Charge 9 × 10−18 C is on the y axis a distance 5 m from the origin and charge 9 × 10−18 C is on the x axis a distance d from the origin. What is the value of d for which the x component of the force on 9 × 10−18 C is the greatest? The Coulomb constant is 8.98755 × 109 N · m2 /C 2 .

Answers

Answer 1

Answer:

d = 3.53 m

Explanation:

The Coulomb Force is given as

[tex]\vec{F} = \frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r^2}\^r[/tex]

The x-component of the force is equal to

[tex]F_x = F\cos(\theta) = F\frac{x}{\sqrt{x^2 + y^2}} = \frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{(5^2 + d^2)}\frac{d}{\sqrt{5^2 + d^2}} = \frac{1}{4\pi\epsilon_0}\frac{dq_1q_2}{(5^2 + d^2)^{3/2}}[/tex]

This is basically a function of (d). So, the maximum value of this function is the point where its derivative with respect to d is equal to zero.

[tex]\frac{dF_x}{dd} = \frac{kq_1q_2}{(d^2 + 5^2)^{3/2}} - \frac{3d^2kq_1q_2}{(d^2 + 5^2)^{5/2}} = 0\\3d^2 = d^2 + 5^2\\2d^2 = 25\\d = 3.53~m[/tex]

Answer 2
Final answer:

The value of d for which the x component of the force on the charge is the greatest, in accordance to Coulomb's Law, is when d equals 5 meters. At this distance, the x and y components of the force are equal, thus maximizing the x component.

Explanation:

The scenario you described involves the concept of Coulomb's Law which states the force between two charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. Looking at your question, the value of d for which the x component of the force on 9×10−18 C is the greatest would be when d equals 5 meters. The charges would then form an equilateral triangle with the origin, meaning the x component and y component of the force would be equal, hence maximizing the x component.

Learn more about Coulomb's Law here:

https://brainly.com/question/32002600

#SPJ3


Related Questions

The inner planets formed:

a. by collisions and mergers of planetesimals.
b. in the outer solar system and then were deflected inward by interactions with Jupiter and Saturn.
c. when the Sun's heat destroyed all the smaller bodies in the inner solar system.
d. when a larger planet broke into pieces.

Answers

Answer:

a. by collisions and mergers of planetesimals.

Explanation:

Inner planets are planets within 1.5 AU distance from the sun. These are called terrestrial planets because they are somewhat similar to Earth, mainly made of rocks.

The main ingredient of these planets are solar nebula and interstellar dust condensation of which leads to formation of small rock particles. These particles come close to each other under in the influence of gravity and other forces. As the mass of the particles increase they form planetesimals, these planetesimals eventually merge to form planets.

You are on the west bank of a river that is flowing north with a speed of 1.2 m/s. Your swimming speed relative to the water is 1.5 m/s, and the river is 60 m wide. What is your path relative to the earth that allows you to cross the river in the shortest time? Explain your reasoning.

Answers

Answer:

head straight across the river (perpendicular to the bank).

Explanation:

To cross the river in the shortest time first your velocity should be relative to the earth has to have the largest possible component to the bank

suppose,

S be the swimmer

E be the earth

W be the water

[tex]u_{x/y}[/tex]   be the velocity of X relative to Y

resultant velocity relative to E will be:

[tex]u_{S/E}=u_{S/W}+u_{W/E}[/tex]

[tex]u_{W/E}[/tex] is parallel to the bank so,

[tex]u_{S/E}[/tex] has its largest component perpendicular to the bank when [tex]u_{S/W}[/tex] is in that direction

so to cross the river in the shortest time you should straight across the current will then carry you downstream so your path relative to the earth is directed at angle downstream

Final answer:

To cross the river in the shortest time, you must swim perpendicularly to the current. In this case, swimming directly eastward with a speed of 1.5 m/s across a 60 m wide river flowing north at 1.2 m/s will take you across in 40 seconds without being carried downstream.

Explanation:

To cross the river in the shortest time, you must aim to minimize the time spent fighting the water current. The key is to swim in a direction such that your velocity relative to the water combines with the river's velocity to give a resultant path straight across the river. Since the river is flowing north with a speed of 1.2 m/s and your swimming speed relative to the water is 1.5 m/s, the shortest path across would be due east.

If you swim directly eastward, your swimming speed relative to the water ensures that you are moving across the river without being pushed downstream. Thus, the only velocity affecting your eastward crossing is your swimming speed, which is perpendicular to the current. Since the water's current is orthogonal to your motion, it does not affect the time it takes to cross. You'll cross the 60 m wide river in the shortest amount of time by moving at your maximum speed of 1.5 m/s directed perpendicularly to the current.

Considering a swimmer in the given scenario, here's an example to illustrate this concept with numbers:

Width of river: 60 mSpeed of swimmer relative to water: 1.5 m/sSpeed of river current: 1.2 m/sTime to cross = Width of river / Speed of swimmer relative to the water = 60 m / 1.5 m/s = 40 seconds

Therefore, the time taken to cross the river is 40 seconds, and the path taken by the swimmer is perpendicular to the flow of the river, relative to the Earth.

Janet wants to find the spring constant of a given spring, so she hangs the spring vertically and attaches a 0.46 kg mass to the spring’s other end. The acceleration of gravity is 9.81 m/s 2 . If the spring stretches 3.7 cm from its equilibrium position, what is the spring constant?

Answers

Answer: The value of spring constant is 121.9 N/m

Explanation:

Force is defined as the mass multiplied by the acceleration of the object.

[tex]F=m\times g[/tex]

where,

F = force exerted on the object  = ?

m = mass of the object  = 0.46 kg

g = acceleration due to gravity = [tex]9.81m/s^2[/tex]

Putting values in above equation, we get:

[tex]F=0.46kg\times 9.81m/s^2=4.51N[/tex]

To calculate the spring constant, we use the equation:

[tex]F=k\times x[/tex]

where,

F = force exerted on the spring = 4.51 N

k = spring constant = ?

x = length of the spring = 3.7 cm = 0.037 m     (Conversion factor:  1 m = 100 cm)

Putting values in above equation, we get:

[tex]4.51N=k\times 0.037m\\\\k=\frac{4.51N}{0.037m}=121.9N/m[/tex]

Hence, the value of spring constant is 121.9 N/m

A piece of clay sits 0.10 m from the center of a potter’s wheel. If the potter spins the wheel at an angular speed of 15.5 rad/s, what is the magnitude of the centripetal acceleration of the piece of clay on the wheel?

Answers

Answer:

[tex]a=24.025\ m/s^2[/tex]    

Explanation:

Given that

Distance from the center ,r= 0.1 m

The angular speed ,ω = 15.5 rad/s

We know that centripetal acceleration is given as

a=ω² r

a=Acceleration

r=Radius

ω=angular speed

a=ω² r

Now by putting the values in the above equation we get

[tex]a=15.5^2\times 0.1\ m/s^2[/tex]

[tex]a=24.025\ m/s^2[/tex]

Therefore the acceleration of the clay will be [tex]a=24.025\ m/s^2[/tex].

A man stands on the roof of a building of height 14.0 m and throws a rock with a velocity of magnitude 26.0 m/s at an angle of 28.0 ∘ above the horizontal. You can ignore air resistance.

Answers

Final answer:

The question involves analyzing the projectile motion of a rock thrown from a building using physics principles like motion decomposition and energy conservation. It requires breaking down the initial velocity into horizontal and vertical components and applying kinematic equations to determine parameters such as max height, range, and flight time.

Explanation:

This question involves the principles of projectile motion and energy conservation in physics. When the man throws the rock at an angle of 28 degrees above the horizontal with an initial velocity of 26.0 m/s from a height of 14.0 meters, we need to analyze the horizontal and vertical components of the motion separately to determine various aspects of the rock's trajectory, such as its range, maximum height, and time of flight. However, since the specific request is missing in this context, we'll focus on the general approach to solving such problems.

To solve problems involving objects thrown at an angle, we first decompose the initial velocity into its horizontal (vx = v*cos(θ)) and vertical (vy = v*sin(θ)) components, where v is the magnitude of the initial velocity and θ is the angle of projection. The horizontal motion is uniform, meaning the velocity remains constant, whereas the vertical motion is affected by gravity, leading to acceleration in the opposite direction of the initial vertical velocity component.

Energy conservation or kinematic equations can be used to find specific details like maximum height reached, time of flight, and range. For example, the formula s = ut + 0.5at² can be applied where s is displacement, u is initial velocity, a is acceleration (gravity in the case of vertical motion), and t is time. Remember, acceleration due to gravity (a) is -9.8 m/s², indicating it acts downwards. Ignoring air resistance simplifies calculations by omitting drag force considerations.

The maximum horizontal distance is approximately 61.7 meters. This is determined using the projectile motion equations for horizontal distance with initial velocity, angle, and height given.

To find the maximum horizontal distance the rock travels, we can analyze the projectile motion. The initial velocity of 26.0 m/s is broken down into horizontal and vertical components. The horizontal component is [tex]\( v_x = v \cdot \cos(\theta) \)[/tex], where \( v \) is the magnitude of the velocity (26.0 m/s) and \( \theta \) is the angle (28.0 degrees). The vertical component is [tex]\( v_y = v \cdot \sin(\theta) \).[/tex]

The vertical motion is affected by gravity, and the time it takes for the rock to hit the ground can be calculated using the equation [tex]\( h = v_y \cdot t - \frac{1}{2} g t^2 \),[/tex] where \( h \) is the initial height (14.0 m), \( g \) is the acceleration due to gravity (approximately 9.8 m/s\(^2\)), and \( t \) is the time of flight.

Using the quadratic formula to solve for \( t \), we find two solutions: one when the rock is at the initial height and one when it hits the ground. We use the positive solution for the time of flight to calculate the horizontal distance traveled using the equation [tex]\( d = v_x \cdot t \).[/tex]

Substituting the values, we find the maximum horizontal distance to be approximately 61.7 meters.

The question probably maybe: What is the maximum horizontal distance the rock travels before hitting the ground, given that a man stands on the roof of a building of height 14.0 m and throws a rock with a velocity of magnitude 26.0 m/s at an angle of 28.0 degrees above the horizontal, ignoring air resistance?

Calculate the number of vacancies per cubic meter in iron at 850 °C. The energy for vacancy formation is 1.08 eV/atom. Furthermore, the density and atomic weight for Fe are 7.65 g/cm3 and 55.85 g/mol, respectively.

Answers

Answer:

The number of vacancies per cubic meter is 1.18 X 10²⁴ m⁻³

Explanation:

[tex]N_v = N*e[^{-\frac{Q_v}{KT}}] = \frac{N_A*\rho _F_e}{A_F_e}e[^-\frac{Q_v}{KT}}][/tex]

where;

N[tex]_A[/tex] is the number of atoms in iron = 6.022 X 10²³ atoms/mol

ρFe is the density of iron = 7.65 g/cm3

AFe is the atomic weight of iron = 55.85 g/mol

Qv is the energy vacancy formation = 1.08 eV/atom

K is Boltzmann constant = 8.62 X 10⁻⁶ k⁻¹

T is the temperature = 850 °C = 1123 k

Substituting these values in the above equation, gives

[tex]N_v = \frac{6.022 X 10^{23}*7.65}{55.85}e[^-\frac{1.08}{8.62 X10^{-5}*1123}}]\\\\N_v = 8.2486X10^{22}*e^{(-11.1567)}\\\\N_v = 8.2486X10^{22}*1.4279 X 10^{-5}\\\\N_v = 1.18 X 10^{18}cm^{-3} = 1.18 X 10^{24}m^{-3}[/tex]

Therefore, the number of vacancies per cubic meter is 1.18 X 10²⁴ m⁻³

The number of vacancies will be "1.18 × 10²⁴ m⁻³".

Vacancy formation

According to the question,

Number of atoms, [tex]N_A[/tex] = 6.022 × 10²³ atoms/mol

Iron's density, ρFe = 7.65 g/cm³

Iron's atomic weight, AFe = 55.85 g/mol

Energy vacancy formation, Qv = 1.08 eV/atom

Boltzmann constant, K = 8.62 × 10⁻⁶ k⁻¹

Temperature, T = 850°C or, 1123 K

We know the formula,

→ [tex]N_v[/tex] = N × e [[tex]-\frac{Qv}{KT}[/tex]]

        = [tex]\frac{N_A\times \rho Fe}{AFe}[/tex] e [[tex]-\frac{Qv}{KT}[/tex]]

By substituting the above values, we get

        = [tex]\frac{6.022\times 10^{23}\times 7.65}{55.85}[/tex] e [[tex]- \frac{1.08}{8.62\times 10^{-5}\times 1123}[/tex]]

        = 8.2486 × 10²² × [tex]e^{(-11.1567)}[/tex]

        = 8.2486 × 10²² × 1.4279 × 10⁻⁵

        = 1.18 × 10¹⁸ cm⁻³ or,

        = 1.18 × 10²⁴ m⁻³

Thus the answer above is correct.

Find out more information about vacancy formation here:

https://brainly.com/question/13622505

A ball is launched vertically with an initial speed of y˙0= 50 m/s, and its acceleration is governed by y¨=-g-cDy˙2, where the air drag coefficient cD is given by cD= 0.001 m-1. What is the maximum height that the ball reaches? Compare this to the maximum height achieved when air drag is neglected.

Answers

Answer:

Explanation:

Given

acceleration is given by

[tex]a=-g-c_Dv^2[/tex]

where [tex]\ddot{y}=a[/tex]

[tex]\dot{y}=v[/tex]

Also acceleration is given by

[tex]a=v\frac{\mathrm{d} v}{\mathrm{d} s}[/tex]

[tex]ds=\frac{v}{a}dv[/tex]

[tex]\int ds=\int \frac{v}{-g-0.001v^2}dv[/tex]

[tex]\Rightarrow Let -g-0.001v^2=t[/tex]

[tex]-0.001\times 2vdv=dt[/tex]

[tex]vdv=-\frac{dt}{0.002}[/tex]

[tex]at\ v_0=50\ m/s,\ t=-g-0.001(50)^2[/tex]

[tex]t=-g-2.5[/tex]

at [tex]v=0,\ t=-g[/tex]

[tex]\int_{0}^{s}ds=\int_{-g}^{-g-2.5}\frac{-dt}{0.002t}[/tex]

[tex]\int_{0}^{s}ds=\int^{-g}_{-g-2.5}\frac{dt}{0.002t}[/tex]

[tex]s=\frac{1}{0.002}lnt|_{-g}^{-g-2.5}[/tex]

[tex]s=\frac{1}{0.002}\ln (\frac{g+2.5}{g})[/tex]

[tex]s=113.608\ m[/tex]

when air drag is neglected maximum height reached is

[tex]h=\frac{v_0^2}{2g}[/tex]

[tex]h=\frac{50^2}{2\times 9.8}[/tex]

[tex]h=127.55\ m[/tex]

Write this large number in scientific notation. Determine the values of Vm) and (n) when the following mass of the Earth is written in scientific notation: 5,970,000,000,000,000,000,000,000 (rm kgl) Enter I(ml) and (nl), separated by commas.

Answers

Answer : The answer is, 5.97, 24

Explanation :

Scientific notation : It is the representation of expressing the numbers that are too big or too small and are represented in the decimal form with one digit before the decimal point times 10 raise to the power.

For example :

5000 is written as [tex]5.0\times 10^3[/tex]

889.9 is written as [tex]8.899\times 10^{-2}[/tex]

In this examples, 5000 and 889.9 are written in the standard notation and [tex]5.0\times 10^3[/tex]  and [tex]8.899\times 10^{-2}[/tex]  are written in the scientific notation.

If the decimal is shifting to right side, the power of 10 is negative and if the decimal is shifting to left side, the power of 10 is positive.

As we are given the 5,970,000,000,000,000,000,000,000 in standard notation.

Now converting this into scientific notation, we get:

[tex]\Rightarrow 5,970,000,000,000,000,000,000,000=5.97\times 10^{24}[/tex]

As, the decimal point is shifting to left side, thus the power of 10 is positive.

Hence, the answer is, [tex]5.97\times 10^{24}[/tex]

Now the answer is comparing to [tex]m.\times 10^n[/tex]

So, m = 5.97 and n = 24

Thus, the answer is, 5.97, 24

An object is moving along the x-axis. At t = 0 it has velocity v0x = 20.0 m/s. Starting at time t = 0 it has acceleration ax = - Ct, where C has units of m/s3. (a) What is the value of C if the object stops in 8.00 s after t = 0? (b) For the value of C calculated in part (a), how far does the object travel during the 8.00 s?

Answers

The value of C if the object stops in 8.00 s is 0.625 m/s³.

The distance traveled by the object before stopping in 8 seconds is 40 m.

The given parameters;

initial velocity, [tex]v_0[/tex] = 20.0 m/sinitial time of motion, t = 0acceleration of the object, a = -Ct

The value of C is determined by using velocity equation as shown below;

[tex]\frac{dv}{dt} = -Ct\\\\dv = -Ctdt\\\\\int\limits^v_{v_0} \, dv = -\int\limits^t_{t_0} \, Ct \\\\v-v_0= -C[\frac{t^2}{2} ]^t_0\\\\v-v_0 = - \frac{1}{2} Ct^2\\\\0 - 20 = - \frac{1}{2}C(8)^2\\\\-20 = -32 C\\\\C = \frac{20}{32} = 0.625 \ m/s^3[/tex]

The acceleration of the object during 8 seconds is calculated as follows;

a = -Ct

a = -0.625(8)

a = -5 m/s²

The distance traveled by the object before stopping in 8 seconds is calculated as follows;

[tex]v^2 = u^2 + 2as\\\\0 = 20^2 + 2(-5)s\\\\0 = 400 - 10s\\\\10s = 400 \\\\s = \frac{400}{10} \\\\s = 40 \ m[/tex]

Learn more here:https://brainly.com/question/12753556

A value of C that stops the object in 8 seconds is 1.25 m/s³. The object travels a total distance of 53.33 meters during this time.

An object is moving along the x-axis with an initial velocity of v₀x = 20.0 m/s and an acceleration of ax = -Ct where C is in m/s³. We'll solve for the value of C and the distance traveled in 8.00 s.

Part (a): Finding the value of C

To determine the value of C, consider the velocity function:

v(t) = v₀x + ∫ax dt = v₀x + ∫-Ct dt

Integrating the acceleration to get the velocity:

v(t) = 20.0 m/s - (C/2)t²

Given that the object stops at t = 8.00 s, set v(8.00) = 0:

0 = 20.0 m/s - (C/2)(8.00 s)²

Solving for C:

20.0 m/s = C × 32 s²

C = 40/32 = 1.25 m/s³

Part (b): Distance traveled in 8.00 s

The displacement function x(t) can be found by integrating the velocity function:

x(t) = ∫v(t) dt

x(t) = ∫[20.0 m/s - (C/2)t²] dt

x(t) = 20.0t - (C/6)t³

Using C = 1.25 m/s³ and t = 8.00 s:

x(8.00) = 20.0(8.00) - (1.25/6)(8.00)³

x(8.00) = 160.0 - (1.25/6)(512)

x(8.00) = 160.0 - 106.67

x(8.00) = 53.33 m

During the 440, a runner changes his speed as he comes out of the curve onto the home stretch from 18 ft/sec to 38 ft/sec over a 3 second time period. What was his average acceleration over that 3 second period?

Answers

Answer:

[tex]6.67ft/s^2[/tex]

Explanation:

We are given that

Initial velocity=u=18ft/s

Final velocity,v=38ft/s

Time=t=3 s

We have to find the average acceleration over that 3 s period.

We know that

Average acceleration,a=[tex]\frac{v-u}{t}{t}[/tex]

Using the formula

Average acceleration,a=[tex]\frac{38-18}{3}ft/s^2[/tex]

Average acceleration,a=[tex]\frac{20}{3}ft/s^2[/tex]

Average acceleration,a=[tex]6.67ft/s^2[/tex]

Hence, the average acceleration=[tex]6.67ft/s^2[/tex]

A raw egg can be dropped from a third-fl oor window and land on a foam-rubber pad on the ground without breaking. If a 75.0-g egg is dropped from a window located 32.0 m above the ground and a foam-rubber pad that is 15.0 cm thick stops the egg in 9.20 ms, (a) by how much is the pad compressed?(b) What is the average force exertedon the egg after it strikes the pad?

Answers

Answer:

N 204.13

Explanation:

Using equation of motion

v² = u² + 2as

u = 0 is the egg was dropped from rest.

v = 2 × 9.8 × 32 = √627.2 = 25.04 m/s

when the egg hit the foam-rubber, the acceleration can  be calculated with

a = change in velocity / change in time = - 25.04 / 0.0092 = -2721.74 m/s²

a) how much it is compressed

v² = u² + 2as

- u² = 2 (-2717.4) s

- 627.2 / -5443.48 = s

s = 0.1152 m = 11.52 cm

b) average force exerted on the egg = mΔv / Δt = 25.04 × 0.075 / 0.0092 = 204.13

A metal wire 1.50 m long has a circular cross section of radius 0.32 mm and an end-to-end resistance of 90.0 Ohms. The metal wire is then stretched uniformly so that its cross-section is still circular but its total length is now 6.75 m. What is the resistance of the wire after stretching? (Units: Ohm.)

Answers

Answer:

So after stretching new resistance will be 0.1823 ohm

Explanation:

We have given initially length of the wire [tex]l_1=150m[/tex]

Radius of the wire [tex]r_1=0.32mm=0.32\times 10^{-3}m[/tex]

Resistance of the wire initially [tex]R_1=90ohm[/tex]

We know that resistance is equal to [tex]R=\frac{\rho l}{A}[/tex] ,here [tex]\rho[/tex] is resistivity, l is length and A is area

From the relation we can say that [tex]\frac{R_1}{R_2}=\frac{l_1}{l_2}\times \frac{A_2}{A_1}[/tex]

Now length of wire become 6.75 m

Volume will be constant

So [tex]A_1l_1=A_2l_2[/tex]

So [tex]\pi \times (0.32)^2\times150=\pi \times r_2^2\times 6.75[/tex]

[tex]r_2=1.508mm[/tex]

So [tex]\frac{90}{R_2}=\frac{150}{6.75}\times \frac{1.508^2}{0.32^2}[/tex]

[tex]R_2=0.1823ohm[/tex]

With the new length and cross-sectional area, we determine the new resistance to be approximately 1822.5 Ohms.

To determine the resistance of the wire after it is stretched, follow these steps:

Calculate the initial volume of the wire using the initial length and cross-sectional area.

The initial length (L1) = 1.50 m

The radius (r1) = 0.32 mm = 0.00032 m

Initial cross-sectional area (A1) = πr1² = π (0.00032 m)² = 3.216 × 10⁻⁷ m²

Initial volume (V) = A1 × L1 = 3.216 × 10⁻⁷ m² × 1.50 m = 4.824 × 10⁻⁷ m³

Since volume remains constant, calculate the new radius after stretching.

The new length (L2) = 6.75 m

Initial volume (V) = New volume (V)

V = A2 × L2; thus, A2 = V / L2 = 4.824 × 10⁻⁷ m³ / 6.75 m = 7.148 × 10⁻⁸ m²

New radius (r2) = √(A2 / π) = √(7.148 × 10⁻⁸ m² / π) ≈ 0.000151 m = 0.151 mm

Calculate the new resistance using the resistivity formula.

Resistance (R) = ρ × L / A

Assuming resistivity (ρ) is the same, R1 / R2 = (L1 / A1) / (L2 / A2)

New resistance (R2) = R1 × (L2 / L1)² = 90 Ω × (6.75 m / 1.50 m)²

R2 = 90 Ω × (4.5)² = 90 Ω × 20.25 ≈ 1822.5 Ω

Therefore, the resistance of the wire after stretching is approximately 1822.5 Ohms.

A 1 in diameter solid round bar has a groove 0.1 in deep with a 0.1 in radius machined into it. The bar is made of AISI 1040 CD steel and is subjected to purely reversed torque of 1800 lbf∙in. Determine the maximum shear stress taking the effect of the groove into account.

Answers

Final answer:

Maximum shear stress in a round steel bar with a groove, subjected to reversed torque, is found by computing the nominal shear stress and multiplying it by the stress concentration factor of the groove. The stress concentration factor must be known to complete the calculation.

Explanation:

To determine the maximum shear stress in an AISI 1040 CD steel round bar which is subjected to purely reversed torque of 1800 lbf∙in, and has a groove machined into it, the effect of the shape modification by the groove needs to be considered. This groove effect is described using stress concentration factor (Kt), which shows the increase in maximum stress over the nominal stress because of the change in geometry.

The method involves determining the nominal shear stress (τnom) which equals the torque (T) divided by the polar moment of inertia (J) given as J = (π * (d/2)^4)/2 for a round rod. Then, multiply τnom by the stress concentration factor of the groove to find the maximum shear stress τmax = Kt * τnom.

However, I see the Kt value for the particular groove shape and size is not provided. This value is usually looked up in standard tables or calculated using specific formulas/fixtures based on the groove's size and shape. Once Kt is known, you can compute the maximum shear stress precisely.

Learn more about Stress Analysis here:

https://brainly.com/question/33291032

#SPJ3

The visible spectrum of sunlight reflected from Saturn’s cold moon Titan would be expected to be (a) continuous; (b) an emission spectrum; (c) an absorption spectrum.

Answers

Titan is one of Saturn's largest satellites. The molecules on the Saturn's cold moon titan absorb the light from the Sun light because the atmosphere on the titan is at low temperature.Titan is made of thick layers of ice, hence it is relatively cold. If the sunlight reflects from saturns moon Titan, due to the prescence of cold atmosphere, abosrption spectrum arises. So the Spectrum formed by the reflected light from the titan is absorption spectrum

The correct option is C: Absorption spectrum

Final answer:

The visible spectrum of sunlight reflected from Titan, Saturn's moon, would be an absorption spectrum, as Titan's atmosphere absorbs some wavelengths of sunlight. The term 'absorption spectrum' refers to a spectrum produced when light passes through a cool, dilute gas.

Explanation:

The visible spectrum of sunlight reflected from Saturn's moon Titan would be expected to be an absorption spectrum. This is because Titan's atmosphere and surface would absorb some wavelengths of sunlight and reflect the rest, producing an absorption spectrum. There are three types of spectrums: continuous, emission, and absorption. A continuous spectrum is one where all colors (wavelengths) are present without any gaps, which usually represents an ideal black body radiator. An emission spectrum is a spectrum of the electromagnetic radiation emitted by a source. The absorption spectrum, on the other hand, is a spectrum produced when light passes through a cool, dilute gas and atoms in the gas absorb at specific frequencies; since the re-emitted light is unlikely to be emitted in the same direction as the absorbed photon, this gives rise to dark lines (absence of light) in the spectrum.

Learn more about absorption spectrum here:

https://brainly.com/question/32471939

#SPJ3

A turntable reaches an angular speed of "45 rev/min" in "4.10 s" after being turned on. What is its angular acceleration?

Answers

Answer:

1.15 rad/s²

Explanation:

given,

angular speed of turntable = 45 rpm

                       =[tex]45\times \dfrac{2\pi}{60}[/tex]

                       =[tex]4.71\ rad/s[/tex]

time, t = 4.10 s

initial angular speed = 0 rad/s

angular acceleration.

[tex]\alpha = \dfrac{\omega_f-\omega_0}{t}[/tex]

[tex]\alpha = \dfrac{4.71-0}{4.10}[/tex]

[tex]\alpha = 1.15\ rad/s^2[/tex]

Hence, the angular acceleration of the turntable is 1.15 rad/s²

A skydiver jumps out of an airplane. Her speed steadily increases until she deploys her parachute, at which point her speed quickly decreases. She subsequently falls to earth at a constant rate, stopping when she lands on the ground.

Answers

The question is incomplete but an analysis of the situation using  various useful physics concepts can still be made

Answer:

When she immediately jumps out of the plane, the downward force(weight) is greater than any opposing forces upwards (such as air resistance). So the netforce is downwards and therefore the direction of acceleration is also downwards. The direction of acceleration is always in the direction of the netforce The person is not falling at the rate of free fall (9.8 m/s²)  because that is for bodies falling in a vacuum and this person is not, air resistance is very much a factor hereUpon deployment of the parachute, upward forces (air resistance) increases matching the downward forces in size, causing the netforce to be zero. A zero netfroce means zero acceleration which is why the person stops accelerating and falls at a constant rate

Does the KE of a car change more when it accelerates from 23 km/h to 33 km/h or when it accelerates from 33 km/h to 43 km/h?

a. From 23 km/h to 33 km/h
b. From 33 km/h to 43 km/h
c. More information is needed.

Answers

Answer:

b. From 33 km/h to 43 km/h

Explanation:

Lets take mass of the car = m

We know that The change kinetic energy KE is give as

[tex]KE=\dfrac{1}{2}m(v^2-u^2)[/tex]

When speed changes from 23 km/h to 33 km/h :

We know that 1 km/h= 0.27 m/s

[tex]KE=\dfrac{1}{2}m(v^2-u^2)[/tex]

[tex]KE=\dfrac{1}{2}\times m((0.27\times 33)^2-(0.27\times 23)^2)[/tex]

KE=  20.412m   J

When speed changes from 33 km/h to 43 km/h :

We know that 1 km/h= 0.27 m/s

[tex]KE=\dfrac{1}{2}m(v^2-u^2)[/tex]

[tex]KE=\dfrac{1}{2}\times m((0.27\times 43)^2-(0.27\times 33)^2)[/tex]

KE=  27.702m   J

Therefore we can say that when speed changes 33 km/h to 43 km/h ,the kinetic energy will changes more.

Find the magnitude of the electric field due to a charged ring of radius "a" and total charge "Q", at a point on the ring axis a distance "a" from the ring's center.

Answers

Answer:

E=[tex]\frac{KQ}{2\sqrt 2a^2}[/tex]

Explanation:

We are given that

Charge on ring= Q

Radius of ring=a

We have to find the magnitude of electric filed on the axis at distance a from the ring's center.

We know that the electric field at distance x from the center of ring of radius R is given by

[tex]E=\frac{kQx}{(R^2+x^2)^{\frac{3}{2}}}[/tex]

Substitute x=a and R=a

Then, we get

[tex]E=\frac{KQa}{(a^2+a^2)^{\frac{3}{2}}}[/tex]

[tex]E=\frac{KQa}{(2a^2)^{\frac{3}{2}}}[/tex]

[tex]E=\frac{KQa}{2\sqrt 2a^3}[/tex]

[tex]E=\frac{KQ}{2\sqrt 2a^2}[/tex]

Where K=[tex]9\times 10^9 Nm^2/C^2[/tex]

Hence, the magnitude of the electric filed due to charged ring on the axis of ring at distance a from the ring's center=[tex]\frac{KQ}{2\sqrt 2a^2}[/tex]

The magnitude of the electric field due to a charged ring of radius "a" and total charge "Q", at a point on the ring axis a distance "a" from the ring's center is E = Q/[8√2πε₀a²]

Electric field due to a charged ring

The electric field due to a charged ring E is given by

E = Qz/4πε₀[√(z² + R²)]³ where

Q = total charge on ring, z = distance of point from axis of ring and R = radius of ring.

Magnitude of electric field due to ring

Given that for this ring R = a and z = a, substituting these values into E, the magnitude of the electric field at a is given by

E = Qz/4πε₀[√(z² + R²)]³

E = Qa/4πε₀[√(a² + a²)]³

E = Qa/4πε₀[√(2a²)]³

E = Qa/4πε₀[2√2a³]

E = Q/[8πε₀√2a²]

E = Q/[8√2πε₀a²]

So, the magnitude of the electric field due to a charged ring of radius "a" and total charge "Q", at a point on the ring axis a distance "a" from the ring's center is E = Q/[8√2πε₀a²]

Learn more about  magnitude of the electric field due to a charged ring

https://brainly.com/question/14606878

A flat sheet with an area of 3.8 m 2 is placed in a uniform electric field of magnitude 10 N/C. The electric flux through the sheet is 6.0 Nm 2 /C . What is the angle (in degrees) between the electric field and sheet's normal vector?

Answers

Answer:

The angle between the electric field and sheet's normal vector is 80.96 degrees.

Explanation:

Given that,

Area of the flat sheet, [tex]A=3.8\ m^2[/tex]

Electric field, E = 10 N/C

Electric flux of the sheet, [tex]\phi=6\ Nm^2/C[/tex]

The electric flux is through the sheet is given by the dot product of electric field and the area vector. It is given by :

[tex]\phi=E{\cdot} A[/tex]

or

[tex]\phi=EA\ cos\theta[/tex]

[tex]\theta[/tex] is the angle between electric field and sheet's normal vector

So,

[tex]cos\theta=\dfrac{\phi}{EA}[/tex]

[tex]cos\theta=\dfrac{6}{10\times 3.8}[/tex]

[tex]\theta=cos^{-1}(0.157)[/tex]

[tex]\theta=80.96^{\circ}[/tex]

So, the angle between the electric field and sheet's normal vector is 80.96 degrees. Hence, this is the required solution.

Final answer:

The angle between the electric field and the flat sheet's normal vector, given the electric flux of 6.0 Nm²/C and field magnitude of 10 N/C, is approximately 81.2 degrees.

Explanation:

The question involves calculating the angle between an electric field and a flat sheet's normal vector, given the electric flux and the field magnitude. The formula for electric flux (Φ) is given by Φ = E * A * cos(θ), where E is the electric field strength, A is the area through which the field lines pass, and θ is the angle between the field and the normal to the surface. In this case, we have the electric flux (Φ = 6.0 Nm²/C), the electric field (E = 10 N/C), and the area (A = 3.8 m²). To find the angle θ, we rearrange the equation to solve for the cosine of the angle: cos(θ) = Φ / (E * A).

Substituting the given values, we get cos(θ) = 6.0 / (10 * 3.8), which simplifies to cos(θ) = 0.1579. Taking the arccosine of both sides, we find θ ≈ arccos(0.1579). By calculating this, we find that θ ≈ 81.2°.

Thus, the angle between the electric field and the sheet's normal vector is approximately 81.2 degrees.

In a World Cup soccer match, Juan is running due north toward the goal with a speed of 8.00 m/s relative to the ground. A teammate passes the ball to him. The ball has a speed of 12.0 m/s and is moving in a direction 37.0o east of north, relative to the ground. What are the magnitude and direction of the ball’s velocity relative to Juan?

Answers

Answer:

19m/s

22.3 degrees

Explanation:

it is a case aof relative velocity.

the basic for relative velocity vector equation is :

V_b = V_j + V_(b/j)---------------1

V_b: ball velocity relative to ground

V_j : Jaun velocity relative to ground

V_(b/j): ball velocity relative to jaun

reference frame:

We take east and north as +ve x and +ve y

V_(b/j) = V_b - V_j

so for x-axis;

net x-component of V_(b/j) = 12 sin (37) + 0 = 7.22m/s

net y-component of V_(b/j) = 12 cos (37) + 8 = 17.6m/s

magnitude = ((7.22^2)+(17.6^2))^(0.5) = 19 m/s

*direction with respect to Jaun = angle between the vertical (North) and vector V_(b/j)

angle = arctan(7.22/17.6) = 22.3 degrees

A sample of N2O gas has a density of 2.697 g/L at 298 K. What must be the pressure of the gas (in mmHg)?

Answers

Answer:

[tex]P=1139.16384mmHg[/tex]

Explanation:

Given data

[tex]R=0.08206(\frac{L.Atm}{mol.K} )\\Density=2.697g/L\\Temperature=298K\\f.wt=44(g/mol)\\[/tex]

To find

Pressure

Solution

From Ideal gas law we know that

[tex]PV=nRT\\P=(nR\frac{T}{V} )=(R(\frac{mass}{f.wt} )(\frac{T}{V} ))\\P=R(\frac{mass}{volume}) (\frac{T}{f.wt} )=R(Density)(\frac{T}{f.wt} )[/tex]

Substitute the given values to find pressure

So

[tex]P=(0.08206\frac{L.Atm}{mol.K} )(2.697g/L)(298K)(44g/mol)^{-1}\\ P=1.4989Atm\\[/tex]

Convert Atm to mmHg

Multiply the pressure values by 760

So

[tex]P=1139.16384mmHg[/tex]

How much horizontal force F must a sprinter of mass 52 kg exert on the starting blocks to produce this acceleration?

Answers

Answer:

The horizontal force is 780 N.

Explanation:

Given that,

Mass of sprinter = 52 kg

Suppose A world-class sprinters can accelerate out of the starting blocks with an acceleration that is nearly horizontal and has magnitude 15 m/s².

We need to calculate the horizontal force

Using formula of force

[tex]F = ma[/tex]

Where, m = mass of sprinter

a = acceleration

Put the value into the formula

[tex]F=52\times15[/tex]

[tex]F=780\ N[/tex]

Hence, The horizontal force is 780 N.

A helicopter is hovering above the ground. Jim reaches out of the copter (with a safety harness on) at 180 m above the ground. A package is launched upward, from a point on a roof 10 m above the ground. The initial velocity of the package is 50.5 m/s. Consider all quantities as positive in the upward direction. Does Jim Bond have a chance to catch the package? (calculate how high will it go)

Answers

Answer:

The maximum height of the package is 140 m above the ground. Jim Bond will not catch the package.

Explanation:

Hi there!

The equation of height and velocity of the package are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the package at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.81 m/s² because we consider the upward direction as positive).

v = velocity of the package at a time t.

First, let´s find the time it takes the package to reach the maximum height. For this, we will use the equation of velocity because we know that at the maximum height, the velocity of the package is zero. So, we have to find the time at which v = 0:

v = v0 + g · t

0 = 50.5 m/s - 9.8 m/s² · t

Solving for t:

-50.5 m/s / -9.81 m/s² = t

t = 5.15 s

Now, let´s find the height that the package reaches in that time using the equation of height. Let´s place the origin of the frame of reference on the ground so that the initial position of the package is 10 m above the ground:

h = h0 + v0 · t + 1/2 · g · t²

h = 10 m + 50.5 m/s · 5.15 s - 1/2 · 9.81 m/s² · (5.15 s)²

h = 140 m

The maximum height of the package is 140 m above the ground. Jim Bond will not catch the package.

A stiff wire bent into a semicircle of radius a is rotated with a frequency f in a uniform magnetic field, as suggested in Fig. 34-51. What are (a) the frequency and (b) the amplitude of the emf induced in the loop

Answers

The frequency of the loop is 58 Hz and the amplitude of the emf induced in the loop is 7.73 mV and this can be determined by using the given data.

Given :

A stiff wire bent into a semicircle of radius 'a' is rotated with a frequency f in a uniform magnetic field.

According to the data, the angular speed is 58 rev/sec that is, 364.4 rad/sec, the magnetic field is 15 mT that is, 15 [tex]\times[/tex] [tex]10^{-3}[/tex] T, and the radius 'a' is 3 cm that is, 3  [tex]\times[/tex] [tex]10^{-2}[/tex] m.

a) The frequency is 58 rev/sec that is 58 Hz.

b) The amplitude of the emf induced in the loop can be calculated as:

[tex]\rm \epsilon = \dfrac{\omega B \pi a^2}{2}[/tex]

Now, substitute the values of the known terms in the above formula.

[tex]\epsilon = \dfrac{364.4\times 15\times10^{-3}\times \pi \times (3\times 10^{-2})^2}{2}[/tex]

Further, simplify the above expression.

[tex]\rm \epsilon = 0.007728\;V[/tex]

[tex]\rm \epsilon = 7.73\;mV[/tex]

For more information, refer to the link given below:

https://brainly.com/question/4393505

You throw a baseball straight up in the air so that it rises to a maximum height much greater than your height. Is the magnitude of the ball’s acceleration greater while it is being thrown or after it leaves your hand? Explain.

Answers

The ball's acceleration is constant in magnitude and direction, from the instant it leaves your hand, until the instant it hits the ground, no matter what direction or speed you throw it.

It's the acceleration of gravity, on whatever planet you happen to be standing when you throw the ball.

Final answer:

The baseball's magnitude of acceleration is greater while being thrown than after it leaves the hand due to the additional force applied by the thrower, while in free fall, the ball is subject only to gravity. With air resistance, the ball takes longer to go up than to come back down.

Explanation:

The question pertains to the acceleration of a baseball when thrown straight up into the air. While being thrown, the ball experiences an acceleration greater than the acceleration due to gravity because of the force applied by the person's arm. After the ball leaves the hand, however, the only force acting on it is the force of gravity, which gives it a constant acceleration of approximately 9.81 m/s² downward, regardless of air resistance. In the absence of other forces, the magnitude of acceleration when the ball is in free fall is less than the acceleration imparted to the ball by the thrower's arm.

When air resistance is considered, it acts to slow down the ball as it rises and speeds up as it falls. Therefore, with air resistance, the time it takes for the ball to go up is greater than the time it takes to come back down, because air resistance removes kinetic energy from the ball on the way up, slowing it down more quickly than gravity alone would.

"The velocity of a diver just before hitting the water is -10.0 m/s, where the minus sign indicates that her motion is directly downward. What is her displacement during the last 1.16 s of the dive?

Answers

Answer:

Explanation:

Given

velocity of diver [tex]u=-10\ m/s[/tex] i.e. downward motion

acceleration due to gravity [tex]a=g=-9.8\ m/s^2[/tex]

time [tex]t=1.16\ s[/tex]

using equation of motion

[tex]y=ut+\frac{1}{2}at^2[/tex]

[tex]y=(-10)\cdot 1.16-\frac{1}{2}(-9.8)(1.16)^2[/tex]

[tex]y=-11.6-6.593[/tex]

[tex]y=-18.19\ m[/tex]

I.e. in downward direction                    

Final answer:

The displacement of the diver during the last 1.16 seconds of her dive is -11.6 meters. The negative sign indicates a downward movement.

Explanation:

In physics, displacement is the overall change in position of an object. It is calculated by multiplying velocity and time. In this case, the velocity of the diver is -10.0 m/s (a negative sign indicating downward motion) and the time is 1.16 s. To find the displacement, multiply the velocity and the time: (-10.0 m/s) × (1.16 s) = -11.6 m. The minus sign still indicates downward direction, and it means that the diver moved 11.6 meters downward in the last 1.16 seconds of her dive.

Learn more about displacement here:

https://brainly.com/question/33459975

#SPJ3

Calculate the number of atoms contained in a cylinder (1 m radiusand1 m deep)of (a) magnesium (b) lead.

Answers

Answer:

The question is incomplete,below is the complete question

"Calculate the number of atoms contained in a cylinder (1μm radius and 1μm deep)of (a) magnesium (b) lead."

Answer:

a. 1.35*10^{11} atoms

b. 1.03*10^{11} atoms

Explanation:

First, we determine the volume of the magnesium in the cylinder container

using the volume of a cylinder

[tex]V=\pi r^{2}h\\ r=10^{-6}m\\ h=10^{-6}m\\V=\pi *10^{-6*2}*10^{-6}\\V=\pi *10^{-18}\\V=3.14*10^{-18}m^{3}\\[/tex]

a. Next we determine the mass of the magnesium ,

using the density=mass/volume

since density of a magnesium

[tex]the density of magnesium =1.738*10^{3}kg/m^{3} \\mass=density * volume \\mass=1.738*10^{3}*3.14*10^{-18}\\mass=5.46*10^{-15}kg\\ \\mass=5.46*10^{-12}g\\[/tex]

Finally to calculate the number of atoms,

we determine the number of moles

mole=mass/molarmass

[tex]mole=5.46*10^{-12}/ 24.305\\mole=0.225*10^{-12}mol\\[/tex]

Hence the number of atoms is

number of atoms=mole*Avogadro's constant

[tex]number of atoms = 0.225*10^{-12}*6.02*10^{23}\\number of atoms =1.35*10^{11} atoms[/tex]

b. for he lead, we determine the mass of the lead  ,

using the density=mass/volume

since density of a magnesium

[tex]the density of lead =11.34*10^{3}kg/m^{3} \\mass=density * volume \\mass=11.34*10^{3}*3.14*10^{-18}\\mass=35.60*10^{-15}kg\\ \\mass=35.60*10^{-12}g\\[/tex]

Finally to calculate the number of atoms,

we determine the number of moles

mole=mass/molarmass

[tex]mole=35.60*10^{-12}/ 207.2\\mole=0.1718*10^{-12}mol\\[/tex]

Hence the number of atoms is

number of atoms=mole*Avogadro's constant

[tex]number of atoms = 0.1718*10^{-12}*6.02*10^{23}\\number of atoms =1.03*10^{11} atoms[/tex]

A car is accelerated from rest to 85 km/h in 10 s. Would the energy transferred to the car be different if it were accelerated to the same speed in 5 s?

Answers

Final answer:

The energy transferred to the car would be different if it were accelerated to the same speed in a shorter time period.

Explanation:

The energy transferred to the car would indeed be different if it were accelerated to the same speed in 5 seconds instead of 10 seconds. This is because the rate of acceleration affects the amount of energy transferred. In the first scenario, the car would experience a lower rate of acceleration over a longer time period, resulting in a smaller energy transfer. In the second scenario, the car would experience a higher rate of acceleration over a shorter time period, resulting in a larger energy transfer.

Learn more about Energy transfer here:

https://brainly.com/question/32491696

#SPJ3

A projectile thrown from a point P moves in such a way that its distance from P is always increasing. Find the maximum angle above the horizontal with which the projectile could have been thrown. Ignore air resistance.

Answers

Answer

70.52°

Explanation

The distance between projectile's position and it's starting point at any time is given by the relation

r² = x² + y²

where x = horizontal distance covered and y = vertical distance covered

According to projectile motion the horizontal displacement is given by

x = v(x)t = v cos(θ) t

Also the vertical component is given by

y = v(y) t - 0.5gt² = v sin(θ) t - 0.5gt²

Substituting the x and y values into the r-equation yields,

r² = (v cos(θ) t)² + (v sin(θ) t - 0.5gt²)²

r² = v²(cos²(θ))t² + v²(sin²(θ))t² – (vg sin(θ))t³+ 0.25 g²(t^4)

r² = v²t² (cos²(θ)+ sin²(θ)) – (vg sin(θ))t³ + 0.25 g²(t^4)

r² = v²t² – (vg sin(θ))t³ + 0.25 g²(t^4)

Differentiate r with respect to t

r(dr/dt) = 2v²t - 3vg sin(θ)t² + g²t³

At maximum angle the projectile could have been thrown above the horizontal, dr/dt = 0

2v²t - 3vg sin(θ)t² + g²t³ = 0

Divide through by t

2v² - 3vg sin(θ)t + g²t² = 0

g²t² - 3vg sin(θ)t + 2v² = 0

This can be solved using the general law for quadratic equations

(-b ± √(b² - 4ac))2a

a = g², b = -3vg sin(θ) c = 2v²

t = ((3vg sin(θ)) ± √(9v²g²sin²(θ) - 8g²v²))/2g²

This equation makes sense when the value under the square root is positive, that is, the square root exists.

9v²g²sin²(θ) - 8g²v² > 0

9sin²(θ) - 8 > 0

Meaning sin²(θ) = 8/9

Sin θ = (2√2)/3

θ = 70.52°

QED!!!

A submarine periscope uses two totally reflecting 45-45-90 prisms with total internal reflection on the sides adjacent to the 45 degree angles. Explain why the periscope will no longer work if it springs a leak and the bottom prism is covered with water. Note: The index of refraction for water is 1.33. The index of refraction for glass is 1.52

Answers

Answer

Given,

Periscope uses 45-45-90 prisms with total internal reflection adjacent to 45°.

refractive index of water, n_a = 1.33

refractive index of glass, n_g = 1.52

When the light enters the water, water will act as a lens and when we see the object from the periscope the object shown is farther than the usual distance.

Other Questions
Question 5: A recent CNN News survey reported that 76% of adults think the U.S. pennies should still be made. Suppose we select a sample of 20 people. How many of the 20 would you expect to indicate that the Treasury should continue making pennies? What is the standard deviation? What is the likelihood that exactly eight people would indicate the Treasury should continue making pennies? What is the likelihood that 10 to 15 adults would indicate the Treasury should continue making pennies? why did Floridians ask to enter the union as a slave state A potential difference exists between the inner and outer surfaces of the membrane of a cell. The inner surface is negative relative to the outer surface. If 1.35 10 20 J 1.351020 J of work is required to eject a positive sodium ion (Na + ) (Na+) from the interior of the cell, what is the magnitude of the potential difference between the inner and outer surfaces of the cell? Why did English restore the monarchy after the commonwealth? What happened during the restoration? Evaluate expression 15/x for x=3 2. An 82 kg man on a diving board drops from rest 3.0 m above the surface of the waterand he comes to rest 0.55 s after reaching the water. What is the average net force onthe diver as he is brought to rest? Remember to first find the velocity of the man after hefalls 3.0 m off of the diving board. A research project sets out to use large amounts of objective data to describe the rates and averages of several characteristics of a population and the correlations between them. The method it will most likely need to use is _____. a. hypothesis testing b. observation c. quantitative Which of the following best summarizes the relationship between dehydration reactions and hydrolysis?-Dehydration reactions can occur only after hydrolysis.-Dehydration reactions ionize water molecules and add hydroxyl groups to polymers; hydrolysis reactions release hydroxyl groups from polymers.- Dehydration reactions assemble polymers, and hydrolysis reactions break down polymers.-Hydrolysis creates monomers, and dehydration reactions break down polymers.-Dehydration reactions eliminate water from lipid membranes, and hydrolysis makes lipid membranes water permeable. name each ionic compound. In each of these compounds, the metal forms only one type of ion. a)CeCl b)SrBr2 c) K2O d)LiF It usually took josh 2/5 of an hour to ride his bike to work. But on Monday, his bike was broken, so he took the bus to work which took 5/8 of an hour. How much longer was it to take the bus to work? Dr. Martin has just asked a potential client to talk about herself. As she responds, the doctors next question is based on some interesting point the client made. There are few constraints on the conversation. Dr martin has just conducted an There are many misunderstandings about the business cycle and how it can impact an economy. Determine if each of the given statements are true or false. 1. Business cycles can be described as fluctuations from the economy's long-term growth trend. 2. The four phases of business cycles are peaks, troughs, expansions, and recessions. 3. Business cycles are common in emerging economies but not in developed economies. 4. When a business cycle reaches the trough, the economy is usually operating at its capacity. 5. The peak of a business cycle is followed by a downturn or recession. 6. Business cycles last for followed by a downturn or recession approximately nine months. Although Dan has a licensing exam to study for, he does not feel motivated to study. He decides that if he studies for three hours, he will go to his favorite yoga class. Using the terminology related specifically to motivation, which of the following has Dan utilized to motivate himself to study for his license exam The presence of a cancerous mass in a lung is the result ofA. Prolonged exposure to very dry airB. The introduction of chemicals through the skinC. Uncontrolled mitotic division and growth of cellsD. Meiotic cell division Nine members of the drama club are going to New York to see a broadway play as a group. Total cost for tickets, including a $15.00 handling fee, will be no more than $258.00. What is the maximum cost of each ticket? Ben just purchased a new shirt for $27.20 during a 15% off sale what was the original price of the shirt Every year, __________ people die in the United States because they fail to receive the health care that the medical profession knows they need. Select one: a. 7,000 b. 17,000 c. 27,000 d. 57,000 This past year inflation in Snowdonia has increased to 150%. As an economic analyst, you are charged with identifying those sectors of the population worst affected by this inflation event. Which group of people is likely to be worst affected by inflation? A. pensioners drawing from a "defined contribution" retirement plan B. disabled veterans living on fixed (non-adjustable) government transfer payments C. homeowners with a 30 year fixed mortgage What is the product?-84x12-84x2484x1284x24 A food truck operator has traditionally sold 75 bowls of noodle soup each day. He moves to a new location and after a week sees that he has averaged 85 bowls of noodle soup sales each day. He runs a one-sided hypothesis test to determine if his daily sales at the new location have increased. The p-value of the test is 0.031. How should he interpret the p-value? a. There is a 3.1% chance that the true mean of soup sales at the new location is 85 bowls a day. b. There is a 96.9% chance that the true mean of soup sales at the new location is greater than 75 bowls a day. c. There is a 96.9% chance that the sample mean of soup sales at the new location is 85 bowls a day. d. There is a 3.1% chance of obtaining a sample with a mean of 85 or higher assuming that the true mean sales at the new location is still equal to or less than 75 bowls a day. e. There is a 96.9% chance that the true mean of soup sales at the new location is within 3.1 bowls of 85 bowls a day.