Convert ln x = y to exponential form.

Answers

Answer 1
Answer: e^y=x

ln(x)=y

e^ln(x)=e^y

x=e^y


Related Questions

what is the standard deviation of 2,3,6,9,10

Answers

Answer:

The standard deviation of 2,3,6,9,10 is √10.

Step-by-step explanation:

Standard Deviation:

It is a quantity expressing by how much the members of a group differ from the mean value for the group. Its symbol is б read as 'sigma'.

Formula:

б = √(Σ(x-mean)²/n)

Mean = Σx/n = (2+3+6+9+10)/5 = 30/5 = 6

Mean = 6

Σ(x-mean)² = (2-6)²+(3-6)²+(6-6)²+(9-6)²+(10-6)²

= 16+9+0+9+16

= 50

б = √(Σ(x-mean)²/n)

= √(50/5)

= √10

Answer:

)10

Step-by-step explanation:

A p e x

y" +2y' +17y=0; y(0)=3, y'(0)=17

Answers

Answer:

The solution is [tex]y(t)=e^{-t}(\cos 32t + (\frac{5}{8}) \sin 32t)[/tex]

Step-by-step explanation:

We need to find the solution of [tex]y''+2y'+17y=0[/tex] with

condition [tex]y(0)=3,\ y'(0)=17[/tex]

This is a homogeneous equation with characteristic polynomial

[tex]r^{2}+2r+17=0[/tex]

using quadratic formula [tex]x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex]

[tex]r=\frac{-2\pm \sqrt{2^{2}-4(1)(17)}}{2(1)}[/tex]

[tex]r=\frac{-2\pm \sqrt{4-68}}{2}[/tex]

[tex]r=\frac{-2\pm \sqrt{-64}}{2}[/tex]

[tex]r=\frac{-2\pm 64i}{2}[/tex]

[tex]r=-1 \pm 32i[/tex]

The general solution for eigen value [tex]a \pm ib[/tex] is

[tex]y(t)=e^{at}(A \cos bt + B \sin bt)[/tex]

[tex]y(t)=e^{-t}(A \cos 32t + B \sin 32t)[/tex]

Differentiate above with respect to 't'

[tex]y'(t)=-e^{-t}(A \cos 32t + B \sin 32t) + e^{-t}(-32A \sin 32t + 32B \cos 32t)[/tex]

Since, y(0)=3

[tex]y(0)=e^{0}(A \cos(0) + B \sin(0))[/tex]

[tex]3=(A \cos(0) +0)[/tex]

so, A=1

Since, y'(0)=17

[tex]y'(0)=-e^{0}(3 \cos(0) + B \sin(0)) + e^{0}(-32(3) \sin(0) + 32B \cos (0))[/tex]

[tex]17=-(3 \cos(0)) + (0 + 32B \cos (0))[/tex]

[tex]17=-3 + 32B[/tex]

add both the sides by 3,

[tex]17+3 = 32B[/tex]

[tex]20= 32B[/tex]

divide both the sides, by 32,

[tex]\frac{20}{32}= B[/tex]

[tex]\frac{5}{8}= B[/tex]

Put the value of constants in [tex]y(t)=e^{-t}(A \cos 32t + B \sin 32t)[/tex]

[tex]y(t)=e^{-t}((1) \cos 32t + (\frac{5}{8}) \sin 32t)[/tex]

Therefore, the solution is [tex]y(t)=e^{-t}(\cos 32t + (\frac{5}{8}) \sin 32t)[/tex]

which statement regarding the function y=sin(x) is true?

a. Reflection over the y-axis will not change the graph since sine is an even function
b. Sin(x)=sin(-x)
c. Reflection over either the x-axis or y-axis will change the graph
d. Sin(x)=-sin(x)

Answers

Answer:

c. Reflection over either the x-axis or y-axis will change the graph

Step-by-step explanation:a. Reflection over the y-axis will not change the graph since sine is an even function.

This is false because [tex]y=sin(x)[/tex] is an odd function, not an even one. This means that [tex]sin(-x)=-sin(x)[/tex], and a reflection over the y-axis will change the graph.

b. Sin(x)=sin(-x)

This is false because we said that [tex]sin(-x)=-sin(x)[/tex]

c. Reflection over either the x-axis or y-axis will change the graph

This is true. Since [tex]sin(x)[/tex] is an odd function, then reflection over either the x-axis or y-axis will change the graph as we said in a. So, for [tex]f(x)[/tex]:

REFLEXION IN THE X-AXIS:

[tex]h(x)=-f(x)[/tex]

REFLEXION IN THE Y-AXIS:

[tex]h(x)=f(-x)[/tex]

d. Sin(x)=-sin(x)

False by the same explanation as b.

The correct statement about the function y=sin(x) is that Reflection over either the x-axis or y-axis will change the graph. Therefore, option C is the correct answer.

The statement regarding the function y=sin(x) which is true is that reflection over either the x-axis or y-axis will change the graph.

This is because the sine function is an odd function, meaning that it has rotational symmetry about the origin. A characteristic of odd functions is that they satisfy the identity y(-x) = -y(x), not y(-x) = y(x), which describes an even function.

Therefore, the assumption Sin(x)=Sin(-x) would be incorrect, as it does not reflect the odd nature of the sine function. Thus, the correct answer is c. Reflection over either the x-axis or y-axis will change the graph.

The 40,595 residents of a city earned a total of $1,730,849,015 in 2005. What was the per capita income, in dollars per person, for 2005?

Answers

Answer:

Per capita income, in dollars per person, for 2005 is $42637

Step-by-step explanation:

The formula to calculate per capita income is:

per capita income = National income/total population

National income = $1,730,849,015

Total population = 40,595

per capita income in 2005 = 1,730,849,015/40,595

per capita income in 2005 = $42637

So, per capita income, in dollars per person, for 2005 is $42637

Solve log x=2. A. 2 B. 20 C. 100 D. 1,000

Answers

Answer:

100

Step-by-step explanation:

The value of the given logarithm is 100.

What is logarithm?

A logarithm is the power to which a number must be raised in order to get some other number.

Given that, log x = 2,

We will solve a logarithmic equation of x  by changing it to exponential form.

Now, the logarithmic equation is log₁₀x = 2

Since, we know that, logₐb = x then b = aˣ

Therefore, log₁₀x = 2

x = 10²

x = 100

Hence,  the value of the given logarithm is 100.

Learn more about logarithm, click;

https://brainly.com/question/30085872

#SPJ5

4. (10.03 MC) The equation of line CD is y = −2x − 2. Write an equation of a line parallel to line CD in slope-intercept form that contains point (4, 5). (4 points)

y = −2x + 13

y = negative 1 over 2 x + 7

y = negative 1 over 2 x + 3

− 2x − 3

Answers

Answer:  y = -2x + 13

Step-by-step explanation:

Parallel lines have the same slope.  y = -2x - 2 has a slope of -2 so the line parallel to that will also have a slope of -2.

We have a point (4, 5) and a slope (-2) so we can use the point-slope formula:

y - y₁ = m(x - x₁)    ; where (x₁, y₁) is the point and m is the slope

y - 5 = -2(x - 4)

y - 5 = -2x + 8

y      = -2x + 8 + 5

y      = -2x + 13

Answer:

The equation of a line parallel to line CD is y = -2x + 13 ⇒ 1st answer

Step-by-step explanation:

* Lets revise the conditions of the parallel lines

- The slopes of the parallel lines are equal

- The form of slope-intercept equation is y = m x + c, where

 m is the slope of the line and c is the y-intercept

- The y-intercept means that the line intersect the y-axis at point (0 , c)

- To find an equation of a line parallel to another line, do these steps

# Find the slope of the given line and use it as a slope of the new line

# Substitute x and y in the equation by a point on the new line to find c

* Lets solve the problem

∵ The equation of line CD is y = -2x - 2

∵ The equation of any line is y = m x + c, where m is the slope of

  the line

∴ The slope of the line is -2

- The equation of the line parallel to CD will have the same slope

∵ The parallel line have same slopes

∴ The slope of the new line is -2

∴ The equation of the parallel line is y = -2x + c

- To find c use a point on the new line and replace x and y in the

  equation by its coordinates

∵ The parallel line contains point (4 , 5)

- Put y = 5 and x = 4 in the equation

∴ 5 = -2(4) + c ⇒ simplify

∴ 5 = -8 + c ⇒ add 8 to both sides

∴ 13 = c

- Write the equation with the value of c

∴ y = -2x + 13

* The equation of a line parallel to line CD is y = -2x + 13

Maria needs to know How much Money $ to have with her when She Goes to her favorite Show Store ... How Much money Should Bring to buy a pair of Shoes ?? ? If, the Original price is $ 80 and there is a discount of 20% and the Sale will only last for one week ... ​

Answers

Answer: $64

Step-by-step explanation:

Set up is/of ratio. See photo attached. (:

What is the mass, in grams, of the object being measured in the triple beam balance shown below?

Snapshot of a triple beam balance. The large slider is at 100 g, the medium slider is at 0 g, and the small slider is at 2.5 g.

Answers

Answer:

  102.5 g

Step-by-step explanation:

The mass is the sum of the values indicated by the sliders:

  100 g + 0 g + 2.5 g = 102.5 g

Answer:

The mass, in grams, of the object being measured in the triple beam balance shown below is:

                               102.5 g

Step-by-step explanation:

Triple Beam balance--

It is a instrument which is used to measure the mass of an object.

The advantage of using this device is that it measures the mass of an object precisely.

It has three counterweights in it.

One is of 100 gram, other is of 10 gram and the last is of 1 gram.

In order to find the mass of an object we add the weights in all the three sections.

The large slider is at 100 g, the medium slider is at 0 g, and the small slider is at 2.5 g.

                    100 g+0 g+2.5 g=102.5 g

simplify. x^2-3x-18/x+3

Answers

The simplified value is (x  - 6)

How to simplify the given expressions?

[tex]\frac{x^{2} -3x-18}{x+3}\\ = \frac{x^{2} -6x + 3x - 18}{x+3} \\=\frac{x(x-6) +3(x-6)}{x+3}\\ =\frac{(x+3)(x-6)}{x+3}\\ = x - 6[/tex]

So the simplified value is (x  - 6)

Find more details about "Simplifications" here: https://brainly.com/question/4344214

#SPJ2

To simplify the rational expression x^2 - 3x - 18 / x + 3, factor the numerator and cancel out the common factor (x + 3). The simplified form is x - 6.

Simplifying the Rational Expression

To simplify the expression
x² - 3x - 18 / x + 3, follow these steps:

First, factor the numerator, which is a quadratic expression. To factor x² - 3x - 18, find two numbers that multiply to -18 and add up to -3. These numbers are 3 and -6.So, we can rewrite the numerator as (x - 6)(x + 3).Thus, the expression becomes:

(x - 6)(x + 3) / x + 3.

Next, cancel the common factor (x + 3):

(x - 6) (x + 3) / (x + 3) = x - 6

So, the simplified form of the expression is x - 6. Note that this simplification is valid for all values of x except -3, as the denominator would be zero.

The value of X is??​

Answers

for this case we have that by definition, the sum of the internal angles of a traingule is 180 degrees.

In addition, the angle "R" of the triangle is given by:

[tex]R = 180-45x[/tex]

So, we have to:

[tex](180-45x) + 25x + (57 + x) = 180\\180-45x + 25x + 57 + x = 180\\-45x + 25x + 57 + x = 0\\-45x + 25x + x = -57\\-19x = -57\\x = \frac {57} {19}\\x = 3[/tex]

Answer:

[tex]x = 3[/tex]

Different hotels in a certain area are randomly​ selected, and their ratings and prices were obtained online. Using​ technology, with x representing the ratings and y representing​ price, we find that the regression equation has a slope of 135 and a​ y-intercept of - 388.What is the equation of the regression line?

Answers

Answer: [tex]Y=-388+135X[/tex]

Step-by-step explanation:

The equation of the regression line has the general form [tex]Y=a+bX[/tex], where Y is the dependent variable , X is the independent variable , b is the slope of the line and a is the y-intercept.

Given : The slope of regression equation : [tex]b=135[/tex]

The y-intercept : [tex]a=-388[/tex]

Then , the equation of the regression line is given by :-

[tex]Y=-388+135X[/tex]

Final answer:

In the field of statistics, specifically regression analysis, the equation of the regression line is given by y = mx + b. Given that the slope is 135 and the y-intercept is -388, the equation of the regression line which represents the relationship between hotel ratings and their prices is y = 135x - 388.

Explanation:

The given problem falls under the branch of statistics, specifically under regression analysis. In a regression equation, x is the independent variable and y is the dependent variable. The equation of a regression line can be expressed in the format y = mx + b, where m represents the slope of the line, and b is the y-intercept.

In the given instance, the slope (m) is 135, and the y-intercept (b) is -388. Therefore, the equation of the regression line which represents the relationship between hotel ratings (x) and their prices (y) is y = 135x - 388.

Learn more about Regression Equation here:

https://brainly.com/question/33805341

#SPJ3

For waht values of x do the vectors -1,0,-1), (2,1,2), (1,1, x) form a basis for R3?

Answers

Answer:

The values of x for which the given vectors are basis for R³ is:

                        [tex]x\neq 1[/tex]

Step-by-step explanation:

We know that for a set of vectors are linearly independent if the matrix formed by these set of vectors is non-singular i.e. the determinant of the matrix formed by these vectors is non-zero.

We are given three vectors as:

(-1,0,-1), (2,1,2), (1,1, x)

The matrix formed by these vectors is:

[tex]\left[\begin{array}{ccc}-1&2&1\\0&1&1\\-1&2&x\end{array}\right][/tex]

Now, the determinant of this matrix is:

[tex]\begin{vmatrix}-1 &2 & 1\\ 0& 1 & 1\\ -1 & 2 & x\end{vmatrix}=-1(x-2)-2(1)+1\\\\\\\begin{vmatrix}-1 &2 & 1\\ 0& 1 & 1\\ -1 & 2 & x\end{vmatrix}=-x+2-2+1\\\\\\\begin{vmatrix}-1 &2 & 1\\ 0& 1 & 1\\ -1 & 2 & x\end{vmatrix}=-x+1[/tex]

Hence,

[tex]-x+1\neq 0\\\\\\i.e.\\\\\\x\neq 1[/tex]

"There is a 70% chance of rain today and a 40% chance of rain tomorrow. Assume that the event that it rains today is independent of the event that it rains tomorrow. What is the probability that there will be no rain today or tomorrow?"

Answers

Final answer:

The probability that it does not rain either today or tomorrow, based on the given independent probabilities of it raining each day, is 18%.

Explanation:

This problem pertains to the concept of probability in mathematics. Specifically, it revolves around calculating the probability of compound independent events.

First, we need to determine the probability of not raining each day. If there's a 70% chance of rain today, that means there's a 30% chance (100% - 70%) of no rain today. Similarly, if there's 40% chance of rain tomorrow, there's a 60% chance (100% - 40%) of no rain tomorrow.

Given that the probability it rains on each day is independent, we multiply these probabilities together to get our answer. So, the probability that it does not rain either today or tomorrow is 30% * 60% = 18%.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

The probability that there will be no rain today or tomorrow is 0.18.

The probability that there will be no rain today or tomorrow is given by the formula for the union of two independent events:

[tex]\[ P(\text{no rain today or tomorrow}) = P(\text{no rain today}) \times P(\text{no rain tomorrow}) \][/tex]

First, we need to find the probability of no rain on each day. Since the probability of rain is given, we can subtract this from 1 to find the probability of no rain:

[tex]\[ P(\text{no rain today}) = 1 - P(\text{rain today}) \][/tex]

[tex]\[ P(\text{no rain today}) = 1 - 0.70 \][/tex]

[tex]\[ P(\text{no rain today}) = 0.30 \][/tex]

Similarly, for tomorrow:

[tex]\[ P(\text{no rain tomorrow}) = 1 - P(\text{rain tomorrow}) \][/tex]

[tex]\[ P(\text{no rain tomorrow}) = 1 - 0.40 \][/tex]

[tex]\[ P(\text{no rain tomorrow}) = 0.60 \][/tex]

Now, we can calculate the probability of no rain on either day:

[tex]\[ P(\text{no rain today or tomorrow}) = P(\text{no rain today}) \times P(\text{no rain tomorrow}) \][/tex]

[tex]\[ P(\text{no rain today or tomorrow}) = 0.30 \times 0.60 \][/tex]

[tex]\[ P(\text{no rain today or tomorrow}) = 0.18 \][/tex]

All students who complete Math III course at Little Hills High School take a common final exam. The exam scores are normally distributed with a mean of 105 and a standard deviation of 16.

a. Kyle and Ethan are Algebra 2 students who took the final exam. Kyle's score was 135 and Ethan's score was 93. Calculate the z-score for each student. Round your answers to the nearest tenth.

b. What percent of the students had a final exam score lower than Ethan's score?

Answers

Answer:

a)

Kyle's z-score was 1.9 to the nearest tenth

Ethan's z-score was -0.8 to the nearest tenth

b)

The percent of the students had a final exam score lower than Ethan's score was 21.19%

Step-by-step explanation:

a) Lets revise how to find the z-score

- The rule the z-score is z = (x - μ)/σ , where

# x is the score

# μ is the mean

# σ is the standard deviation

* Lets solve the problem

- The exam scores are normally distributed with a mean of 105 and a

  standard deviation of 16

∴ μ = 105 and σ = 16

- Kyle and Ethan are took the final exam

- Kyle's  score was 135

- Ethan's score was 93

- Lets find the z-score for each one

∵ Kyle's  score was 135

∴ x = 135

∵ μ = 105 and σ = 16

∵ z-score = (x - μ)/σ

∴ z-score for Kyle = (135 - 105)/16 = 30/16 = 15/8 = 1.875

* Kyle's z-score is 1.9 to the nearest tenth

∵ Ethan's  score was 93

∴ x = 93

∵ μ = 105 and σ = 16

∵ z-score = (x - μ)/σ

∴ z-score for Ethan = (93 - 105)/16 = -12/16 = -3/4 = -0.75

* Ethan's z-score is -0.8 to the nearest tenth

b) To find the percent of students with a lower exam score than Ethan

   you will asking to find the proportion of area under the standard

   normal distribution curve for all z-scores < -0.8

- It can be read from a z-score table by referencing a z-score of -0.8

- Look to the attached file

∴ The value from the table is 0.2119

- To change it to percent multiply it by 100%

∴ 0.2119 × 100% = 21.19%

* The percent of the students had a final exam score lower than

  Ethan's score was 21.19%

Kyle's z-score is 1.9, and Ethan's z-score is -0.8. Approximately 21.1% of the students had a final exam score lower than Ethan's score.

For Kyle, the z-score is:

Z = (135 - 105) / 16 = 30 / 16 = 1.875, which rounds to 1.9.

For Ethan, the z-score is:

Z = (93 - 105) / 16 = -12 / 16 = -0.75, which rounds to -0.8.

Ethan's z-score correlates to a percentile that represents the percentage of students with scores lower than his. Consulting a standard normal distribution table or using a calculator that provides cumulative probabilities for the normal distribution, we find that a z-score of -0.8 corresponds to approximately 21.1%.

Therefore, about 21.1% of the students had a final exam score lower than Ethan's score.

What is the maxima minima or zero for this graph???

Answers

Maximum is the highest a graph can reach. In this case the graph continues forever therefore the maximum is:

infinity or ∞

The minimum is the lowest place the graph reaches. In this case it would be:

-6

The zeros are where the graph intersects the x axis. In this case it would have two zeros, which are:

(-3, 0) and (0.5, 0)

Hope this helped!

~Just a girl in love with Shawn Mendes

Find the general solution of the given differential equation. x dy dx − y = x2 sin(x) Give the largest interval over which the general solution is defined. (Think about the implications of any singular points. Enter your answer using interval notation.

Answers

[tex]x\dfrac{\mathrm dy}{\mathrm dx}-y=x^2\sin x[/tex]

Divide both sides by [tex]x^2[/tex]. In doing so, we force any possible solutions to exist on either [tex](-\infty,0)[/tex] or [tex]\boxed{(0,\infty)}[/tex] (the "positive" interval in such a situation is usually taken over the "negative" one) because [tex]x[/tex] cannot be 0 in order for us to do this.

[tex]\dfrac1x\dfrac{\mathrm dy}{\mathrm dx}-\dfrac1{x^2}y=\sin x[/tex]

Condense the left side as the derivative of a product, then integrate both sides and solve for [tex]y[/tex]:

[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac yx\right]=\sin x[/tex]

[tex]\dfrac yx=\displaystyle\int\sin x\,\mathrm dx[/tex]

[tex]\boxed{y=Cx-x\cos x}[/tex]

The general solution of a differential equation is to write y as a function of x.

The general solution of [tex]x \frac{dy}{dx} - y = x^2 \sin(x)[/tex] is [tex]y = -x\cos(x) + cx[/tex].The interval of the solution is [tex](0, \infty)[/tex]

Given

[tex]x \frac{dy}{dx} - y = x^2 \sin(x)[/tex]

Divide through by x

[tex]\frac{x}{x} \frac{dy}{dx} -\frac{y}{x} = \frac{x^2}{x} \sin(x)[/tex]

[tex]\frac{dy}{dx} -\frac{y}{x} = x \sin(x)[/tex]

Let P be function of x. Such that:

[tex]P(x) = -\frac 1x[/tex]

So, we have:

[tex]\frac{dy}{dx} +yP(x) = x\sin(x)[/tex]

Calculate the integrating factor I(x).

So, we have:

[tex]I(x) = e^{\int P(x) dx[/tex]

Substitute [tex]P(x) = -\frac 1x[/tex]

[tex]I(x) = e^{\int-\frac 1x dx[/tex]

Rewrite as:

[tex]I(x) = e^{-\int\frac 1x dx[/tex]

Integrate

[tex]I(x) = e^{-\ln(x)[/tex]

[tex]I(x) = \frac 1x[/tex]

So, we have:

[tex]\frac{dy}{dx} -\frac{y}{x} = x \sin(x)[/tex]

[tex][\frac{dy}{dx} -\frac{y}{x}] \frac 1x = [x \sin(x)] \frac 1x[/tex]

[tex][\frac{dy}{dx} -\frac{y}{x}] \frac 1x =\sin(x)[/tex]

Introduce [tex]I(x) = \frac 1x[/tex].

So, we have:

[tex]\frac{d}{dx}(\frac yx) = \sin(x)[/tex]

Multiply both sides by dx

[tex]d(\frac yx) = \sin(x)\ dx[/tex]

Integrate with respect to x

[tex]\frac yx = -\cos(x) + c[/tex]

Multiply through by x

[tex]y = -x\cos(x) + cx[/tex]

So, the general solution is: [tex]y = -x\cos(x) + cx[/tex], and the interval is [tex](0, \infty)[/tex]

Read more about general solution of a differential equation at:

https://brainly.com/question/4537000

A computer system uses passwords that contain exactly 7 characters, and each character is 1 of the 26 lowercase letters (a–z) or 26 uppercase letters (A–Z) or 10 integers (0–9). Let Ω denote the set of all possible passwords, and let A and B denote the events that consist of passwords with only letters or only integers, respectively. Determine the probability that a password contains all lowercase letters given that it contains only letters. Report the answer to 3 decimal places.

Answers

Answer:

0,008 or 0,8%

Step-by-step explanation:

To calculate the probability the selected password is made out only of lower-case letters, if it's only letters, we have first to find out how many passwords could be formed with only letters and with only lower-case letters.

For lowercase letters, we can make this many passwords, since for each of the 7  characters, we can pick among 26 lowercase letters:

NLL = 26 * 26 * 26 * 26 * 26 * 26 * 26

In the same fashion, for the number of passwords consisting only of letters, we can pick among 52 letters for each each character (26 lower-case, 26 upper-case):

NOL = 52 * 52 * 52 * 52 * 52 * 52 * 52

We can rewrite NOL differently to ease our calculations:

NOL = (2 * 26) * (2 * 26) * (2 * 26) * (2 * 26) * (2 * 26) * (2 * 26) * (2 * 26)

or

NOL = 26 * 26 * 26 * 26 * 26 * 26 * 26 * 2 * 2 * 2 * 2 * 2 * 2 * 2

Now we have to find out the probability a password containing only letters (NOL) is a password containing only lowercase letters (NLL).  So, we divide NLL by NOL:

[tex]\frac{NLL}{NOL} = \frac{26 * 26 * 26 * 26 * 26 * 26 * 26}{26 * 26 * 26 * 26 * 26 * 26 * 26 * 2 * 2 * 2 * 2 * 2 * 2 * 2}  = \frac{1}{2 * 2 * 2 * 2 * 2 * 2 * 2} = \frac{1}{2^{7} }[/tex]

The probability is thus 1/2^7 or 1/128 or 0,0078125

Which we are asked to round to 3 decimals... so 0,008 or 0,8%

13.48x - 200 < 256.12​

Answers

Answer:

x < 33.84

Step-by-step explanation:

we have

13.48x-200 < 256.12

Solve for x

Adds 200 both sides

13.48x-200 +200 < 256.12+200

13.48x < 456.12

Divide by 13.48 both sides

13.48x/13.48 < 456.12/13.48

x < 33.84

The solution is the interval ----> (-∞, 33.84)

All real numbers less than 33.84

You are given three white​ balls, one red​ ball, and two identical boxes. You are asked to distribute the balls in the boxes in any way you like. You then are asked to select a box​ (after the boxes have been​ shuffled) and to pick a ball at random from that box. If the ball is red you win a prize. How should you distribute the balls in the boxes to maximize your chances of​ winning? Justify your reasoning.

Answers

Put all the white balls in one box and the red ball in the other so you have a 50% chance of winning if you put 1 red ball and a white now you have a 25% chance cause you have a 50% chance in choosing the right box then you have to chose the right ball which would be 50%

y is 4 less than the product of 5 and x


























Answers

y is (replace "is" with an equal sign) 4 less (replace with subtraction sign) than the product (multiply 5 and x) of 5 and x

y = 5x - 4

The reason the answer is like this ^^^ instead of y = 4 - 5x is because for this to be true it would have to say y is 5x less then 4

Hope this helped!

~Just a girl in love with Shawn Mendes

Answer:

y=5x-4

Step-by-step explanation:

Question about: ⇒ algebraic expression

Y: ⇒ Symbol into letters

is: ⇒ equal sign

less than: ⇒ <

product: ⇒ multiply

y=5x-4 is the correct answer.

I hope this helps you, and have a wonderful day!

proof true or false: For all integers a,b,and c,if ab|c then a|c and b|c

Answers

Answer with explanation:

It is given that for three integers , a, b and c, if

              [tex]\frac{ab}{c}\rightarrow then, \frac{a}{c} \text{or} \frac{b}{c}[/tex]

Since , a b is divisible by c , following are the possibilities

1.→ a and b are prime integers .Then , c will be prime number either equal to a or b.

2.→a and b are not prime integers ,then any of the factors of a or b will be equal to c.For example:

 ⇒a=m × n

 b=p × q× c

or,

⇒a=u×v×c

b=s×t

So, whatever the integral values taken by a, and b, if [tex]\frac{ab}{c}[/tex] then either of  [tex]\frac{a}{c} \text{or} \frac{b}{c}[/tex] is true.

From a survey taken several years ago, the starting salaries of individuals with an undergraduate degree from Business Schools are normally distributed with a mean of $40,500 and a standard deviation of $4,500.What is the probability that a randomly selected individual with an undergraduate business degree will get a starting salary of at least $36,000.00? (Round your answer to 4 decimal places.)

Answers

Answer: 0.8413

Step-by-step explanation:

Given: Mean : [tex]\mu=\$40,500[/tex]

Standard deviation : [tex]\sigma = \$4,500[/tex]

The formula to calculate z-score is given by :_

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= $36,000.00, we have

[tex]z=\dfrac{36000-40500}{4500}=-1[/tex]

The P-value = [tex]P(z\geq-1)=1-P(z<-1)=1-0.1586553=0.8413447\approx0.8413[/tex]

Hence, the probability that a randomly selected individual with an undergraduate business degree will get a starting salary of at least $36,000.00 = 0.8413

The probability of a randomly selected individual with an undergraduate business degree having a starting salary of at least $36,000, based on the given normal distribution with a mean of $40,500 and a standard deviation of $4,500, is approximately 0.8413 or 84.13%.

The question asks us to find the probability that a randomly selected individual with an undergraduate business degree will have a starting salary of at least $36,000.00, given that the mean starting salary is $40,500 with a standard deviation of $4,500. This problem can be solved using the properties of the normal distribution.

First, we calculate the z-score, which is the number of standard deviations away from the mean:

Z = (X - μ) / σ

Where X is the salary in question ($36,000), μ is the mean ($40,500), and σ is the standard deviation ($4,500). Plugging in the values:

Z = ($36,000 - $40,500) / $4,500 = -1

The next step is to look up this z-score in a standard normal distribution table or use a calculator with a standard normal distribution function to find the area to the right of this z-score. This area represents the probability we are looking for. Let's assume we found this area to be approximately 0.8413.

Therefore, the probability that a randomly selected individual with an undergraduate business degree will have a starting salary of at least $36,000 is about 0.8413 or 84.13%.

In the lottery game known as 6/36, a player picks six numbers from 1 to 36. (a) How many different ways are there for the player to pick 6 numbers, if order doesn't matter? Answer (b) If all six of the numbers match the ones that are drawn, the player wins first prize. What is the probability of winning 1st prize? Enter your answer as a decimal (not a percent), rounded to SEVEN decimal places.

Answers

Answer:

Step-by-step explanation:

Part A

This is a combination problem. Order does not matter.

36C6

36!/(30! 6!)

36 * 35 * 34 * 33 * 32 * 31/ 6!

1402410240/6!

1947792

Part B

1 / (36C6)

0.000000513 or

0.0000005

A ball is thrown at an initial height of 7 feet with an initial upward velocity at 27 ft/s. The balls height h (in feet) after t seconds is give by the following. h- 7 27t -16t^2 Find the values of t if the balls height is 17ft. Round your answer(s) to the nearest hundredth

Answers

Answer:

The height of ball is 17 ft at t=0.55 and t=1.14.

Step-by-step explanation:

The general projectile motion is defined as

[tex]y=-16t^2+vt+y_0[/tex]

Where, v is initial velocity and y₀ is initial height.

It is given that the initial height is 7 and the initial upward velocity is 27.

Substitute v=27 and y₀=7 in the above equation to find the model for height of the ball.

[tex]h(t)=-16t^2+27t+7[/tex]

The height of ball is 17 ft. Put h(t)=17.

[tex]17=-16t^2+27t+7[/tex]

[tex]0=-16t^2+27t-10[/tex]

On solving this equation using graphing calculator we get

[tex]t=0.549,1.139[/tex]

[tex]t\approx 0.55,1.14[/tex]

Therefore the height of ball is 17 ft at t=0.55 and t=1.14.

3. Given the differential equation y"+y= 0 and the set of two functions sint-cost, sint + cost, show that this a fundamental set of functions for the equation, and note the interval(s) over which this is true. wken (osxsihx | Cos sint

Answers

Answer with explanation:

Given the differential equation

y''+y=0

The two function let

[tex]y_1= sint -cost[/tex]

[tex]y_2=sint+ cost[/tex]

Differentiate [tex]y_1 and y_2[/tex]

Then we get

[tex]y'_1= cost+sint[/tex]

[tex]y'_2=cost-sint[/tex]

Because [tex]\frac{\mathrm{d} sinx}{\mathrm{d} x} = cosx[/tex]

[tex]\frac{\mathrm{d}cosx }{\mathrm{d}x}= -sinx[/tex]

We find wronskin to prove that the function  is independent/ fundamental function.

w(x)=[tex]\begin{vmatrix} y_1&y_2\\y'_1&y'_2\end{vmatrix}[/tex]

[tex]w(x)=\begin{vmatrix}sint-cost&sint+cost\\cost+sint&cost-sint\end{vmatrix}[/tex]

[tex]w(x)=(sint-cost)(cost-sint)- (sint+cost)(cost+sint)[/tex]

[tex]w(x)=sintcost-sin^2t-cos^2t+sintcost-sintcost-sin^2t-cos^2t-sintcost[/tex]

[tex]w(x)=-sin^2t-cos^2t[/tex]    

[tex]sin^2t+cos^2t=1[/tex]

[tex]w(x)=-2\neq0[/tex]

Hence, the given two function are fundamental set of function on R.

I need help ASAP

A) 80
B) 42
C) 8
D) 12

Answers

Answer:

Vertical Angles are equal.  Therefore:

(7x -4) = (6x +8)

x = 12

answer is D

Step-by-step explanation:

Answer:

D) 12

Step-by-step explanation:

The two angles are vertical angles.  Vertical angles are equal

7x-4 = 6x+8

Subtract 6x from each side

7x-6x -4 = 6x-6x+8

x-4 = 8

Add 4 to each side

x-4+4 = 8+4

x = 12

What is the Common Factor

3t^5s − 15t^2s^3

Answers

Answer:

3t^2s

Step-by-step explanation:

15/3=5

t^5s/t^2s = t^3

t^2s^3/t^2s = s^2

For this case we have by definition, that a polynomial has a common factor when the same quantity, either number or letter, is found in all the terms of the polynomial.

We have the following expression:

[tex]3t ^ 5s-15t ^ 2s ^ 3[/tex]

So we have to:

[tex]3t ^ 2s[/tex] is the lowest common term in the terms of the expression:

[tex]3t ^ 2s (t ^ 3-5s ^ 2)[/tex]

Answer:

[tex]3t ^ 2s[/tex]

1. Compute the z score value for a score of 85 on a test which has a mean of 75 and a standard deviation of 5.

Answers

ANSWER

The z-score is 2.

EXPLANATION

The z-score for a data set that is normally distributed is calculated using the formula:

[tex]z = \frac{x - \bar x}{ \sigma} [/tex]

where

[tex]\bar x[/tex]

is the mean and

[tex] \sigma[/tex]

is the standard deviation of the distribution.

From the given information the test score is 85.

This implies that,

[tex]x = 85[/tex]

The mean is 75.

[tex]\bar x = 75[/tex]

The standard deviation is 5.

We substitute the values into the formula to get,

[tex]z = \frac{85 - 75}{5} [/tex]

This implies that

[tex]z = \frac{10}{5} [/tex]

Therefore the z-score is

[tex]z = 2[/tex]

Final answer:

The z score for a score of 85 on the test is 2, indicating that it is 2 standard deviations above the mean.

Explanation:

To compute the z score value for a score of 85 on a test with a mean of 75 and a standard deviation of 5, we use the formula:

z = (x - μ) / σ

where z is the z score, x is the score, μ is the mean, and σ is the standard deviation.

Plugging in the values, we get:

z = (85 - 75) / 5 = 2

The z score for a score of 85 is 2. This means the score is 2 standard deviations above the mean.

HELP PLEASEEE, I REALLY DO NOT UNDERSTAND THESE QUESTIONS. THANK YOU HELP IS VERY MUCH APPRECIATED!!!
5) The mean salary of 5 employees is $40300. The median is $38500. The lowest paid employee's salary is $32000. If the lowest paid employee gets a $3100 raise, then ...


a) What is the new mean?

New Mean = $



b) What is the new median?

New Median = $

Answers

Answer:

a) $40920

b) $38500

Step-by-step explanation:

Given:

5 employees,

Mean = $40300

Median = $38500

Min = $32000

If he lowest paid employee gets a $3100 raise, then his salary becomes

$32000+$3100=$35100

a) If the mean was $40300, then the sum of 5 salaries is

[tex]\$40300\cdot 5=\$201500[/tex]

After raising the lowest salary the sum becomes

[tex]\$201500+\$3100=\$204600[/tex]

and new mean is

[tex]\dfrac{\$204600}{5}=\$40920[/tex]

b) The  lowest salary becomes $35100. It is still smaller than the median, so the new median is the same as the old one.

New median = $38500

The sample space listing the eight simple events that are possible when a couple has three children is​ {bbb, bbg,​ bgb, bgg,​ gbb, gbg,​ ggb, ggg}. After identifying the sample space for a couple having four​ children, find the probability of getting (one girl and three boys) in any order right parenthesis.

Answers

[tex]|\Omega|=2^4=16\\|A|=4\\\\P(A)=\dfrac{4}{16}=\dfrac{1}{4}[/tex]

Other Questions
Find a1, for the given geometric series. Round to the nearest hundredth if necessary. Sn= 44,240, r= 3.8, n= 9 What do scientists hope to find in the bedrock of the Antarctic continent?nutrient-rich watersmicroscopic lifeformsfossil fuelsancient human artifacts Management training programs, mentoring programs, and coaching systems are examples of In which stage of the writing process do you begin to write your ideas in a rough format?A. draftingB. revisingC. editing and proofreadingD. prewriting What might influence peoples perspectives? Check all that apply.their field of studytheir communitytheir family backgroundtheir individual intereststheir personal experiencestheir socioeconomic background Nick borrowed $1250, to be repaid after 5 years at annual simple interest rate of 7.25%. how much interest will be due after 5 years? how much will nick have to repay. What is the difference between the energy of spring A, stretched 0.6 meters, and spring B, stretched 0.3 meters, if they have the same spring constant? A. Spring A has more potential energy than spring B. B. Spring A has less potential energy than spring B. C. Springs A and B have the same potential energy. D. Springs A and B have the same kinetic energy. Select the correct answerWhat idea is discussed in both Tim O'Brien's "Ambush" and John Steinbeck's "Symptoms"?OA.the soldiers' inability to carry out their duties during the warOB.the debilitating effect of soldiers' physical maladiesO c.the aftereffects of combat on soldiers during warOD.the soldiers' hatred toward their enemies during a warResetNext19 Edmentum. All rights reserved. What is the factored form of the polynomial?x2 - 12x + 27?(x + 4)(x+3)(x - 4)(x + 3)(x + 9)(x + 3)(x-9)(x - 3) How far from a converging lens with a focal length of 16 cm should an object be placed to produce a real image which is the same size as the object? Express your answer using two significant figures. If you love salsa(not the dip!), visit _______, where it originated and is also the island nation that looks like a crocodile.A. Spain B. CubaC. Argentina D. Colombia Select the correct answer.During which stage of the ACTIVE reading strategy would you identify the theme of a story?A. A = Ask questions.B. C = Create connections.C. T = Track down important information.D. I = Make inferences.E. V = Visualize.F. E = Eureka! Combine information. HBr + HSO SO + Br + HOwhats the oxidizing agent and whats the reducing agent? Should there be real world consequences for what someone posts on social media? Using what you learned in the lesson, write an effective hook to introduce your topic and get your audience's attention. Write in complete sentences and state the hook strategy you chose to use. Alicia needs to purchase carpet to cover a triangular space. The space has a base length of 10 ft. and a height of 6.4 ft.How many square feet of carpet does Alicia need to cover the space? Use the linear combination method to solve the system of equations. Explain each step of your solution.-4x + 9y = 9 x - 3y = -6 How voting rights have changed since the end of the civil war find the slope and y-intercept of each line y=4x+1 Like ancient India, ancient China was generally ruled by a dynasty. Which ofthese statements best describes this system of rule?A. Rule of the country was passed down by inheritance.OB. Rule of the country was voted on by the people.OC. Rule of the country was decided by a committee of elders.OD. Rule of the country changed hands through violent uprisings.SUBMIT Proteoglycans are a group of macromolecules formed from: a. proteins and glycosaminoglycans. b. proteases and glycosaminoglycans. c. proteins and glycogen. d. proteases and monosaccharides. e. proteins and polysaccharides.