At the moment a hot iron rod is plunged into freezing water, the difference between the rod's and the water's temperatures is 100\degree100°100, degree Celsius. This causes the iron to cool and the temperature difference drops by 60\%60%60, percent every second. Write a function that gives the temperature difference in degrees Celsius, D(t)D(t)D, left parenthesis, t, right parenthesis, ttt seconds after the rod was plunged into the water.

Answers

Answer 1

Answer:

[tex]D(t)=100(0.4)^t[/tex]

Step-by-step explanation:

The temp is 100 at time t = 0

After 1 sec, the temp difference would be:

[tex]100-(\frac{100-60}{100})[/tex]

After 2 sec, the temp difference would be:

[tex]100-(\frac{100-60}{100})^2[/tex]

Similarly for 3 seconds, 4 seconds etc.

We notice that the parenthesis part is 40% of it, so we can also write:

100(40%)^t,

where

t is the time

40% can be written as 40/100  = 0.4

SO, the function is:

[tex]d(t)=100(0.4)^t[/tex]

Answer 2

Answer:

[tex]D(t)=100*0.4^t[/tex]

Step-by-step explanation:

Initially, the difference between the rod's and the water's temperatures is 100°

i.e D(t)=100 When t=0

After 1 seconds, the temp drops by 60%.

Therefore, the new value of D will be the old value multiplied by (100-60)%.

D(1)=100 X (100%-60%) = 100*0.4

After 2 seconds, the temp difference would be:

D(2)=100*0.4*0.4= [tex]100*0.4^2[/tex]

We notice that for any t, the percentage at which the difference is reduced is raised to the power of t.

Therefore, temperature difference in degrees Celsius, D(t), t seconds after the rod was plunged into the water is given as:

[tex]D(t)=100*0.4^t[/tex]


Related Questions

The scale on the town map is 1inches = 3miles the distance from dinas home to her school is 0.75 on the map when dina rides her bike from her home to school how many miles does ride?

Answers

Answer:

2.25 miles.

Step-by-step explanation:

Given,

In map, the scale is, 1 inch = 3 miles,

That is, the number of miles in 1 inch = 3,

The number of miles in 0.75 inch = 0.75 × number of miles in 1 inch,

                                                       = 0.75 × 3

                                                       = 2.25

Thus, 0.75 inch = 2.25 miles.

According to the question,

Distance from home to school in scale = 0.75 inch

Hence, the actual distance from home to school is 2.25 miles.

Answer:

2.25

Step-by-step explanation:

Before polling the students in Scion School of Business, a researcher divides all the current students into groups based on their class standing, such as freshman, sophomores, and so on. Then, she randomly draws a sample of 50 students from each of these groups to create a representative sample of the entire student body in the school. Which of the following sampling methods is the researcher practicing? 1. stratified random sampling 2. simple random sampling 3. cluster sampling 4. systematic random sampling 5. snowball sampling

Answers

Answer:

Correct option: 3. Cluster Sampling.

Step-by-step explanation:

Cluster sampling method is the type of sampling where first the entire population is divided into groups and then a random sample of fixed size is selected from each group.

In this case also, the researcher first divides the population of students in Scion School of Business into groups according to their class standing.

Then he selects 50 students from each of these groups to create a representative sample of the entire student body.

Thus, the sampling method used is Cluster Sampling.

A friend tells you to apply for a sales job at a certain company because the mean income of salespeople last year was $47,500. Last year, 6 salespeople earned $33,000, 3 earned $46,000, 2 earned $42,000 and 1 earned $150,000. Would you apply for the job based on what your friend says? Explain in reference to the 3 measures of center.

Answers

Answer:

it depends on if i think i could succeed in tha job

Step-by-step explanation:

Answer:

No

Step-by-step explanation:

Mean is not a good measure of the centre because 150,000 is an outlier

Mode is $33,000

Median is $39,500

[(33000+46000)/2 = 39500]

Calculate the area of the sector

Answers

Answer:

Step-by-step explanation:

1/2 3

Answer: Area of sector = 11.8 square meters

Step-by-step explanation:

The formula for determining the area of a sector is expressed as

Area of sector = θ/360 × πr²

Where

θ represents the central angle.

r represents the radius of the circle.

π is a constant whose value is 3.14

From the information given,

Radius, r = 3 m

θ = 150 degrees

Therefore,

Area of sector = 150/360 × 3.14 × 3²

Area of sector = 11.8 square meters rounded up to the nearest tenth.

Out of 30 states, the three most common insects are Monarch butterflies, honeybees, and ladybugs. The number of Of states that have monarch butterflies as their official insect is one more than the number of states that have ladybugs as their official insect. The number of states that have honeybees as their official insect is three times the number of states with ladybugs as their state insect minus one. How many states have each kind of insect as their state insect?

Answers

There are 7 states with Monarch butterflies, 17 states with honeybees, and 6 states with ladybugs as their official insect.

What is Equation?

Two or more expressions with an Equal sign is called as Equation.

Let us consider  M, H, and L to represent the number of states with Monarch butterflies, honeybees, and ladybugs as their official insect, respectively.

We know that M + H + L = 30, since there are 30 states in total.

From the problem statement, we also know that:

M = L + 1 (1)

H = 3L - 1 (2)

We can use equations (1) and (2) to solve for M, H, and L:

M + H + L = 30

Substituting equation (1) and (2) into this equation:

(L + 1) + (3L - 1) + L = 30

5L = 30

L = 6

So there are 6 states with ladybugs as their official insect. Using equation (1) and (2), we can then find:

M = L + 1 = 7

H = 3L - 1 = 17

Hence,  there are 7 states with Monarch butterflies, 17 states with honeybees, and 6 states with ladybugs as their official insect.

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ2

Final answer:

To solve this problem, assign variables to represent the number of states that have each kind of insect. Use the given information to set up equations and solve simultaneously to find the values of 'm', 'h', and 'l'.

Explanation:

To solve this problem, let's assign variables to represent the number of states that have each kind of insect as their state insect. Let 'm' represent the number of states with Monarch butterflies, 'h' represent the number of states with honeybees, and 'l' represent the number of states with ladybugs as their official insect.

According to the problem, we have the following information:

'm' = 'l' + 1   (The number of states with Monarch butterflies is one more than the number of states with ladybugs)

'h' = 3('l') - 1   (The number of states with honeybees is three times the number of states with ladybugs minus one)

We also know that the total number of states is 30. So we can set up the following equation:

m + h + l = 30

Now, we can solve these equations simultaneously to find the values of 'm', 'h', and 'l'.

Using the first equation, we substitute 'l + 1' for 'm' in the second equation:

h = 3('l') - 1

h = 3(l + 1) - 1

h = 3l + 3 - 1

h = 3l + 2

Now, we substitute 'l + 1' for 'm' and '3l + 2' for 'h' in the third equation:

(l + 1) + (3l + 2) + l = 30

Simplifying the equation:

5l + 3 = 30

5l = 27

l = 5.4

Since 'l' represents the number of states with ladybugs, we can't have a fraction of a state. Therefore, we round 'l' down to the nearest whole number:

l = 5

Substituting this value back into the equations, we find that 'm' = 6 and 'h' = 14.

Therefore, there are 6 states with Monarch butterflies as their official insect, 14 states with honeybees, and 5 states with ladybugs.

What is the center of the circle described by the equation
x^2+4x+y^2-6y=12
(4, -6)
(-4, 6)
(-2, 3)
(2, -3)

Answers

Answer:

The center of the circle is (-2 , 3) 3rd answer

Step-by-step explanation:

The equation of a circle is (x - h)² + (y - k)² = r², where

(h , k) are the coordinates of its centerr is the radius of it

∵ The equation of the circle is x² + 4x + y² - 6y = 12

- Lets make a completing square for x² + 4x

∵ x² = (x)(x)

∵ 4x ÷ 2 = 2x

- That means the second term of the bracket (x + ...)² is 2

∴ The bracket is (x + 2)

∵ (x + 2)² = x² + 4x + 4

∴ We must add 4 and subtract 4 in the equation of the circle

∴ (x² + 4x + 4) - 4 + y² - 6y = 12

Lets make a completing square for y² - 6y

∵ y² = (y)(y)

∵ -6y ÷ 2 = -3y

- That means the second term of the bracket (y + ....) is -3

∴ The bracket is (y - 3)

∵ (y - 3)² = y² - 6y + 9

∴ We must add 9 and subtract 9 in the equation of the circle

∴ (x² + 4x + 4) - 4 + (y² - 6y + 9) - 9= 12

Now lets simplify the equation

∵ (x + 2)² + (y - 3)² - 13 = 12

- Add 13 to both sides

∴ (x + 2)² + (y - 3)² = 25

- Compare it with the form of the equation of the circle to

   find h and k

∵ (x - h)² + (y - k)² = r²

∴ h = -2 and k = 3

The center of the circle is (-2 , 3)

Write a quadratic function in vertex form whose graph has the vertex (5,−2) and passes through the point (7,0).

Answers

The quadratic function in vertex form is [tex]y=\frac{1}{2} (x-5)^{2}-2[/tex].

Solution:

The equation of a quadratic in  vertex form  is [tex]y=a(x-h)^{2}+k[/tex].

where  (h, k) are the coordinates of the vertex and "a"  is a multiplier.

Here (h, k) = (5, –2)

Substitute this in the vertex form.

[tex]y=a(x-5)^{2}+(-2)[/tex]

[tex]y=a(x-5)^{2}-2[/tex] – – – – (1)

Passes through the point (7, 0).

Here x = 7 and y = 0.

Substitute this in equation (1), we get

[tex]0=a(7-5)^{2}-2[/tex]

[tex]0=4a-2[/tex]

Add 2 on both sides.

2 = 4a

Divide 2 on both sides, we get

[tex]$a=\frac{1}{2}[/tex]

Substitute the value of a in equation (1),

[tex]$y=\frac{1}{2} (x-5)^{2}-2[/tex]

The quadratic function in vertex form is [tex]y=\frac{1}{2} (x-5)^{2}-2[/tex].

The manufacturing of semiconductor chips produces 2% defective chips. Assume that the chips are independent and that a lot contains 1000 chips. Approximate the following probabilities: _________.a. More than 25 chips are defective. b. Between 20 and 30 chips are defective.

Answers

Answer:

a) The approximate probability that more than 25 chips are defective is 0.1075.

b)  The approximate probability of having between 20 and 30 defecitve chips is 0.44.

Step-by-step explanation:

Lets call X the total amount of defective chips. X has Binomial distribution with  parameters n=1000, p =0.02. Using the Central Limit Theorem, we can compute approximate probabilities for X using a normal variable with equal mean and standard deviation.

The mean of X is np = 1000*0.2 = 20, and the standard deviation is √np(1-p) = √(20*0.98) = 4.427

We will work with a random variable Y with parameters μ=20, σ=4.427. We will take the standarization of Y, W, given by

[tex] W = \frac{Y-\mu}{\sigma} = \frac{Y-20}{4.427} [/tex]

The values of the cummmulative distribution function of the standard normal random variable W, which we will denote [tex] \phi [/tex] , can be found in the attached file. Now we can compute both probabilities. In order to avoid trouble with integer values, we will correct Y from continuity.

a)

[tex]P(X > 25) = P(X > 25.5) \approx P(Y>25.5) = P(\frac{Y-20}{4.427} > \frac{25.5-20}{4.427}) =\\P(W > 1.2423) = 1-\phi(1.2423) = 1-0.8925 = 0.1075[/tex]

Hence the approximate probability that more than 25 chips are defective is 0.1075.

b)

[tex]P(20<X<30) = P(20.5 < X < 29.5) \approx P(20.5<Y>29.5) = \\P(\frac{20.5-20}{4.427} < \frac{Y-20}{4.427} < \frac{29.5-20}{4.427}) = P(0.1129 < W < 2.14) = \phi(2.14)-\phi(0.1129) = \\0.9838-0.5438 = 0.44[/tex]

As a result, the approximate probability of having between 20 and 30 defecitve chips is 0.44.

Final answer:

To approximate the probabilities of defective chips where 2% are defective from a lot of 1000, the binomial distribution is used, with more complex probability calculations often requiring statistical software. Both (a) more than 25 defective and (b) between 20 and 30 defective scenarios can be estimated using normal approximation due to the large sample size and small defect probability.

Explanation:

To approximate the probability of defective chips in the scenario where 2% of the semiconductor chips produced are defective, we can use the binomial distribution as an approximation because the sample size is large (n=1000) and the probability of a defect (p=0.02) is small.

For part (a), more than 25 chips are defective, we are looking for P(X>25). The calculation for this is more complex and typically done using statistical software or a calculator with binomial capabilities.

For part (b), between 20 and 30 chips are defective, we need to find the probability that X is between 20 and 30 inclusively, or P(20 ≤ X ≤ 30). This requires calculating the cumulative probability for 20 through 30 and then subtracting the lower end from the higher end.

In real-world applications, as the number of trials is large and the probability of success is small, the binomial distribution can be approximated by a normal distribution. The mean (μ) of the distribution is np and the variance (σ2) is np(1-p), which would give us μ = 20 and σ2 = 19.6 for this example. We can then use the standard normal table or a calculator to find the probabilities for parts (a) and (b).

Show that the curve y = 4 x 3 + 7 x − 5 y=4x3+7x-5 has no tangent line with slope 2 2. y = 4 x 3 + 7 x − 5 ⇒ m = y ' = y=4x3+7x-5⇒m=y′= Preview , but x 2 x2 0 0 for all x x, so m ≥ m≥ for all x x.

Answers

Answer:

There is no such point where the given curve has a tangent line with slope 2.

Step-by-step explanation:

We have been given a curve [tex]y=4x^3+7x-5[/tex]. We are asked to show that the given curve has no tangent line with slope 2.

First of all, we will find the derivative of given curve as shown below:

[tex]y'=\frac{d}{dx}(4x^3)+\frac{d}{dx}(7x)-\frac{d}{dx}(5)[/tex]

[tex]y'=4\cdot 3x^{3-1}+7x^{1-1}-0[/tex]

[tex]y'=12x^{2}+7x^{0}[/tex]

[tex]y'=12x^{2}+7(1)[/tex]

[tex]y'=12x^{2}+7[/tex]

We know that derivative represents slope of tangent line, so we will equate derivative of the given curve with 2 and solve for the point (x), where the slope of tangent line will be equal to 2 as:

[tex]12x^2+7=2[/tex]

[tex]12x^2+7-7=2-7[/tex]

[tex]12x^2=-5[/tex]

[tex]x^2=-\frac{5}{12}[/tex]

We know that square of any real number could never be negative, therefore, there is no such point where the given curve has a tangent line with slope 2.

Final answer:

The proof involves finding the derivative of the given curve y = 4x³ + 7x - 5, setting it equal to the desired slope (2), and showing that the resulting equation has no real solutions, proving that no tangent line with slope 2 exists for this curve.

Explanation:

The question is about proving that the curve y = 4x³ + 7x - 5 does not have any tangent line with slope 2. To do this, we first need to find the derivative of the curve, which gives us the slope of the tangent at any point (x). The derivative of y with respect to x is given by y' = 12x² + 7. To determine if a tangent with slope 2 exists, we set the derivative equal to 2 and solve for x: 12x² + 7 = 2.

Solving this equation gives us 12x² = -5, which has no real solution since the left side of the equation (a squared term) cannot be negative. This means there is no value of x for which the slope of the tangent (derivative) is equal to 2, proving that no such tangent line exists for the given curve.

In the year 2000, the population of
Adams County was 60,000 residents.
Each year since, its population has
decreased 0.1%. Predict what the
population of Adams County will be
in the year 2015.



12,353 51,604 or 59,106

Answers

Answer: 59106

Step-by-step explanation:

We would apply the formula for exponential decay which is expressed as

A = P(1 - r)^ t

Where

A represents the population after t years.

t represents the number of years.

P represents the initial population.

r represents rate of growth.

From the information given,

P = 60000

r = 0.1% = 0.1/100 = 0.001

t = 2015 - 2000 = 15 years

Therefore

A = 60000(1 - 0.001)^15

A = 60000(0.999)^15

A = 59106

The predicted population of Adams County in the year 2015 is calculated using the initial population and applying a yearly decrease of 0.1% over 15 years, resulting in approximately 59,106 residents.

The question involves calculating the predicted population of Adams County in the year 2015 based on a yearly decrease of 0.1% from the year 2000.

To find the population in 2015, we need to apply the percentage decrease for each year from 2000 to 2015, which is a total of 15 years. The formula to calculate the population after a certain number of years with a consistent percentage change is: [tex]P = P_0 (1 - r)^t[/tex] where P is the final population, P₀ is the initial population, r is the rate of decrease, and t is the number of years.

Using the given data, P0 = 60,000, r = 0.001 (0.1% expressed as a decimal), and t = 15 years.

So, the calculation will be: P = 60,000 (1 - 0.001)¹⁵ = 60,000 (0.999)¹⁵ = 60,000 (0.985075) ≈ 59,106

Therefore, the predicted population of Adams County in the year 2015 is approximately 59,106 residents.

A firm offers routine physical examinations as part of a health service program for its employees. The exams showed that 8% of the employees needed corrective shoes, 15% needed major dental work, and 3% needed both corrective shoes and major dental work. What is the probability that an employee selected at random will need either corrective shoes or major dental work

Answers

Answer: 0.206

Step-by-step explanation: the probability of employees that needs corrective shoes are =8%= 8/100 = 0.08

Probability of employees that needs major dental work = 15% = 15/100 = 0.15

Probability of employees that needs both corrective shoes and dental work = 3% = 3/100 = 0.03

The probability that an employee will need either corrective shoes or major dental work = (Probability an employee will need correct shoes and not need dental work) or (probability that an employee will need dental work or not corrective shoes)

Probability of employee not needing corrective shoes = 1 - 0.08 = 0.92

Probability of employee not needing dental work = 1 - 0.15 = 0.85

The probability that an employee will need either corrective shoes or major dental work = (0.08×0.85) + (0.15×0.92) = 0.068 + 0.138 = 0.206 = 20.6%

The probability that an employee will need either corrective shoes or dental work = 0.206.

Please note that the word "either" implies that we must choose one of the two options (corrective shoes or dental work) and not both.

The  probability that an employee selected at random will need either corrective shoes or major dental work is 0.206.

Calculation of the probability:

Since

The exams showed that 8% of the employees needed corrective shoes, 15% needed major dental work, and 3% needed both corrective shoes and major dental work.

So,

Probability of employee not needing corrective shoes should be

= 1 - 0.08

= 0.92

And,

Probability of employee not needing dental work should be

= 1 - 0.15

= 0.85

So final probability should be

= (0.08×0.85) + (0.15×0.92)

= 0.068 + 0.138 = 0.206

= 20.6%

hence, The  probability that an employee selected at random will need either corrective shoes or major dental work is 0.206.

Learn more about probability here; https://brainly.com/question/24442276

Which set of ordered pairs represents a function? A {(22, 5), (23, 10), (22, 7), (23, 5)} B {(22, 5), (26, 10), (23, 7), (23, 5)} C {(22, 10), (23, 10), (24, 7), (25, 5)} D {(24, 10), (23, 6), (22, 7), (24, 5)}

Answers

Answer:

C

Step-by-step explanation:

A function is a special kind of relation in which each valid input gives exactly one output.

C {(22, 10), (23, 10), (24, 7), (25, 5)}

So C is the correct option.

What is the answer for number 10? please explain step by step

Answers

hope it helps you!!!!!

Spinning a roulette wheel 6 times, keeping track of the occurrences of a winning number of "16".
a. Not binomial: there are more than two outcomes for each trial.
b. Procedure results in a binomial distribution.
c. Not binomial: the trials are not independent.
d. Not binomial: there are too many trials.

Answers

Answer:

Correct option is b. Procedure results in a binomial distribution.

Step-by-step explanation:

Consider that X is Binomial random variable. The properties that are satisfied by X are:

There are n independent trials.Each trial has only two outcomes: Success & Failure.Each trial has the same probability of success.

Suppose a roulette wheel is spun and the number of times the ball lands on '16' is observed.

If the random variable X is defined as the number of times the ball lands on '16', then the random variable X follows a Binomial distribution.

Because,

Each spin is independent of each otherSuccess: The ball lands on '16'Failure: The ball does not lands on '16'The probability of the ball landing on '16' is [tex]\frac{1}{37}[/tex] for each trial.

Thus, the correct option is b. Procedure results in a binomial distribution.

Ms.Lopez has created a floor plan of a dollhouse. The area of the entire dollhouse is 576 square inches

Answers

Answer:

(a)Area of the bedroom=96 square inches

(b)Area of the living room =144 square inches

(c)Area of the dollhouse that is not of the bedroom or living room =336 square inches.

Step-by-step explanation:

The area of the bedroom is 1/6 the area of the entire dollhouse

The area of the living room is 3/2 times the area of the bedroom.

The area of the entire dollhouse is 576 square inches

Let the area of bedroom=b

Let the area of living room=l

(a) The area of the bedroom is 1/6 the area of the entire dollhouse

[tex]b=\frac{1}{6}X576=96[/tex] square inches

(b)The area, in square inches, of the living room

The area of the living room is 3/2 times the area of the bedroom

l= [tex]\frac{3}{2}X96=144[/tex] square inches

(c)The total area of the house =576 square inches

Area of the bedroom=96 square inches

Area of the living room =144 square inches

Area of the dollhouse that is not of the bedroom or living room

=576-(96+144)=576-240=336 square inches.

The area of the living room is 3/2 times the area of the bedroom

This is gotten by subtracting the area of the bedroom and living room from the total area of the house.

If the median of a negatively skewed distribution is 31, which value could be the mean of the distribution?
A. 33
B. 36
C. 31
D. 28

Answers

Answer:

D. 28

Step-by-step explanation:

If a distribution is negatively skewed, the mean of the distribution is always less than the median.

If the median of a negatively skewed distribution is 31, then from the given options, the only value that is less than 31 is 28.

Therefore the mean could be 28.

The correct answer is D

Employees at Driscoll's Electronics as a base salary plus a 20% Commission on their total sales for the year. Suppose. The base salary is $40,000.

a. Write an equation to represent the total earnings of an employee. Remember to define your variable(s).

b. Stewart wants to make $65,000 this year. How much?must he make in sales?to achieve this salary? Write and solve an equation to answer this question.

c. Describe the equation 52,000 + 0.3s = 82,000 in terms of the problem situation.​

Answers

Answer:

Step-by-step explanation:

Let x represent the total sales made in a year.

Employees at Driscoll's Electronics as a base salary plus a 20% Commission on their total sales for the year. If the base salary is $40,000, it means that if the employee makes a total sales of $x in a year, the total equation to represent earnings would be

0.2x + 40000

b) if Stewart wants to make $65,000 this year, it means that

0.2x + 40000 = 65000

0.2x = 65000 - 40000

0.2x = 25000

x = 25000/0.2

x = 125000

c) 52,000 + 0.3s = 82,000

The base salary is $52000

The percentage of commission from sales is 30%

Statistics!! Please help, 10 points and brainliest!


1. You are comparing the heights of contemporary males and eighteenth-century males. The sample mean for a sample of 30 contemporary males is 70.1 inches with a sample standard deviation of 2.52 inches. The sample mean for eighteenth-century males was 65.2 inches with a sample standard deviation of 3.51 inches. Is there sufficient data to conclude that contemporary males are taller than eighteenth-century males?

A. The p-value is less than 0.00001. There is insufficient data to reject the null hypothesis.

B. The p-value is greater than 0.00001. There is sufficient data to reject the null hypothesis.

C. The p-value is greater than 0.00001. There is insufficient data to reject the null hypothesis.

D. The p-value is less than 0.00001. There is sufficient data to reject the null hypothesis.

Answers

Answer:

[tex]t=\frac{70.1-65.2}{\frac{2.52}{\sqrt{30}}}=10.65[/tex]    

[tex]p_v =P(t_{(29)}>10.65)=7.76x10^{-12}[/tex]  

And the best conclusion for this case would be:

D. The p-value is less than 0.00001. There is sufficient data to reject the null hypothesis.

Step-by-step explanation:

Data given and notation  

[tex]\bar X=70.1[/tex] represent the sample mean

[tex]\sigma=2.52[/tex] represent the population standard deviation  

[tex]n=30[/tex] sample size  

[tex]\mu_o =65.2[/tex] represent the value that we want to test

[tex]\alpha[/tex] represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the mean is higher than 65.2, the system of hypothesis would be:  

Null hypothesis:[tex]\mu \leq 65.2[/tex]  

Alternative hypothesis:[tex]\mu > 65.2[/tex]  

If we analyze the size for the sample is = 30 but we don't know the population deviation so is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic

We can replace in formula (1) the info given like this:  

[tex]t=\frac{70.1-65.2}{\frac{2.52}{\sqrt{30}}}=10.65[/tex]    

P-value

The first step is calculate the degrees of freedom, on this case:  

[tex]df=n-1=30-1=29[/tex]  

Since is a one side right tailed test the p value would be:  

[tex]p_v =P(t_{(29)}>10.65)=7.76x10^{-12}[/tex]  

And the best conclusion for this case would be:

D. The p-value is less than 0.00001. There is sufficient data to reject the null hypothesis.

The correct option is D. The p-value is less than [tex]0.00001.[/tex] There is sufficient data to reject the null hypothesis.

Hypotheses:

Null hypothesis [tex](\(H_0\)): \(\mu_1 = \mu_2\)[/tex] (the mean height of contemporary males is equal to the mean height of eighteenth-century males)

Alternative hypothesis [tex](\(H_1\)): \(\mu_1 > \mu_2\)[/tex] (the mean height of contemporary males is greater than the mean height of eighteenth-century males)

Given Data:

Sample mean for contemporary males [tex](\(\bar{x}_1\)) = 70.1 inches[/tex]

Sample standard deviation for contemporary males [tex](\(s_1\)) = 2.52 inches[/tex]

Sample size for contemporary males [tex](\(n_1\)) = 30[/tex]

Sample mean for eighteenth-century males [tex](\(\bar{x}_2\)) = 65.2 inches[/tex]

Sample standard deviation for eighteenth-century males [tex](\(s_2\)) = 3.51\ inches[/tex]

Sample size for eighteenth-century males [tex](\(n_2\)) = 30[/tex]

Test Statistic:

We use a two-sample t-test for the difference of means:

[tex]\[t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}\][/tex]

Substituting the given values:

[tex]\[t = \frac{70.1 - 65.2}{\sqrt{\frac{2.52^2}{30} + \frac{3.51^2}{30}}}\][/tex]

First, calculate the variances and their respective terms:

[tex]\[s_1^2 = 2.52^2 = 6.3504, \quad s_2^2 = 3.51^2 = 12.3201\][/tex]

[tex]\[\frac{s_1^2}{n_1} = \frac{6.3504}{30} = 0.21168, \quad \frac{s_2^2}{n_2} = \frac{12.3201}{30} = 0.41067\][/tex]

[tex]\[\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{0.21168 + 0.41067} = \sqrt{0.62235} = 0.7889\][/tex]

Now calculate the t-value:

[tex]\[t = \frac{70.1 - 65.2}{0.7889} = \frac{4.9}{0.7889} = 6.21\][/tex]

Degrees of Freedom:

Since the sample sizes are the same, we can use the following approximation for degrees of freedom [tex]df[/tex]

[tex]\[df = n_1 + n_2 - 2 = 30 + 30 - 2 = 58\][/tex]

P-value:

Using a t-distribution table or a calculator for a one-tailed test with [tex]58[/tex] degrees of freedom, we find that a t-value of [tex]6.21[/tex] corresponds to a p-value much less than [tex]0.00001.[/tex]

Find the probability of winning second prize (that is, picking five of the six winning numbers) with a 6/44 lottery, as played in Connecticut, Missouri, Oregon, and Virginia. (Round the answer to five decimal places.)

Answers

Answer:

The answer to the question is

The probability of winning second prize (that is, picking five of the six winning numbers) with a 6/44 lottery, as played in Connecticut, Missouri, Oregon, and Virginia is 3.49905×10⁻⁵≡ 0.00003 to five decimal places.

Step-by-step explanation:

The probability of winning the second prize or picking five of the six winning numbers) with a 6/44 lottery is given by

Number of 5 sets of numbers in 44 = ₄₄C₅ = 1086008 ways

Number of 5 set of winning numbers in 44 = 1

Number of ways of picking the last number to make it 6 numbers is given by

44 - 5 lucky numbers - The 1 winning number = 38

Therefore, there are 38 ways from 1086008 of selecting the 5 second place winning numbers

Therefore the probability of picking the 5 second place winning numbers is [tex]\frac{38}{1086008}[/tex] = 3.49905×10⁻⁵

Most major airlines allow passengers to carry two pieces of luggage (of a certain maximum size) onto the plane. However, their studies show that the more carry-on baggage passengers have, the longer it takes to unload and load passengers. One regional airline is considering changing its policy to allow only one carry-on per passenger. Before doing so, it decided to collect some data. Specifically, a random sample of 1,000 passengers was selected. The passengers were observed, and the number of bags carried on the plane was noted. Out of the 1,000 passengers, 345 had more than one bag.
The domestic version of Boeing's 747 has a capacity for 568 passengers. Determine an interval estimate of the number of passengers that you would expect to carry more than one piece of luggage on the plane. Assume the plane is at its passenger capacity.
a) (171.651, 216.214)
b) (181.514, 208.313)
c) (174.412, 217.218)
d) (179.20, 212.716)

Answers

Answer:

The correct option is

d) (179.20, 212.716)

Step-by-step explanation:

We have out of a random sample of 1000, 345 carried more than a bag

Therefore in the question our X = 345 passengers carry more than a piece of luggage

n = 1000

Therefore the probability of a passenger carrying more than one luggage = 345/1000 = 0.345

The confidence interval estimator of p is given by

[tex]p'+/-z_{\alpha/2}\sqrt{\frac{p'(1-p')}{n} }[/tex] where p' = 0.345 = probability of desired outcome

n = 1000 = Population size

z at 95 %   = Confidence interval estimate, the value is sought from the distribution table as z value is 1.96 at 95 % confidence level

We have  [tex]0.345+/-1.96\sqrt{\frac{0.345*(0.655)}{1000} }[/tex] which gives

0.3745 or 0.3155

Which gives the range of confidential interval estimate as

212.695 to 179.224 which is equivalent to

d) (179.20, 212.716).

Final answer:

To determine the interval estimate of the number of passengers carrying more than one piece of luggage on the plane, we use the formula for the confidence interval for a proportion. The interval estimate is (0.3132, 0.3768), so we can expect the number to be between 313 and 377 passengers.

Explanation:

To determine the interval estimate of the number of passengers that you would expect to carry more than one piece of luggage on the plane, we can use the formula for the confidence interval for a proportion. First, we calculate the sample proportion of passengers carrying more than one bag, which is 345/1000 = 0.345. Then, we find the standard error using SE = sqrt(p(1-p)/n), where p is the sample proportion and n is the sample size. Substituting the values, we get SE = sqrt(0.345(1-0.345)/1000) = 0.0162.

Next, we find the margin of error by multiplying the standard error by the critical value for the desired level of confidence. Since the problem does not specify a level of confidence, we will use a 95% confidence level, which corresponds to a critical value of 1.96. The margin of error is therefore 1.96 * 0.0162 = 0.0318.

Finally, we construct the confidence interval by subtracting and adding the margin of error from the sample proportion. The interval estimate is given by (0.345 - 0.0318, 0.345 + 0.0318), which simplifies to (0.3132, 0.3768). Therefore, we can expect the number of passengers carrying more than one piece of luggage on the plane to be between 313 and 377.

Learn more about Interval Estimate here:

https://brainly.com/question/32393220

#SPJ3

How many times will the string literal "Hi" appear in the lblMsg control? Dim intCount As Integer Do While intCount > 4 lblMsg.Text = lblMsg.Text & "Hi" & ControlChars.NewLine intCount += 1

Answers

Answer:

0

Step-by-step explanation:

In my opinion, the string won't display because, the intCount was not initialized before you started outputting the "Hi" string. So in order fro you to get the string to appear, the control point or value has to be initialized to maybe 0. then you can start looping from there. And if you are looping from the top or using greater than (>), The loop works best buy subtracting the control value else, you can end up with infinity loop.

Which of the following are ordered pairs for the equation y = 2x - 3?


(0,-3) (1,-1) (2,1)


(-3,0) (-2,2) (-1,4)


(0,-3) (2,-2) (4,-1)


(-3,0) (-1,1) (1,2)

Answers

Answer:

A.

Step-by-step explanation:

The problem states that -3 is our y-intercept, so (0,-3) must be one of the answer choices. Next, just graph the equation to find the other two coordinate pairs are (1,-1) and (2,1).

A would be the answer

Most major airlines allow passengers to carry two pieces of luggage (of a certain maximum size) onto the plane. However, their studies show that the more carry-on baggage passengers have, the longer it takes to unload and load passengers. One regional airline is considering changing its policy to allow only one carry-on per passenger. Before doing so, it decided to collect some data. Specifically, a random sample of 1,000 passengers was selected. The passengers were observed, and the number of bags carried on the plane was noted. Out of the 1,000 passengers, 345 had more than one bag.
The domestic version of Boeing's 747 has a capacity for 568 passengers. Determine an interval estimate of the number of passengers that you would expect to carry more than one piece of luggage on the plane. Assume the plane is at its passenger capacity.
a) (171.651, 216.214)
b) (181.514, 208.313)
c) (174.412, 217.218)
d) (179.20, 212.716)

Answers

Answer:

d) (179.20, 212.716)

Step-by-step explanation:

1000 : 345

569 : 195.96

Midpoint of (179.20, 212.716) is 195.958 which is the closest to 195.96

Final answer:

The interval estimate for passengers expected to carry more than one piece of luggage on a full Boeing 747 is (179.20, 212.716), calculated using the sample proportion and the standard error for a 95% confidence interval.

Explanation:

To determine an interval estimate of the number of passengers that would be expected to carry more than one piece of luggage on a domestic Boeing 747 with a capacity of 568 passengers, we use the sample proportion of passengers with more than one bag from the given sample, which is 345 out of 1000 passengers. This sample proportion, denoted as p-hat, is 0.345. We will use this proportion to estimate the population proportion in the domestic Boeing 747, assuming the plane is at full capacity.

We can calculate the estimated number of passengers by multiplying the proportion (p-hat) by the capacity of the plane. For a Boeing 747 with 568 passengers, this would be 0.345 * 568. To build an interval estimate, we also need to calculate the standard error (SE) of the proportion which is given by the formula SE = sqrt(p-hat*(1-p-hat)/n), where 'n' is the sample size. With a sample size of 1000, the SE can be calculated and then used to construct the 95% confidence interval using the Z-score for 95% confidence (approximately 1.96).

After calculating the interval estimate, we find that the confidence interval falls within one of the options provided. The correct interval estimate of the number of passengers expected to carry more than one piece of luggage on the plane, assuming it's full, would be (179.20, 212.716), which corresponds to option d.

There were 90 days in the first semester of Margaret’s school year. If she brought her lunch to school 30% of the time, how many days did she bring her lunch during the first semester?There were 90 days in the first semester of Margaret’s school year. If she brought her lunch to school 30% of the time, how many days did she bring her lunch during the first semester?

Answers

Answer:

27 days

Step-by-step explanation:

There is a total of 90 days in the semester, and she bought lunch 30% of the total days, then the total number of days she brought the lunch is 27 days.

What is the Percentage?

The Latin term "per centum," which signifies "by the hundredth," was the source of the English word "percentage." Segments with a denominator of 100 are considered percentages. In other terms, it is a relationship where the worth of the entire is always considered to be 100.

As per the information provided in the question,

Total days in the semester = 90

Margaret comes with lunch, 30% of the total days.

So, in total days, Margaret comes with lunch,

D = 90 × 30/100

D = 2700/100

D = 27 days.

To know more about percentages:

https://brainly.com/question/29306119

#SPJ5

Solve -1 4/5 x = 9.

5

-5
-

Answers

Answer:

C) -5

Step-by-step explanation:

-1 4/5 x= 9.

Change the left side to an improper fraction

(5*1+4)/5 = 9/5

-9/5 x =9

Multiply each side by -5/9 to isolate x

-5/9 * 9/5x = 9 * (-5/9)

x = -5

Answer:

x=-5

Step-by-step explanation:

-1 4/5x=9

-9/5x=9

-9x=9*5

-9x=45

x=45/(-9)

x=-5

Alice and Bob race two toy trains around a circular track. The trains move in the same direction and they meet every 120 seconds. If Alice's and Bob's toy trains move in opposite directions, at constant rates, they meet every 30 seconds. If the track is 1800 m long, what is the speed of each toy train?

Answers

Answer:

Step-by-step explanation:

Given that Alice and Bob race two toy trains around a circular track. The trains move in the same direction and they meet every 120 seconds. If Alice's and Bob's toy trains move in opposite directions, at constant rates, they meet every 30 seconds

Circular track is 1800 m.

Let speed be x and y respectively

When in same direction relative speed = x-y and when in opposite directions =x+y

30(x+y) = 1800

x+y= 60

120(x-y) = 1800

x-y = 15

Solving x = 37.5 m/hr and y = 12.5 per hour.

Final answer:

When Alice and Bob's toy trains move in the same direction, their relative speed is the sum of their individual speeds. When they move in opposite directions, their relative speed is the difference between their individual speeds. By solving simultaneous equations, we find that Alice's toy train has a speed of 75 m/s and Bob's toy train has a speed of 60 m/s.

Explanation:

Let's assume the speed of Alice's toy train is x m/s and the speed of Bob's toy train is y m/s.

When the trains move in the same direction, they meet every 120 seconds. Since they meet once every 30 seconds when moving in opposite directions, their relative speed is the sum of their individual speeds. So, when they move in the same direction, their relative speed will be x + y and when they move in opposite directions, their relative speed will be x - y.

When they move in the same direction, the distance covered by Alice's toy train in 120 seconds will be equal to the distance covered by Bob's toy train in 120 seconds, which is equal to the length of the circular track (1800 m). So, the equation can be written as:

x × 120 = y × 120 = 1800

Simplifying the equation, we get:

x + y = 1800/120 = 15

Similarly, when they move in opposite directions, the distance covered by Alice's toy train in 30 seconds will be equal to the distance covered by Bob's toy train in 30 seconds:

x × 30 = y × 30 = 1800

Simplifying the equation, we get:

x - y = 1800/30 = 60

Solving the equations simultaneously, we find that x = 75 m/s and y = -60 m/s. Since speed is always positive, we consider the magnitude of the velocity. Therefore, the speed of Alice's toy train is 75 m/s and the speed of Bob's toy train is 60 m/s.

A differentiable function f(x,y)f(x,y) has the property that f(2,5)=5f(2,5)=5 and fx(2,5)=−7fx(2,5)=−7 and fy(2,5)=7fy(2,5)=7. Find the equation of the tangent plane at the point on the surface z=f(x,y)z=f(x,y) where x=2x=2, y=5y=5.

Answers

Answer:

  -7x +7y -z = 16

Step-by-step explanation:

We can define the function ...

  F(x, y, z) = f(x, y) -z

and differentiate at the point (x, y, z) = (2, 5, 5) to get ...

  fx(2, 5, 5) = -7 . . . . given

  fy(2, 5, 5) = 7 . . . . given

  fz(2, 5, 5) = -1 . . . . partial derivative of the above equation

Then the equation of the plane can be written as ...

  fx(x -2) +fy(y -5) +fz(z -5) = 0

  -7(x -2) +7(y -5) -1(z -5) = 0 . . . . . substitute for fx, fy, fz

  -7x +14 +7y -35 -z +5 = 0 . . . . . eliminate parentheses

  -7x +7y -z = 16 . . . . equation of the tangent plane

John Worker had $31,000 in taxable income. What was his tax?

Answers

Final answer:

To calculate John Worker's tax, we need to use the tax rate schedule. Assuming the taxable income is $31,000, we can refer to the tax rate schedule to determine the tax. If the tax rate for the income range $30,001 to $40,000 is 20%, then John Worker's tax would be 20% of his taxable income of $31,000, which equals $6,200.

Explanation:

To calculate John Worker's tax, we need to use the tax rate schedule. Assuming the taxable income is $31,000, we can refer to the tax rate schedule to determine the tax.

From the given information, we don't have the specific tax rate for $31,000. However, we can use the tax rates provided in the table to calculate the tax.

For example, if the tax rate for the income range $30,001 to $40,000 is 20%, then John Worker's tax would be 20% of his taxable income of $31,000, which equals $6,200.

A school is putting on a play. On the first night of the play, twice as many adults attended the lay as students. Students tickets cost $3 and adults tickets cost $5. The total amount of money earned from tickets sales was $1,131. Write a system of equations that represent this situation.

Answers

Answer:

x+2x+$3+$5=$1131

Step-by-step explanation:

Take students to be x then the adults be 2x and the dollars being played and the total money.Then you will take the $3+$8 and subtract from $1131 dollars then you'll get x

Answer: The system of equations that represent this situation is

x = 2y

5x + 3y = 1131

Step-by-step explanation:

Let x represent the number of adult tickets sold on the first night of the play.

Let y represent the number of student tickets sold on the first night of the play.

On the first night of the play, twice as many adults attended the play as students. This means that

x = 2y

Students tickets cost $3 and adults tickets cost $5. The total amount of money earned from tickets sales was $1,131. This means that

5x + 3y = 1131- - - - - - - - - 1

What is the rate of change in the y-values with respect to the x-values?

Answers

Answer:

The answer to your question is the last option

Step-by-step explanation:

Process

1.- To calculate the rate of change, calculate slope

Formula

             m = (y2 - y1) / (x2 - x1)

x1 = 1           y1 = 1200

x2 = 2         y2 = 2400

2.- Substitution

             m = (2400 - 1200) / (2 - 1)

3.- Simplification

             m = 1200 / 1

4.- Result

             m = 1200 meters / minute

Answer:

(d) 1200 Meters per minute

Step-by-step explanation:

Other Questions
In a Millikan oil-drop experiment, a uniform electric field of 5.71 x 10^5 N/C is maintained in the region between two plates separated by 6.49 cm. Find the potential difference (in V) between the plates. Tori has been a personal secretary for the Governor for the past three years. During this time, Tori has observed what he considers to be insincerity on the part of the Governor with regards to interest in social causes. Tori has seen money that was to go to schools and children's hospitals questionably disappear. The Governor is more interested in spending the federal government's money for his own agenda than for helping people. Tori reasons, "The public has a right to be treated fairly. He is violating the rights of these children. I need to gather more information and, if I am right, I need to report this behavior." Which philosophy best depicts Tori's reasoning? A bottling company uses a filling machine to fill plastic bottles with a popular cola. The bottles are supposed to contain 300 ml. In fact, the contents vary according to a normal distribution with mean = 298 ml and standard deviation = 3ml. What is the probability that a randomly selected bottle contains less than 295 ml? A spinner has 6 equal sections : purple,yellow,blue,green,orange,and red. What is the probability of landing on a section that is NOT orange (in fraction form) What is happening to the doubled chromosomes in step 3 and 4? The ratio of arc length to circumference is the same as the ratio of What is the area of the largest circular fire that can be made in this fire pit? Use 3.14 for . Round to the nearest square inch.!no absurd answers, please! : ( 1. Dominic Joseph deposits $5,000 in a new savings account at his local bank. The account pays 5.5 percent interest compounded annually. At the end of 6 years, how much will Dominics account be worth? what is the missing cotangent data (cot) in the picture? How many hours will it take for the concentration of methyl isonitrile to drop to 14.0 %% of its initial value? which expression is equivalent to 5^3 select all that applya. 5^7 x 5^-4b. 5^12/5^4c. 5^1 + 5^2d. 5^0 x 5^3e. 5^3 - 5^0 How did the increasing amounts of oxygen in earth atmosphere allow organisms to live on land Can someone help me with this? I dont need an explanation I just need the answer thank you :) Suppose that Japan can produce 5 cars in 8 hours and 15 HD TVs in 10 hours. The US can produce 5 cars in 6 hours and 15 TVs in 5 hours. Explain which country has a comparative advantage in producing cars and which country has a comparative advantage in producing TVs. In your answer, be sure to be very specific as to how you identified the comparative advantage in each country and define how one goes about identifying comparative advantage. Create a Java programming example of passing a name and age to a method. in the Main method, create variables for name and age. use the Scanner class to input the name and then the age. create a method called displayNameAge. pass the name and age to the method. display --"The name is _" -- "The age is ____" from the method. example: -"The name is Tom" "The age is 15" Three hours after going to sleep, Shoshanna's heart rate increases, her breathing becomes more rapid, and her eyes move rapidly under her closed lids. Research suggests that Shoshanna is:________.A) DreamingB) Entering the third stage of sleepC) Ready to sleepwalkD) Exhibiting a sleep spindleE) Experiencing a night terror We would like to use the relation V(t)=I(t)R to find the voltage and current in the circuit as functions of time. To do so, we use the fact that current can be expressed in terms of the voltage. This will produce a differential equation relating the voltage V(t) to its derivative. Rewrite the right-hand side of this relation, replacing I(t) with an expression involving the time derivative of the voltage. Express your answer in terms of dV(t)/dt and quantities given in the problem introduction. Artery disease. An article in the New England Journal of Medicine describes a randomized controlled trial that compared the effects of using a balloon with a special coating in angioplasty (the repair of blood vessels) compared with a standard balloon. According to the article, the study was designed to have power 90%, with a two-sided Type I error of 0.05, to detect a clinically important difference of approximately 17 percentage points in the presence of certain lesions 12 months after surgery.13 What fixed significance level was used in calculating the power? Explain to someone who knows no statistics why power 90% means that the experiment would probably have been significant if there was a difference between the use of the balloon with a special coating compared to the use of the standard balloon. The combustion of glucose is represented by the following balanced equation: C6H12O6+6 O26 H2O+6 CO2. The reaction uses 1 gram of both C6H12O6 and O2. What is the percent yield if 0.45 g of H2O is produced? a 0.558% b 100% c 0.31% d 80% Which country was the last to join the Allied Powers?O Great BritainO FranceUnited StatesO China