Answer:
[tex]\large\boxed{(f+g)(x)=4x^2+\dfrac{3}{2}x-7}[/tex]
Step-by-step explanation:
[tex](f+g)(x)=f(x)+g(x)\\\\f(x)=\dfrac{x}{2}-3=\dfrac{1}{2}x-3,\ g(x)=4x^2+x-4\\\\\text{Substitute:}\\\\(f+g)(x)=\left(\dfrac{1}{2}x-3\right)+(4x^2+x-4)\\\\=\dfrac{1}{2}x-3+4x^2+x-4\qquad\text{combine like terms}\\\\=4x^2+\left(\dfrac{1}{2}x+x\right)+(-3-4)\\\\=4x^2+1\dfrac{1}{2}x-7\\\\=4x^2+\dfrac{3}{2}x-7[/tex]
85/18 divided by 17/18
Answer:
5
Step-by-step explanation:
85 * 18 / 18 * 17
18 cancels out.
85/17
= 5
Your answer for this question is 5
1.) When you divide 85/18 by 17/18, the first step you want to take is switch the reciprocal.
[tex]\frac{85}{18}[/tex]÷[tex]\frac{17}{18}[/tex]=
[tex]\frac{85}{18}[/tex]×[tex]\frac{18}{17}[/tex]
2.) When you switch the reciprocal, you then division sign is changed to times.
[tex]\frac{85}{18}[/tex]×[tex]\frac{18}{17}[/tex]
3.) Now you simply multiply
[tex]\frac{85}{18}[/tex]×[tex]\frac{18}{17}[/tex]=[tex]\frac{1530}{306}[/tex]
4.) Last step, you divide
[tex]\frac{1530}{306}[/tex] = 5
Hope This Helps.
Please Mark as Brainliest!!!
A salesperson has January sales of $20,000(1,$20,000) and April sales of $80,000 (4,$80,000). What is the rate of change?
Answer:
60000/4 pr 15000
Step-by-step explanation:
Rate of change = change in population / change in time
80000 - 20000 = 60000
January to April is 4 months
so the rate of change will be 60000/4 or 15000
The solutions to the inequality y<2x - 4 are shaded on the
graph. Which point is a solution?
(-1,1)
(1,-1)
(3,2)
(2,3)
Answer:
None
Step-by-step explanation:
y<2x - 4
Substitute points to determine if they are a solution
(-1,1)
1<2(-1) - 4
1 < -2-4
1 < -6 False not a solution
(1,-1)
-1<2(1) - 4
-1 < 2-4
-1 < -2 False not a solution
(3,2)
2<2(3) - 4
2 < 6-4
2 < 2 False not a solution
(2,3)
3<2(2) - 4
3 < 4-4
3 < 0 False not a solution
Use the elimination method to solve the system of equations. Choose the
correct ordered pair.
5x+3y = 13
-5x-12y = 23
Answer:
x = 5, y = -4 → (5, -4)Step-by-step explanation:
[tex]\underline{+\left\{\begin{array}{ccc}5x+3y=13\\-5x-12y=23\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad-9y=36\qquad\text{divide both sides by (-9)}\\.\qquad y=-4\\\\\text{put the value of y to the first equation:}\\\\5x+3(-4)=13\\5x-12=13\qquad\text{add 12 to both sides}\\5x=25\qquad\text{divide both sides by 5}\\x=5[/tex]
Ignore my writing
Solve the inequality
Answer:
x=1
Step-by-step explanation:
-5 - (15x-1) = 2(7x-16) -x
Distribute the negative sign
-5-15x+1 = 2(7x-16)-x
Distribute the 2
-5-15x+1 = 14x -32-x
Combine like terms
-4-15x = 13x-32
Add 15x to each side
-4-15x+15x = 13x+15x-32
-4 = 28x-32
Add 32 to each side
-4+32 = 28x-32+32
28 = 28x
Divide each side by 28
28/28 = 28x/28
1 =x
y varies directly as x. y =90 when x=6. find y when x=13
Answer:
195
Step-by-step explanation:
y varies directly with x means y=kx
k is a constant of proportionality (meaning no matter what the variable pair (x,y) is k will forever remain the same value)
we have while x=6, y=90
so plug in 90=k(6)
Solve for k: k=90/6=30/2=15
So no matter (x,y) you have the equation y=15x for this problem
Now what is y when x=13
plug in and find out
y=15(13)
y= 45+150= 195
HELP in the image above please!
Answer:
D
Step-by-step explanation:
Using the section formula
x = [tex]\frac{5(-8)+8(7)}{5+8}[/tex] = [tex]\frac{-40+56}{13}[/tex] = [tex]\frac{16}{13}[/tex] ≈ 1.2
y = [tex]\frac{5(-9)+8(-2)}{5+8}[/tex] = [tex]\frac{-45-16}{13}[/tex] = [tex]\frac{-61}{13}[/tex] ≈ - 4.7
Coordinates are (1.2, - 4.7 ) → D
Solve the compound inequality 6b < 42 or 4b + 12 > 8.
Step-by-step explanation:
6b < 42 or 4b + 12 > 8
6b < 42
= 6b/6 < 42/6
= b < 7
4b + 12 > 8
=4b - 12 + 12 < -12+8
= 4b > - 12 + 8
= 4b > -4
= 4b/4 = -4/4
b > -1
so
7 > b > -1
The solution of the compound inequality 6b < 42 or 4b + 12 > 8 is -1 < b < 42.
What is the inequality?The inequality represent the relationship between two expression, it can represent by < is less than > is greater than.
The inequality is;
[tex]\rm 6b < 42\\\\\dfrac{6b}{6} < \dfrac{42}{6}\\\\b < 7[/tex]
The solution of the inequality 6b < 42 is b < 7.
The inequality is;
[tex]\rm 4b + 12 > 8\\\\4b+12-12 > 8-12\\\\4b > -4\\\\\dfrac{4b}{b} > \dfrac{-4}{4}\\\\b > -1[/tex]
The solution of the inequality 4b + 12 > 8 is b > -1.
So combining both conditions, the compound equality will be:
-1 < b < 42
It depicts b is greater than -1 and smaller than 42.
Hence, the solution of the compound inequality 6b < 42 or 4b + 12 > 8 is -1 < b < 42.
Learn more about inequality here;
https://brainly.com/question/13704693
#SPJ2
Find the greatest common factor of the
following monomials:
2n 36n
Answer:
2n
Step-by-step explanation:
2n = 2*n
36n = 2*3*2*3 n
They both have 2*n in common, so the greatest common factor is 2n
the length of a rectangle is 9 cm more than the width the perimeter is 270 cm find the length and the width
Answer:
length=72
width=63
Step-by-step explanation:
Let us start by supposing the following:
w=w
l=9+w
2l+2w=p(perimeter)
2(9+w)+2*w=270
2w+2w+18=270
4w+18=270
4w=252
w=63
l=72
We used the perimeter formula, 2l+2w=P(perimeter)
Final answer:
To calculate the dimensions of the rectangle, we use the perimeter formula P=2l+2w. After setting up an equation with the given perimeter and relationship between length and width, we find the width to be 63 cm and the length to be 72 cm.
Explanation:
The problem states that the length of a rectangle is 9 cm more than its width and that the perimeter is 270 cm. To find the dimensions of the rectangle, we can use the formula for the perimeter of a rectangle, which is P = 2l + 2w, where P is the perimeter, l is the length, and w is the width.
Let's denote the width of the rectangle as w cm. Then the length would be w + 9 cm. We can substitute these expressions into the perimeter formula to obtain:
270 = 2(w + 9) + 2w
Simplify and solve for w:
270 = 2w + 18 + 2w
270 = 4w + 18
252 = 4w
w = 63 cm
Now that we have the width, we can find the length:
l = w + 9 = 63 + 9 = 72 cm
Therefore, the width is 63 cm, and the length is 72 cm.
Rachel works as a tutor for $15 an hour and as a waitress for $8 an hour. This month, she worked a combined total of 109 hours at her two jobs. Let t be the number of hours Rachel worked as a tutor this month. Write an expression for the combined total dollar amount she earned this month.
Answer:
$ (7t+872)
Step-by-step explanation:
Earning for 1 hour as a tutor= $15
Earnings for 1 hour as a waitress= $8
Total hours worked in the month combined jobs= 109 hrs
Number of hours worked as tutor for the month= t
Find the number of hours worked as waitress for the month= 109-t hours
Total amount earned that month = amount earned as a tutor+ amount earned as a waitress
Amount earned as a tutor= $15 × t = $15t
Amount earned as a waitress= $8× (109-t)= $ (872-8t)
Total amount earned combined= $ 15t + $ (872-8t)
=$ ( 15t-8t +872)
= $ (7t+872)
Final answer:
Rachel's total earnings from both jobs can be expressed as the sum of her hourly rates multiplied by the hours worked in each job, which gives the equation: Total Earnings = 15t + 8(109 - t), where t is the number of hours she worked as a tutor.
Explanation:
To write an expression for the combined total dollar amount Rachel earned this month through her two jobs, we can start by indicating that she earns $15 an hour for tutoring and $8 an hour as a waitress. Given that t represents the number of hours she worked as a tutor, we can calculate her earnings from tutoring as 15t. If the total number of hours worked is 109, then the remaining number of hours worked as a waitress would be 109 - t. Her earnings from working as a waitress would thus be 8(109 - t).
Adding these two amounts together gives us the expression for Rachel's total earnings:
Total Earnings = 15t + 8(109 - t)
Which graph corresponds to the function f(x) = x2 + 4x – 1?
Answer:
See below
Step-by-step explanation:
I don't know if this helps you, but I wanted to get you an answer as quickly as I could in case you needed it really soon. This is what a graph of this function would look like. Choose the answer that looks like this one.
I really hope this helps!
The graph for the given function is plotted. The graph of a function is represented by y = f(x).
How to graph a function?Consider the given function as y = f(x)Consider some values for x and find y-valuesPair these x and y values as coordinates and plot them in the graphConnect all the points forming a curve (since it is a quadratic function)Graphing the given function:The given function is f(x) = x² + 4x - 1
Consider x values as {-5, -4, -3, -2, -1, 0, 1, 2}
Substituting these values in the function for finding y-values
When x = -5
y = f(-5) = (-5)² + 4(-5) -1 = 4
∴ (-5, 4)
When x = -4
y = f(-4) = (-4)² + 4(-4) -1 = -1
∴ (-4, -1)
When x = -3
y = f(-3) = (-3)² + 4(-3) -1 = -4
∴ (-3, -4)
When x = -2
y = f(-2) = (-2)² + 4(-2) -1 = -5
∴ (-2, -5)
When x = -1
y = f(-1) = (-1)² + 4(-1) -1 = -4
∴ (-1, -4)
When x = 0
y = f(0) = 0 + 4(0) -1 = -1
∴ (0, -1)
When x = 1
y = f(1) = 1² + 4(1) -1 = 4
∴ (1, 4)
When x = 2
y = f(2) = 2² +4(2) -1 = 11
∴ (2, 11)
Plotting these points in the graph and connecting them gives a curve (parabola).
Checking for the vertex:
f(x) = a(x - h)² + k
⇒ x² + 4x - 1
⇒ (x - (-2))² -5
So, the vertex is (h, k) = (-2, -5).
Learn more about the graph of a function here:
https://brainly.com/question/4025726
#SPJ2
Which is a graph of a proportional relationship?
Answer:
bottom left graph
Step-by-step explanation:
A proportional relationship is linear, represented by a straight line graph passing through the origin.
The graph on the bottom left is straight line passing through the origin.
What is the product in simplest form? 3/5 x 2/3 = ?
1) 6/15
2) 9/10
3)5/8
4)2/5
Answer:
option 4
Step-by-step explanation:
Given
[tex]\frac{3}{5}[/tex] × [tex]\frac{2}{3}[/tex]
Cancel the 3's on the numerator/denominator of the fractions, leaving
= [tex]\frac{1}{5}[/tex] × [tex]\frac{2}{1}[/tex] = [tex]\frac{2}{5}[/tex] ← in simplest form
The product of 3/5 x 2/3, in simplest form, is 2/5 after multiplication and reduction.
Explanation:In order to answer your question about the product of 3/5 x 2/3, you need to multiply the two fractions. To do this, you multiply the numerators (the top numbers) together and the denominators (the bottom numbers) together. So, for this problem, you would multiply 3 by 2 to get 6, and 5 by 3 to get 15. Therefore, 3/5 x 2/3 = 6/15. However, to put it in simplest form, you should always reduce the fraction to its lowest terms by dividing both the numerator and denominator by their greatest common factor, which in this case is 3. Therefore, 6/15 reduces to 2/5.
Learn more about Fraction Multiplicationhttps://brainly.com/question/34807229#SPJ3Which phrase best describes the translation from the graph y = 2(x – 15)2 + 3 to the graph of y = 2(x – 11)2 + 3?
Answer:
The translation is left 4 units
Step-by-step explanation:
we know that
[tex]y=2(x-15)^{2}+3[/tex]
Is a vertical parabola open upward with vertex at (15,3)
[tex]y=2(x-11)^{2}+3[/tex]
Is a vertical parabola open upward with vertex at (11,3)
so
The rule of the translation of (15,3) ----> (11,3) is equal to
(x,y) ----> (x-4,y)
That means ----> The translation is left 4 units
Alana has 12.5 cups of flour with which she is baking four loaves of raisin bread and one large pretzel. The pretzel requires 2.5 cups of flour to make. How much flour is in each loaf of raisin bread? Explain the steps to follow to get the answer.
Answer:2.5 cups of flour in each loaf of raisin bread
Step-by-step explanation:
The pretzel uses 2.5 cups of flour so the remaining flour is 10(12.5-2.5)
Since there are four loaves and 10 cups of flour left
Therefore one loaf has 10/4 or 2.5 cups of flour
Answer:
Four times the amount of flour for the raisin bread plus 2.5 cups equals 12.5 cups total. The equation is 4x + 2.5 = 12.5. First, I subtract 2.5 from both sides, and then I divide both sides by 4. Each loaf contains 2.5 cups of flour.
--
Brianna Edwards
e d g e n u i t y things
Thanks in advance
Remember Vote Brainliest
It took Amir 2 hours to hike 5 miles. On the first part of the hike, Amir averaged 3 miles per hour. For the second part of the hike, the terrain was more difficult so his average speed decreased to 1.5 mile per hour. Which equation can be used to find t, the amount of time Amir spent hiking during the second, more difficult part of the hike? 3(2 – t) = 1.5t 3t = 1.5(2 – t) 3t + 1.5(2 – t) = 5 3(2 – t) + 1.5t = 5
The equation that will be used to find t is:
[tex]3(2-t)+1.5t=5[/tex]
Step-by-step explanation:Total distance that is traveled by Amir is: 5 miles.
and the total time taken by him is: 2 hours.
On the first part of the hike, Amir averaged 3 miles per hour.
Let t denote the time he spent hiking during the second i.e. difficult part of the hike.
Hence, the time he spent in first part of hike is: 2-t( Since, the total time was 2 hours)
Also, we know that:
[tex]Distance=Speed\times Time[/tex]
Hence, distance traveled in first part of hike is:
[tex]Distance=3\times (2-t)[/tex]
Now, the distance he will travel in second part of hike will be: 5-3(2-t)Since the total distance traveled by him is 5 miles.
It is given that his speed decreased to 1.5 miles per hour.
Now, we know that:
[tex]Time=\dfrac{Distance}{Speed}[/tex]
Hence, time spent by him in second part of hike is:
[tex]t=\dfrac{5-3(2-t)}{1.5}\\\\i.e.\\\\1.5t=5-3(2-t)\\\\i.e.\\\\3(2-t)+1.5t=5[/tex]
The total cost to rent a row $18 times the number of hours the boat is used . Write an equation to model this situation if c = total cost and h = number of hours
Answer:
c=1`8h
Step-by-step explanation:
Based on the graph, which inequality is correct for a number that is to the right of -3?
A number line is shown from negative 8 to 8 at increments of 1. A circle is shown at negative 3. The entire portion of the number line to the right of negative 3 is shaded.
A 4 > −3
B −3 > 4
C −2 < −3
D−3 < −6
Two friends shared 3/4 gallon of ice cream equally. What fraction of a gallon did each friend get ?
Answer:
I've done this question before and the answer is really weird. its 3/8
Use the properties of exponents to rewrite the expression
(-4qr)(-4qr)(-4qr)(-4qr)
[tex](-4qr)(-4qr)(-4qr)(-4qr)=(-4qr)^4=256q^4r^4[/tex]
To rewrite the expression (-4qr)(-4qr)(-4qr)(-4qr) using the properties of exponents, we can rewrite it as (-4qr)^4 = 256q^4r^4.
Explanation:To rewrite the given expression (-4qr)(-4qr)(-4qr)(-4qr) using the properties of exponents, we need to understand that multiplying the same base with different exponents is equivalent to adding the exponents. In this case, the base is (-4qr) and the exponents are 1 for each occurrence. So, we can rewrite the expression as:
(-4qr)4 = -44q4r4 = 256q4r4
https://brainly.com/question/5497425
#SPJ5
Complete the proportion you can use to convert 110 inches to centimeters. Enter your answer with one decimal place. 1 inch = 2.54 centimeters
Answer: 279.4 centimeters hope this helped
Step-by-step explanation: 110 x 2.54 = 279.4
What is the product?
Answer:
2) -81t² +16
Step-by-step explanation:
(9t -4)(-9t -4) = (9t x -9t) + (9t x -4) + (-4 x -9t) + (-4 x -4)
= -81t² - 36t + 36t + 16
= -81t² + 16
Answer:
- 81t² + 16
Step-by-step explanation:
Simply expand the equation by factoring
(9t-4)(-9t-4) factor out negative sign
= -(9t - 4) (9t +4)
= -(9t + 4) (9t - 4) recall a² - b² = (a+b) (a-b)
= - [ (9t)² - 4²]
= - ( 81t² - 16)
= - 81t² + 16
If there are 6 cats 5 run away 10 came how many cats are there.
Originally there are 6 cats
5 run away so take 5 away from 6:
6 - 5 = 1
This means there is only one cat left, but now 10 more cats came:
1 + 10 = 11
There are 11 cats
Hope this helped!
~Just a girl in love with Shawn Mendes
Answer:
11.
Step-by-step explanation:
6 - 5 + 10
= 11.
6. Ashlee has already taken 1 page of notes on ber own, and she will take 3 pages during each hour of
class. After attending 2 hours of clans, how many total pages of notes will Ashlee have in her
notebook? Write and solve an equation to find the answer.
Answer:
7 pages
Step-by-step explanation:
this is because 2 times 3 equals 6 and plus one equals 7
Final answer:
Ashlee starts with 1 page of notes and will take 3 pages of notes for each hour of class she attends. After attending 2 hours of class, she will have a total of 7 pages of notes in her notebook.
Explanation:
The question involves solving a simple algebraic equation to find the total number of pages of notes Ashlee will have after attending 2 hours of class. Ashlee starts with 1 page of notes and takes 3 pages of notes for each hour of class. To find the total number of pages of notes, we can use the equation:
Total pages = Initial pages + (Pages per hour × Number of hours)
Substituting the given values into the equation:
Total pages = 1 + (3 × 2) = 1 + 6 = 7 pages
Therefore, Ashlee will have 7 pages of notes in her notebook after attending 2 hours of class.
The triangles below are similar.
Which similarity statements describe the relationship between the two triangles? Check all that apply.
Answer:
B,C,D,E
Step-by-step explanation:
The similarity statement that describe the relationship is similarities by (AAA)
What are similar triangles?Similar triangles have corresponding angles equal and proportional sides. Their shapes are identical, but sizes may differ.
For two triangles to be similar, the corresponding angles must be equal, and the ratio of the corresponding sides must be equal.
From the diagram, The similarity statement that describe the relationship is similarities by (AAA)
angle R =angle Z
angle S = angle X
angle P = angle Y.
learn more about similar triangles from
https://brainly.com/question/30104125
#SPJ3
Look at the sample below 2x-8=12
Answer:
x = 10
Step-by-step explanation:
Make x the subject
2x - 8 = 12
2x = 12 + 8
2x = 20
x = 20/2
x = 10
!!
Find xif f(x) = 2x + 7 and f(x) = -1.
Answer: -4
Step-by-step explanation:
Solve 2x+7=-1
2x. =-8
x. =-4
Answer:
-4
Step-by-step explanation:
To find the value you have to substitute x for -1. because f(x) = -1.
-2x + 7 = -1
-7= -7
-2x =-8
÷-2
x=-4
Hope it helps!
If f(x) = 2x2 + 2 and g(x) = x2 - 1, find (f - g)(x).
Answer:
x^2 +3
Step-by-step explanation:
f(x) = 2x^2 + 2
g(x) = x^2 - 1
(f - g)(x) = 2x^2 + 2 -( x^2 - 1)
Distribute the minus sign
2x^2 +2 -x^2 +1
x^2 +3
[tex](f-g)(x)=2x^2+2-(x^2-1)=2x^2+2-x^2+1=x^2+3[/tex]
Calculate each probability, given that P(A) = 0.3, P(B) = 0.7, and A and B are independent.
P(A and B)
Answer:
0.21
Step-by-step explanation:
If A and B are independent, then:
P(A and B) = P(A) × P(B)
Given P(A) = 0.3 and P(B) = 0.7:
P(A and B) = 0.3 × 0.7
P(A and B) = 0.21
Answer:
P(A and B) = 0.21
Step-by-step explanation:
Two events are said to be independent when the occurrence of event 1 does not affect the occurrence of event 2
Given two probabilities A and B whose probabilities are given as follows
P(A) = 0.3, P(B) = 0.7
P(A and B) is calculated as follows;
P(A and B) is calculated by multiplying both probabilities together
P(A and B) = P(A) * P(B)
P(A and B) = 0.3 * 0.7
P(A and B) = 0.21
Hence, P(A and B) = 0.21