceleration because it is a property of the wheel's rotation, not the points' individual locations.

The correct statement in this scenario is that both points have the same instantaneous angular velocity, which makes option 4 the true statement.

Calculate the ratio of the drag force on a jet flying at 1190 km/h at an altitude of 7.5 km to the drag force on a prop-driven transport flying at half that speed and altitude. The density of air is 0.53 kg/m3 at 7.5 km and 0.74 kg/m3 at 3.8 km. Assume that the airplanes have the same effective cross-sectional area and drag coefficient C.

Answers

Answer:

[tex]\frac{D_{jet}}{D_{prop}}=2.865[/tex]

Explanation:

Given data

Speed of jet Vjet=1190 km/h

Speed of prop driven Vprop=595 km/h

Height of jet 7.5 km

Height of prop driven transport 3.8 km

Density of Air at height 10 km p7.8=0.53 kg/m³

Density of air at height 3.8 km p3.8=0.74 kg/m³

The drag force is given by:

[tex]D=\frac{1}{2}CpAv^2\\[/tex]

The ratio between the drag force on the jet to the drag force  on prop-driven transport is then given by:

[tex]\frac{D_{jet}}{D_{prop}}=\frac{(1/2)Cp_{7.5}Av_{jet}^2}{1/2)Cp_{3.8}Av_{prop}^2} \\\frac{D_{jet}}{D_{prop}}=\frac{p_{7.5}v_{jet}^2}{p_{3.8}v_{prop}}\\\frac{D_{jet}}{D_{prop}}=\frac{(0.53)(1190)^2}{(0.74)(595)^2}\\ \frac{D_{jet}}{D_{prop}}=2.865[/tex]

A 49-year-old female was referred for mammography, but she is very apprehensive after reading about the risk of ionizing radiation. How should the radiographer handle this situation?

Answers

Answer:

Mammography is the process in which low energy radiations are used to diagnose and screening. The purpose of this process is the early detection of the breast cancer. These low energy radiations may have some risks like damaging and burning of cells.  

In the current scenario, woman is apprehensive because she has read about the risks of using ionizing radiations. The radiographer should tell her the benefits of the mammography will outweigh its potential consequences. Screening, for instance, will let her know if she is suffering from breast cancer. Cancer is very dangerous disease as compare to very small burning.

In this way radiographer should handle the situation.

Two identical loudspeakers 2.00 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standing 5.50 m in front of one of the speakers perpendicular to the line joining the speakers, and hears a maximum in the intensity of the sound. What is the lowest possible frequency of sound for which this is possible? Express your answer with the appropriate units.

Answers

Answer:

The lowest possible frequency of sound is 971.4 Hz.

Explanation:

Given that,

Distance between  loudspeakers = 2.00 m

Height = 5.50 m

Sound speed = 340 m/s

We need to calculate the distance

Using Pythagorean theorem

[tex]AC^2=AB^2+BC^2[/tex]

[tex]AC^2=2.00^2+5.50^2[/tex]

[tex]AC=\sqrt{(2.00^2+5.50^2)}[/tex]

[tex]AC=5.85\ m[/tex]

We need to calculate the path difference

Using formula of path difference

[tex]\Delta x=AC-BC[/tex]

Put the value into the formula

[tex]\Delta x=5.85-5.50[/tex]

[tex]\Delta x=0.35\ m[/tex]

We need to calculate the lowest possible frequency of sound

Using formula of frequency

[tex]f=\dfrac{nv}{\Delta x}[/tex]

Put the value into the formula

[tex]f=\dfrac{1\times340}{0.35}[/tex]

[tex]f=971.4\ Hz[/tex]

Hence, The lowest possible frequency of sound is 971.4 Hz.

How many times did thomas edison fail before inventing the lightbulb

Answers

Answer:

he failed thousands of times

Explanation:

There is no known number for his failings. Edison may have failed in many of his experiments and in his schooling, but he had something better working in his favor. He had great determination and persistence.

He failed thousands of times in an attempt to develop an electric light, the great Edison simply viewed each unsuccessful experiment as the elimination of a solution that wouldn’t work, thereby moving him that much closer to a successful solution.

The physical model of the sun’s interior has been confirmed by observations of

Answers

The physical model of the sun's interior has been confirmed by observations of neutrino and seismic vibrations.

Explanation:

Sun's interior is composed of very high temperature and solar flares. So it is very difficult to understand the interior of the sun. But by using the vibrations of neutrino and seismic waves emitted by the solar waves, the physical model can be assumed.

As the interior of the sun performs continuous chain of hydrogen cycle. So the continuous emission of energy from the chain reaction releases neutrino. So these vibrations in neutrino and seismic vibrations, the physical model can be assumed easily.

(a) Calculate the magnitude of the gravitational force exerted by the Moon on a 75 kg human standing on the surface of the Moon. (The mass of the Moon is 7.41022 kg and its radius is 1.7106 m.)

Answers

Answer:

128 N

Explanation:

Using

F = Gm'm/r²....................... Equation 1

Where F = Force, G = Universal constant, m = mass of the human, m' = mass of the moon, r = radius of the moon

Given: m = 75 kg, m' = 7.4×10²² kg, r = 1.7×10⁶ m

Constant: G = 6.67×10⁻¹¹ Nm²/kg²

Substitute into equation 1

F =  (6.67×10⁻¹¹ )(75)(7.4×10²²)/(1.7×10⁶)²

F = (3.7×10¹⁴)/(2.89×10¹²)

F = 1.28×10²

F = 128 N

Explanation:

Below is an attachment containing the solution.

.A particle moving with a constant acceleration has a velocity of 20 cm/s when its position is x = 10 cm. Its position 7.0 s later is x = –30 cm. What is the acceleration of the particle?

Answers

Answer:

[tex]4.08cm/s^2[/tex]

Explanation:

The second equation of a uniformly accelerated motion could be used to solve this problem. This is given by equation (1);

[tex]s=ut+\frac{1}{2}at^2....................(1)[/tex]

where u is the particle's initial velocity, t is the time taken, a is the acceleration and s is the distance travelled.

Given;

u = 20cm/s

t = 7s

a = ?

s = ?

The particle moved from one point [tex]x_1[/tex] to another point [tex]x_2[/tex] along the x-axis, where [tex]x_1=10cm[/tex] and [tex]x_2=-30cm[/tex]. This information could be used to find the distance s covered by the object as follows;

[tex]s=x_1-x_2.................(2)\\s=10-(-30)\\s=10+30\\s=40cm[/tex]

We the make appropriate substitutions into equation (1) and then solve for the acceleration.

[tex]40=(20*7)+\frac{1}{2}*a*7^2\\40=140+\frac{1}{2}*a*49\\40=140+24.5a\\40-140=24.5a\\hence\\24.5a=-100\\a=\frac{-100}{24.5}\\a=-4.08cm/s^2[/tex]

The negative sign is an indication that the particle is decelerating.

Answer:

7.347 cm / s²

Explanation:

Using equation of linear motion

S = ut + 1/2 at²

where total displacement = final displacement - initial displacement

S = - 30 - 10 = - 40 cm

- 40 cm = (20 cm /s × 7 s) + 1/2 a (7²)

- 40 cm = 140 cm + 1/2 49 a

- 40 cm - 140 cm =  1/2 × 49 a

- 180 cm × 2 / 49 s² = a

a = -7.347 cm / s²

It is probably decelerating.

A spectrophotometer measures the transmittance or the absorbance. True or False

Answers

Answer: FALSE

Explanation: Could you help me with a question?

How long can it light a flashlight bulb that draws 0.60 a?

Answers

Final answer:

To calculate the flashlight's power usage, we use power and current formulas based on given charge and voltage values. Similarly, to estimate battery life for a flashlight bulb, we divide the battery's Amp-Hour capacity by the bulb's current draw.

Explanation:

The question is about determining the average current used by a flashlight bulb over a time period and how long the battery would last. To calculate the power usage, we apply the formula P = IV, where P is the power in watts, I is the current in amperes, and V is the voltage in volts. Given that 600 C (coulombs) of charge passes through the flashlight in 0.500 hours (which is 1800 seconds) and the voltage is 3.00 V, we can find the average current using the formula I = Q/t, where Q is the charge in coulombs and t is the time in seconds.

To find out how long a battery will keep a flashlight bulb burning, we divide the battery capacity in ampere-hours (Ah) by the current drawn by the bulb. If a 1.00-W bulb is used and the battery is rated at 1.00 Ah and 1.58 V, we first need to use the power formula P = IV to find the current drawn by the bulb.

The flashlight bulb that draws 0.60 A can be lit for approximately 1.67 hours using a 1.00 Ah alkaline battery. This is calculated by dividing the battery capacity by the current drawn by the bulb.

To determine how long a flashlight bulb that draws 0.60 A can be lit, we must consider the battery's capacity and voltage. Here is a step-by-step explanation:

First, identify the battery capacity. Assume we have an alkaline battery rated at 1.00 Ah.

Next, understand that 1.00 Ah means the battery can supply 1.00 ampere for 1 hour.

Since the flashlight draws 0.60 A, we calculate the time the battery can light the bulb using the formula:

Time (hours) = Battery Capacity (Ah) / Current (A)

Substitute the values:

Time = 1.00 Ah / 0.60 A = 1.67 hours

Thus, the flashlight bulb can be lit for approximately 1.67 hours or 1 hour and 40 minutes before the battery is depleted.

How does the water table change around a pumping water well?

Answers

The water table elevation decreases when the amount of water flowing toward the well equals the amount of water being pumped out of the well.

You go to the doctor and he gives you 13 milligrams of radioactive dye. After 12 minutes, 8 milligrams of dye remain in your system. To leave the doctor's office, you must pass through a radiation detector without sounding the alarm. If the detector will sound the alarm if more than 2 milligrams of the dye are in your system, how long will your visit to the doctor take, assuming you were given the dye as soon as you arrived

Answers

Answer:

Explanation:

Applying the exponential function of decay

M=Cexp(-kt)

At t =0 the mass is 13mmg

Therefore

13=Cexp(0)

C=13

M=13exp(-kt)

After 12mins, M=8mmg

8=13exp(-K×12)

8/13=exp(-12k)

0.615=exp(-12k)

Take In of both sides

In(0.615)=-12k

-0.4855=-12k

Then, k=0.0405

Then the equations become

M=13exp(-0.0405t)

We need to find t at M=2mmg

M=13exp(-0.0405t)

2=13exp(-0.0405t)

2/13=exp(-0.0405t)

0.1538=exp(-0.0405t)

Take In of both sides

In(0.1538)=-0.0405t

-1.872=-0.0405t

Then t=-1.82/-0.0405

t=46.22mintes

In a parallel portion of a series-parallel circuit, the voltage across the branches can be found by multiplying the sum of the branch currents by the equivalent resistance of the resistors in the parallel portion.True / False.

Answers

Answer:

It's true.

Explanation:

It's true. When we connect two resistors in parallel the current is divided between the two in such a way that the sum of the currents on each resistor should be equal to the current on that branch. By finding the equivalent resistance we can use Ohm's law to determine the voltage drop across the resistors. This voltage drop is the same for both, since they're connected in parallel.

Final answer:

This statement is true. In a series-parallel circuit, the voltage across the branches in the parallel portion can be found by multiplying the sum of the branch currents by the equivalent resistance of the resistors in the parallel portion.

Explanation:

In a series-parallel circuit, the voltage across the branches in the parallel portion can be found by multiplying the sum of the branch currents by the equivalent resistance of the resistors in the parallel portion. This statement is true.

Learn more about Voltage in series-parallel circuits here:

https://brainly.com/question/11409042

#SPJ3

Other Questions
Where would you find the least dense water? at 1,000 m in the Antarctic Ocean ,at 200 m in the Arctic Ocean, at the surface of the Atlantic Ocean, below 1,000 m in the Pacific Ocean When conducting an experiment on how stimuli are represented by the firing of neurons, you notice that neurons respond differently to different faces. For example, Arthur's face causes three neurons to fire, with neuron 1 responding the most and neuron 3 responding the least. Roger's face causes three different neurons to fire, with neuron 7 responding the least and neuron 9 responding the most. Your results support ____ coding.a. specificity b. distributed c. convergence d. divergence Frey Corp. is experiencing rapid growth. Dividends are expected to grow at 25 percent per year during the next three years, 18 percent over the following year, and then 8 percent per year, indefinitely. The required return on this stock is 15 percent, and the stock currently sells for $60.00 per share. What is the projected dividend for the coming year? Consider a virus whose genome is composed of minus () sense RNA (for example, the rabies virus). What would be the first step in the biosynthesis of this virus? A triangle has the following angle measures: 125, 15, and 40. Which of the following statements best describes its drawing? There is one possible triangle with these angle measures. It is impossible to construct a triangle with these angle measures. There are many possible similar triangles with these angle measures. There are many possible triangles with these angle measures. Suppose Team A has a 0.75 probability to win their next game and Team B has a 0.85 probability to win their next game. Assume these events are independent. What is the probability that Team A wins and Team B loses Within the first twelve months, unless accompanied by a parent or guardian, a licensed driver 25 years of age or older, or a licensed or certified driving instructor, provisional licensees cannot transport passengers under age _____. Ken is the new pastor at a local church. He is both nervous and excitedabout his new post and is looking forward to meeting all the members of his new congregation. This process will take some time and effort, but he is convinced that it will help him learn how to serve better. Ken's situation is an example of ___________. The kind of learning that applies to voluntary behavior is called ________. effective based learning operant conditioning spontaneous recovery classical conditioning social learning At what points on the graph of f(x)=2x^3-6x^2-27x is the slope of the tangent line -9? 1.List the cellular structures over which an action potential travels, starting at the dendrites and traveling to where neurotransmitter molecules are released. StackOfStrings s = new StackOfStrings(); while (!StdIn.isEmpty()) { String item = StdIn.readString(); if (!item.equals("-")) s.push(item); else if (s.isEmpty()) StdOut.println("BAD INPUT"); else StdOut.print(s.pop() + " "); } Grandma says Baby Bertha (BB) should get $1000 at birth plus $50 per year. Grandpa disagrees; he thinks BB should get $1000 at birth plus an additional 4% of the accumulated amount each year. Grandma and Grandpa will continue to contribute additional funds into the account as long as BB doesnt make a withdrawal. Which option should BBs parents select? Why? A vertical plate has a sharp-edged orifice at its center. A water jet of speed V strikes the plate concentrically. Obtain an expression for the external force needed to hold the plate in place, if the jet leaving the orifice also has speed V. Evaluate the force for V 5 15 ft/s, D 5 4 in., and d 5 1 in. Plot the required force as a function of diameter ratio for a suitable range of diameter d. Why would you use a bulleted list in a slide presentation?OA. To help organize your text so it's easier for the audience to readOB. To show how data changes over the course of timeOC. To share audio with the audienceOD. To compare data for the audienceSUBMIT PLLLLZ HELP Find the seventh partial sum of 13, 22, 31, 40, ...967106280 A computer programmer worked for 10 hours and earned $70,which is a rate of dollars per hour. In a recent study of school children in China, many had images of Mickey Mouse on their backpacks and lunch boxes. This reflects the process of ______ In human resource management, performance of employees is measured as a numerical score which is assumed to be normally distributed. The mean score is 150 and the standard deviation 13. What is the probability that a randomly selected employee will have a score less than 120? What do you notice about the placement of the trees in each painting