As Halley’s comet orbits the sun, its distance from the sun changes dramatically. If the comet’s speed at a distance of 9.8 × 1010 m from the sun is 5.3 × 104 m/s and angular momentum is conserved, what is its speed when it is 3.6 × 1012 m from the sun? Assume the comet can be treated as a point mass. Ignore radial components of momentum

Answers

Answer 1

Answer:

The speed of comet is 1442.77 m/s.

Explanation:

Given that,

Speed of comet's [tex]v_{c}= 5.3\times10^{4}\ m/s[/tex]

Distance from the sun [tex]r_{d}=9.8\times10^{10}\ m[/tex]

Distance [tex]r_{far}=3.6\times10^{12}\ m[/tex]

We need to calculate the speed of comet

Using conservation of angular momentum

[tex]L_{f}=L_{i}[/tex]

[tex]I\omega=I\omega[/tex]

Here. [tex]v = r\omega[/tex]

[tex]\omega=\dfrac{v}{r}[/tex]

[tex]mr_{far}^2\times\dfrac{v_{far}}{r_{far}}=mr_{d}^2\times\dfrac{v_{d}}{r_{d}}[/tex]

[tex]r_{far}\times v_{far}=r_{d}\times v_{d}[/tex]

Put the value into the formula

[tex]3.6\times10^{12}\times v_{far}=9.8\times10^{10}\times5.3\times10^{4}[/tex]

[tex]v_{far}=\dfrac{9.8\times10^{10}\times5.3\times10^{4}}{3.6\times10^{12}}[/tex]

[tex]v_{far}=1442.77\ m/s[/tex]

Hence, The speed of comet is 1442.77 m/s.

Answer 2

Final answer:

The speed of Halley's comet when it is 3.6 x 10^12 m away from the sun can be found using the conservation of angular momentum, resulting in a speed of 1.44 x 10^3 m/s.

Explanation:

To find the speed of Halley's comet at a distance of 3.6 × 1012 m from the sun, we will use the conservation of angular momentum. The orbital momentum of an object around the sun is given by L = mrv, where m is the mass of the comet, r is the radius of the orbit (distance from the sun), and v is the velocity of the comet along that radius.

We are given the comet's speed at a distance of 9.8 × 1010 m is 5.3 × 104 m/s. When the comet is at a distance of 3.6 × 1012 m from the sun, we want to find its new speed, v'. Because angular momentum is conserved, the initial and final angular momentum should be equal:

L initial = L final
m r v = m r' v'

Since the mass of the comet, m, cancels out, we are left with:

r v = r' v'

Plugging in the known values, we get:

9.8 × 1010 m × 5.3 × 104 m/s = 3.6 × 1012 m × v'

Therefore:

v' = (9.8 × 1010 × 5.3 × 104) / (3.6 × 1012)

v' = 1.44 × 103 m/s

The speed of Halley's comet at a distance of 3.6 × 1012 m from the sun is thus 1.44 × 103 m/s.


Related Questions

If the plane is flying in a horizontal path at an altitude of 98.0 m above the ground and with a speed of 73.0 m/s, at what horizontal distance from the target should the pilot release the canister? Ignore air resistance.

Answers

Explanation:

The given data is as follows.

     height (h) = 98.0 m,     speed (v) = 73.0 m/s,

Formula of height in vertical direction is as follows.

          h = [tex]\frac{gt^{2}}{2}[/tex],

or,      t = [tex]\sqrt{\frac{2h}{g}}[/tex]

Now, formula for the required distance (d) is as follows.

       d = vt

          = [tex]v \sqrt{\frac{2h}{g}}[/tex]  

        = [tex]73.0 m/s \sqrt{\frac{2 \times 98.0 m}{9.8 m/s^{2}}}[/tex]  

          = 326.5 m

Thus, we can conclude that 326.5 m is the horizontal distance from the target from where should the pilot release the canister.

What is the normal condition for atoms? What is an excited atom? What are orbitals?

Answers

An atom in normal conditions refers when electrons are in the fundamental state. When you leave the atom, an electron absorbs energy from an external source and moves to a higher energy state.

Energy states or energy levels are called orbitals. The difference between the energy states in an atom is responsible for the emission of photons when an electron transition occurs between these two energy states.

Because the energy levels are discrete, the emitted photons also possess different energies.

A large box of mass M is pulled across a horizontal, frictionless surface by a horizontal rope with tension T. A small box of mass m sits on top of the large box. The coefficients of static and kinetic friction between the two boxes are μs and μk, respectively.Find an expression for the maximum tension T max for which the small box rides on top of the large box without slipping.

Answers

Answer:

Explanation:

Given

Mass of big box is M and small box is m

Tension T will cause the boxes to accelerate

[tex]T=(M+m)a[/tex]

where a=acceleration of the boxes

Now smaller box will slip over large box if the acceleration force will exceed the static friction

i.e. for limiting value

[tex]\mu _smg=ma[/tex]

[tex]a=\mu _s\cdot g[/tex]

thus maximum tension

[tex]T=\mu _s(M+m)g[/tex]

A firefighting crew uses a water cannon that shoots water at 25.0 m/s at a fixed angle of 53.0° above the horizontal. The fire-fighters want to direct the water at a blaze that is 10.0 m above ground level. How far from the building should they position their cannon? There are two possibilities; can you get them both? (Hint: Start with a sketch showing the trajectory of the water.)

Answers

Final answer:

To find out how far the firefighting crew should position their cannon from the building, we use the equations of projectile motion separately for the vertical and the horizontal components. Since there are two viable times that satisfy the conditions of motion, there are two potential positions of the cannon. This question combines the principles of physics, which are specifically related to projectile motion.

Explanation:

This question is about the physics of projectile motion, specifically under gravity. To find out how far from the building they should position their cannon, we have to deal with the vertical and horizontal components of the projectile motion separately.

First, we determine the time it takes for the water to reach the desired height. We get this by using the equation of motion: H = V*sin(theta)*t - 0.5*g*t^2, where H is the height above the ground level (10m), V is speed (25.0 m/s), sin(theta) is the vertical component of initial velocity, g is acceleration due to gravity (approximated as 10 m/s^2 for ease of calculation), and t is time. We can rearrange this equation to find t.

Next, we use the time obtained and the horizontal component of initial velocity (V*cos(theta)) to find the horizontal distance made by using the equation: s = V*cos(theta)*t.

The hint here is that there are two potential time values, a smaller one and a larger one, leading to two potential distances from the building that the cannon could be positioned. Both times satisfy the conditions of the motion.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ11

The firefighting crew should place their cannon either 8.0 meters or 56.1 meters from the building to reach a blaze 10.0 meters above ground.

To determine how far the firefighting crew should position their cannon, we need to analyze the projectile motion of the water. We'll break this down into x-direction (horizontal) and y-direction (vertical) components.

Step-by-Step Solution

1. Break down initial velocity into components

Initial speed, v₀ = 25.0 m/s

Angle, θ = 53.0°

v₀x = v₀ x cos(θ) = 25.0 x cos(53.0°) ≈ 15.0 m/s

v₀y = v₀ x sin(θ) = 25.0 x sin(53.0°) ≈ 20.0 m/s

2. Write the equations of motion

Vertical (y-direction): y = v₀y x t - 0.5 x g x t²

Given y = 10.0 m, v₀y = 20.0 m/s, g = 9.8 m/s²

Using the quadratic formula, we find the time (t) it takes for the water to reach 10.0 m:

10.0 = 20.0 x t - 0.5 x 9.8 x t²

4.9t² - 20.0t + 10.0 = 0

Solving for t, we get t ≈ 0.54 s or t ≈ 3.74 s

Both times are valid because water can take two paths: one on the way up (0.54 s) and one on the way down (3.74 s).

3. Calculate horizontal distance

Distance (x) = v₀x x t

For t ≈ 0.54 s: x = 15.0 x 0.54 ≈ 8.0 m

For t ≈ 3.74 s: x = 15.0 x 3.74 ≈ 56.1 m

Therefore, the cannon can be placed either 8.0 meters or 56.1 meters from the building.

Quickly spinning the handle of a hand generator, Kevan is able to light three bulbs in a circuit. When he uses two batteries instead of the generator, the bulbs are very dim. Which statement best explains why the batteries are not able to power all three light bulbs like the generator?a. The batteries do not make the charges move as muchb. The generator creates less voltagec. The batteries have higher amperaged. The generator current is more steady

Answers

Final answer:

The batteries do not make the charges move as much as the hand generator. This is because batteries store energy chemically, and depending on their properties, they may not provide enough energy to power all the bulbs in the circuit. In contrast, hand generators can generate a higher voltage due to a greater induced EMF from rapid movement in a magnetic field.

Explanation:

The best explanation for this phenomenon is that 'the batteries do not make the charges move as much' as compared to the hand generator. Hand generators work on the principle of electromagnetic induction where the rapid movement of a coil in a magnetic field can induce a substantial electromotive force (emf). This high emf allows the generator to power more light bulbs in a circuit. This is because the faster the generator is spun, the greater the induced emf, which in turn produces a higher voltage.

On the other hand, the batteries store energy as a chemical reaction waiting to happen, not as electric potential. This reaction only runs when a load is attached to both terminals of the battery. Hence, depending on the energy storage and discharge properties of the battery used, they may not be able to provide enough energy to sufficiently power all the bulbs in a circuit, especially if they are made to power more than one bulb simultaneously. Hence, in the case of the two batteries, they are not able to cause the charges to move as much as the hand generator, and this results in a lower voltage and consequently dimmer lights.

Learn more about Electromagnetic Induction

https://brainly.com/question/32444953

A charge of 12.6 µC is at the geometric center of a cube. What is the electric flux through one of the faces? The permittivity of a vacuum is 8.85419 × 10−12 C 2 /N · m2 . Answer in units of N · m2 /C.

Answers

Final answer:

The electric flux through one of the faces of the cube with the charge at its geometric center can be found using Gauss's Law. The electric flux  enclosed by the surface divided by the permittivity of the medium is 1.424 N·m2/C.

Explanation:

We can use Gauss's Law to determine the electric flux through one of the faces of the cube with the charge at its geometric center. Gauss's Law states that the electric flux through a closed surface is equal to the charge enclosed by that surface divided by the permittivity of the medium.

The charge enclosed by one face of the cube is 12.6 µC. The permittivity of a vacuum is 8.85419 × 10-12 C2/N·m2.

Therefore, the electric flux through one face of the cube is (12.6 µC) / (8.85419 × 10-12 C2/N·m2) = 1.424 N·m2/C.

Learn more about Electric Flux here:

https://brainly.com/question/32826728

#SPJ3

In a single wire, how much current would be required to generate 1 Tesla magnetic field at a 2 meter distance away from the wire?

Answers

Answer:

12.56 A.

Explanation:

The magnetic field of a conductor carrying current is give as

H = I/2πr ............................... Equation 1

Where H = Magnetic Field, I = current, r = distance, and π = pie

Making I the subject of the equation,

I = 2πrH............... Equation 2

Given: H = 1 T, r = 2 m.

Constant: π = 3.14

Substitute into equation 2

I = 2×3.14×2×1

I = 12.56 A.

Hence, the magnetic field = 12.56 A.

A model of a helicopter rotor has four blades, each of length 3.0 m from the central shaft to the blade tip. The model is rotated in a wind tunnel at a rotational speed of 560 rev/min.part A :What is the linear speed of the bladetip?part B :What is the radial acceleration of the bladetip expressed as a multiple of the acceleration of gravity,g?

Answers

Answer with Explanation:

We are given that

r=3 m

Angular frequency=[tex]\omega[/tex]=560rev/min

A.1 revolution=[tex]2\pi[/tex] radian

560 revolutions=[tex]560\times 2\pi[/tex] rad

Angular frequency=[tex]2\times 3.14\times \frac{560}{60}[/tex]rad/s

1 min=60 s

[tex]\pi=3.14[/tex]

Angular frequency=[tex]\omega=58.6rad/s[/tex]

Linear speed=[tex]\omega r[/tex]

Using the formula

Linear speed=[tex]58.6\times 3=175.8m/s[/tex]

Hence, the linear speed of the blade tip=175.8m/s

B.Radial acceleration=[tex]a_{rad}=\frac{v^2}{r}[/tex]

By using the formula

Radial acceleration=[tex]a_{rad}=\frac{(175.8)^2}{3}= 10.301\times 10^3m/s^2[/tex]

Radial acceleration=[tex]\frac{10.301}{9.8}g\times 10^3=1.05\times 10^3 g[/tex]

Where [tex]g=9.8m/s^2[/tex]

Hence, the radial acceleration[tex]=1.05\times 10^3 g[/tex]

A drunken sailor stumbles 600 meters north, 550 meters northeast, then 500 meters northwest. What is the total displacement and the angle of the displacement?

Answers

We will make a graph to better understand the displacement of the individual. From the trigonometric properties we will find the required distances.

[tex]d_1 = \frac{450}{\sqrt{2}} = 318.198[/tex]

[tex]d_2 = \frac{400}{\sqrt{2}} = 282.843[/tex]

[tex]D = 500+d_1+d_2 = 1101.041[/tex]

Displacement ,

[tex]x = \sqrt{1101.041^2+(318.198-282.843)^2}}[/tex]

[tex]x = 1101.608m[/tex]

The angle would be

[tex]\theta = cos^{-1} (\frac{1101.041}{1101.608})[/tex]

[tex]\theta = E 1.838\° N[/tex]

Therefore the displacement was of 1101.608m to a angle of 1.838° from East to North.

Final answer:

The sailor's total displacement is approximately 1118.16 meters, at an angle of approximately 88.13 degrees north of east.

Explanation:

This is a problem of physics specifically in the field of mechanics, about displacement and vectors. To find the total displacement, the directions in which the sailor traveled need to be considered. A north direction has an angle of 90 degrees, northeast is 45 degrees, and northwest is 135 degrees.

Using the Pythagorean theorem and some trigonometry, we can calculate the displacement in the x and y directions. The total displacement in the x direction (East-West) is 550*cos(45) - 500*cos(45) = 35.35 meters (approximately). The total displacement in the y direction (North-South) is 600 + 550*sin(45) + 500*sin(45) = 1116.57 meters (approximately).

The total displacement would then be the square root of (35.35 ^2 + 1116.57 ^2) = 1118.16 meters (approximately).

To find the angle of the displacement, we can use the arctangent function (atan function in most calculators). The angle is atan (1116.57 / 35.35) = 88.13 degrees (approximately).

Therefore, the sailor's total displacement is approximately 1118.16 meters, at an angle of approximately 88.13 degrees north of east.

Learn more about Displacement and Vectors here:

https://brainly.com/question/36266415

#SPJ3

Why did you measure 20 cycles of the pendulum motion to determine the period, rather than just one cycle?

Answers

Final answer:

Measuring 20 cycles of the pendulum motion to determine the period instead of just one cycle allows for a more accurate and representative measurement. By averaging out any errors or variations in the measurement process, the value for the period of the pendulum is more precise. Measuring multiple cycles also helps identify any potential changes in the period over time.

Explanation:

The reason we measure 20 cycles of the pendulum motion to determine the period, rather than just one cycle, is to obtain a more accurate and representative measurement of the period. By measuring multiple cycles, we can average out any errors or variations in the measurement process, resulting in a more precise value for the period of the pendulum.

For example, if we were to measure only one cycle of the pendulum, any small errors in the timing or counting of the cycles could significantly affect our measurement. However, by measuring 20 cycles and then dividing the total time by 20, we can minimize these errors and obtain a more reliable measurement of the period.

Furthermore, measuring multiple cycles allows us to observe any potential changes in the period over time. In certain situations, the period of a pendulum may vary slightly due to factors such as air resistance or changes in the length of the string. By measuring multiple cycles, we can identify and account for any such variations, providing a more comprehensive understanding of the pendulum's behavior.

A bar extends perpendicularly from a vertical wall. The length of the bar is 2 m, and its mass is 10 kg. The free end of the rod is attached to a point on the wall by a light cable, which makes an angle of 30° with the bar. Find the tension in the cable.

Answers

Answer:

T = 98.1 N

Explanation:

Given:

- mass of bar m = 10 kg

- Length of the bar L = 2 m

- Angle between Cable and wall Q = 30 degres

Find:

- Find the tension in the cable.

Solution:

- Take moments about intersection of bar and wall, to be zero (static equilibrium)

                                    (M)_a = 0

                                    T*sin( 30 )*L - m*g*L/2 = 0

                                    T*sin(30) - m*g / 2 = 0

                                    T = m*g / 2*sin(30)

                                    T = 10*9.81 / 2*sin(30)

                                    T = 98.1 N

The efficiency of a squeaky pulley system is 73 percent. The pulleys are usedto raise a mass to a certain height. What force is exerted on the machine if arope is pulled 18.0 m in order to raise a 58 kg mass a height of 3.0 m

Answers

The efficiency of the machine is defined as

[tex]\eta = \frac{W_{out}}{W_{in}}[/tex]

Here

Work out is the work output and Work in is the work input

To find the Work in we have then

[tex]W_{in} = \frac{W_{out}}{\eta}[/tex]

[tex]W_{in} = \frac{mgh}{\eta}[/tex]

Replacing with our values

[tex]W_{in} = \frac{(58)(9.8)(3)}{73\%}[/tex]

[tex]W_{in} = 2335.89J[/tex]

The work done by the applied force is

W = Fd

Here,

F = Force

d = Distnace

Rearranging to find F,

[tex]F = \frac{W}{d}[/tex]

[tex]F = \frac{2335.89J }{18}[/tex]

F = 129.77N

Therefore the force exerted on the machine after rounding off to two significant figures is 130N

Final answer:

The force exerted on the pulley system when a rope is pulled 18.0 m in order to raise a 58 kg mass a height of 3.0 m with an efficiency of 73 percent is about 129.42 Newtons.

Explanation:

To solve this problem, we need to understand the concept of machine efficiency and work. The efficiency of a machine is the ratio of output work to input work.

In this case, the efficiency of the pulley system is given as 73%. Meaning output work is 73% of the input work. The force exerted on the machine is equivalent to the input work divided by the distance pulled.

The output work (W_out) can be determined using the formula W_out = mass * gravity * height = 58 kg * 9.8 m/s^2 * 3.0 m = 1701.6 Joules.

Then, we can find the input work (W_in) using the efficiency formula: W_in = W_out / efficiency = 1701.6 J / 0.73 = 2329.59 Joules.

Finally, we can find the force exerted on the pulley system (F_in) by dividing the input work by the distance pulled: F_in = W_in / distance = 2329.59 J / 18.0 m = 129.42 Newtons.

So, the force exerted on the machine would be approximately 129.42 Newtons.

Learn more about Force in Pulley System here:

https://brainly.com/question/32926125

#SPJ3

A proton with a speed of 3.000×105 m/s has a circular orbit just outside a uniformly charged sphere of radius 7.00 cm. What is the charge on the sphere?

Answers

To solve this problem we will apply the principles of energy conservation. The kinetic energy in the object must be maintained and transformed into the potential electrostatic energy. Therefore mathematically

[tex]KE = PE[/tex]

[tex]\frac{1}{2} mv^2 = \frac{kq_1q_2}{r}[/tex]

Here,

m = mass (At this case of the proton)

v = Velocity

k = Coulomb's constant

[tex]q_{1,2}[/tex] = Charge of each object

r= Distance between them

Rearranging to find the second charge we have that

[tex]q_2 = \frac{\frac{1}{2} mv^2 r}{kq_1}[/tex]

Replacing,

[tex]q_2 = \frac{\frac{1}{2}(1.67*10^{-27})(3*10^5)^2(7*10^{-2})}{(9*10^9)(1.6*10^{-19})}[/tex]

[tex]q_2 = 3.6531nC[/tex]

Therefore the charge on the sphere is 3.6531nC

The thermal conductivity of a sheet of rigid insulation is reported to be 0.029 W/(m·K). The temperature difference across a 20 mm thick sheet of insulation is 10˚C. (a) What is the heat flux through a 2m x 2m sheet of this insulation? (b) What is the total rate of heat transfer through the sheet?

Answers

Answer:

a)[tex]q=14.5\ W/m^2[/tex]

b)Q= 58 W  

Explanation:

Given that

Thermal conductivity ,K = 0.029 W/m.k

The temperature difference ,ΔT= 10°C

The thickness ,L = 20 mm

We know that

[tex]Q=\dfrac{KA}{L}\times \Delta T[/tex]

Now by putting the values

[tex]Q=\dfrac{0.029\times 4}{0.02}\times 10\ W[/tex]

Q= 58 W

The heat flux through the sheet is given as

[tex]q=\dfrac{Q}{A}\ W/m^2[/tex]

[tex]q=\dfrac{58}{2\times 2}\ W/m^2[/tex]

[tex]q=14.5\ W/m^2[/tex]

a)[tex]q=14.5\ W/m^2[/tex]

b)Q= 58 W

A star much cooler than the sun would appear (a) red; (b) blue; (c) smaller; (d) larger.

Answers

Final answer:

A star that is cooler than the sun would appear red (a), because the color of a star is associated with its temperature, according to Wien's Law.

Explanation:

The color of a star is closely related to its temperature. In the case of a star that's cooler than the sun, it would appear (a) red. This is due to a principle in astrophysics known as Wien's Law, which states that the peak wavelength (color) of the light emitted by an object (such as a star) shifts to longer, redder wavelengths as the object gets cooler. So, cool stars like red giants appear red, while hotter stars appear blue or white.

Learn more about Star Colors here:

https://brainly.com/question/33442104

#SPJ6

A fence post is 52.0 m from where you are standing, in a direction 37.0° north of east. A second fence post is due south from you. How far are you from the second post if the distance between the two posts is 68.0° m?

Answers

Final answer:

The distance from the starting point is approximately 26.3 m and the compass direction is 25.3° west of north.

Explanation:

To find the distance between the starting point and the final position, we can use the Pythagorean theorem. We can calculate the distances in the north and west directions using the given lengths and angles. Using the given values, the distance from the starting point is approximately 26.3 m. The compass direction of the line connecting the starting point to the final position is 25.3° west of north.

Final answer:

To find the distance between the starting point and final position, use the Pythagorean theorem. The total distance is approximately 31.3 m. To determine the compass direction, use trigonometry. The compass direction is approximately 36.9° north of west.

Explanation:

To find the distance between your starting point and final position, you can use the Pythagorean theorem. First, calculate the horizontal distance by adding the horizontal components of the two legs of the walk: A = 18.0 m west and B = 0 m south. The horizontal distance is 18.0 m. Then, calculate the vertical distance by summing up the vertical components of the two legs of the walk: A = 0 m north and B = 25.0 m north. The vertical distance is 25.0 m. Apply the Pythagorean theorem to find the total distance by taking the square root of the sum of the squares of the horizontal and vertical distances. The total distance is approximately 31.3 m.

To determine the compass direction of a line connecting your starting point to your final position, you can use trigonometry. First, calculate the angle θ between the horizontal distance (18.0 m) and the hypotenuse (31.3 m). You can use the inverse tangent function: θ = arctan(vertical distance/horizontal distance). Calculate θ to be approximately 53.1°. Since you walked west and then north, the compass direction is 90° less than θ. Therefore, the compass direction is approximately 36.9° north of west.

The wavelength of green light is about the size of an atom. (T/F)

Answers

Explanation:

The wavelength of green light is about 500 nanometers, or two thousandths of a millimeter. The typical wavelength of a microwave oven is about 12 centimeters, which is larger than a baseball.

The statement is falls, because the the wavelength of green light is about 500 nm or 500 × 10⁻⁹ m. But the size of an atom is  about 1.2  × 10⁻¹⁰ m. Hence atomic size not equals the wavelength of green light.

What is wavelength?

The wavelength of an electromagnetic wave is the distance between two consecutive crests or troughs.  The upward peak in the wave is called crests and the downward peaks are called troughs.

The wavelength of high energy waves will be shorter. Visible region is in between IR and UV rays in the electromagnetic spectrum. Green light is in the exact middle region of the VIBGYOR. Thus, it is having a wavelength of 500 -520 nm or  500 × 10⁻⁹ m.

The size of an atom is estimated in the range of 1.2  × 10⁻¹⁰ m and it varies from element to element. However the atomic size is not comparable with the wavelength of green light.

To find more on atomic size, refer here:

https://brainly.com/question/1127028

#SPJ5

A bullet is fired from a rifle that is held 1.60 m above the ground in a horizontal position. The initial speed of the bullet is 1058 m/s. Calculate the time it takes for the bullet to strike the ground.

Answers

Answer:

time takes for the bullet to strike the ground is 0.5711 second

Explanation:

given data

height h = 1.60 m

initial speed u = 1058 m/s

solution

we get here time that is express here as

time = [tex]\sqrt{\frac{2h}{g}}[/tex]     ......................1

put here value and we will get here time that is

time = [tex]\sqrt{\frac{2*1.60}{9.81}}[/tex]

time = 0.5711 second

so time takes for the bullet to strike the ground is 0.5711 second

Final answer:

The time it takes for a bullet to strike the ground when fired horizontally from 1.60 m is calculated using the equation t = √(2h/g). Substitute 1.60 m for h and 9.81 m/s² for g to obtain t ≈ 0.571 seconds.

Explanation:

Calculating the Time for a Bullet to Strike the Ground

To calculate the time it takes for a bullet to strike the ground when fired from a horizontal position 1.60 meters above the ground with an initial speed of 1058 m/s, we can use the equations of motion for uniformly accelerated motion (in this case, the acceleration due to gravity). Since the bullet is fired horizontally, there is no initial vertical velocity component, so the vertical motion can be treated as a free-fall problem.

Using the formula for the time of free fall (t) from a height (h):
t = √(2h/g), where g is the acceleration due to gravity (approximately 9.81 m/s²).

Plugging in the given height of 1.60 m and solving for t gives us:
t = √(2 * 1.60 m / 9.81 m/s²) = √(0.3261 s²) ≈ 0.571 seconds.

Therefore, the bullet will take approximately 0.571 seconds to hit the ground.

A student throws a set of keys vertically upward to her sorority sister, who is in a window 4.00 m above. The keys are caught 1.50 s later by the sister's outstretched hand. (a) With what initial velocity were the keys thrown?(b) What was the velocity of the keys just before they were caught?

Answers

Answer:

a)The keys were thrown with an initial velocity of 10.0 m/s.

b)The velocity of the keys just before they were caught is -4.72 m/s (the keys were caught on their way down).

Explanation:

Hi there!

The equations for the height and velocity of the keys are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h =height of the keys after a time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive)

v = velocity of the keys at time t.

a) We know that at t = 1.50 s, h = 4.00 m and let´s consider that the origin of the frame of reference is located at the point where the keys are thrown so that h0 = 0. Then, using the equation of height, we can obtain the initial velocity.

h = h0 + v0 · t + 1/2 · g · t²

4.00 m = v0 · 1.50 s - 1/2 · 9.81 m/s² · (1.50 s)²

4.00 m + 1/2 · 9.81 m/s² · (1.50 s)² = v0 · 1.50 s

v0 = ( 4.00 m + 1/2 · 9.81 m/s² · (1.50 s)²) / 1.50 s

v0 = 10.0 m/s

The keys were thrown with an initial velocity of 10.0 m/s.

b) Now, using the equation of velocity we can calculate the velocity at t = 1.50 s:

v = v0 + g · t

v = 10.0 m/s - 9.81 m/s² · 1.50 s

v = -4.72 m/s

The velocity of the keys just before they were caught is -4.72 m/s (the keys were caught on their way down).

An electron and a proton are separated by a distance of 1 m. What happens to the size of the force on the first electron if a second electron is placed next to the proton?

Answers

Answer:

The force on the electron will become zero.

Explanation:

As electron has negative charge and proton has positive charge. The magnitude of charge on both particles is equal. Therefore, there will be a force of attraction between electron and proton. When another electron is brought near the proton the net charge in that area will become equal to zero. Therefore, first electron will not experience any force.

Final answer:

The original force between the first electron and proton remains unchanged when a second electron is placed next to the proton, but the first electron will experience an additional repulsive force from the second electron. This alters the net force acting on the first electron but does not directly change the force between it and the proton.

Explanation:

The question inquires about the effect on the force on an electron when a second electron is placed next to a proton, with all particles separated by a distance of 1 meter.

According to Coulomb's Law, which governs the electrostatic force between two charged particles, the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

When a second electron is placed next to the proton, this setup introduces additional forces: a repulsive force between the two electrons and an attractive force between the new electron and the proton.

However, the original question seems to focus on how the force on the first electron changes with this new arrangement. The presence of a second electron does not alter the magnitude of the force between the first electron and the proton directly since the forces here are evaluated pairwise, and the distance between them remains unchanged.

What changes, though, is the overall electrical environment, introducing a new set of forces that need to be considered for the complete system. The addition of the second electron introduces a repulsive force on the first electron, which is separate from but concurrent with the attractive force from the proton.

It is important to consider the net force acting on any charge in such scenarios, which would involve adding vectorially the attractive force from the proton and the repulsive force from the second electron.

Thus, while the force due to the proton-electron pair remains constant, the first electron experiences an additional repulsive force due to the second electron, affecting the net force on it but not the force between it and the proton directly.

An object falls a distance h from rest. If it travels 0.540h in the last 1.00 s, find (a) the time and (b) the height of its fall.

Answers

Answer

given,

distance of fall = h

initial speed = 0 m/s

it travels 0.540 h in the last 1.00 s

Speed of the fall = [tex]\dfrac{Distance}{time}[/tex]

Speed = [tex]\dfrac{0.540\ h-0}{1}[/tex]

S = 0.540h m/s

time of the fall

using equation of motion

v = u + g t

0.540 h = 0 + 9.8 t

t = 0.055h s

The time of fall is equal to 0.055h s

height of fall = ?

again using equation of motion

v² = u² + 2 g s

(0.540h)² = 0 + 2 x 9.8 x s

s = 0.0148 h²

Hence, the time of fall of the object = 0.055h s.

            the distance of fall of object = 0.0148 h²

Final answer:

The object has been falling for a total time of 3.13 seconds and the total height from which it fell is 47.9 meters, given that it covered 0.540 of its total height in the last 1 second of free fall.

Explanation:Solution for Time and Height of a Free-Falling Object

Let's tackle this physics problem step by step to find both the time the object has been falling and the total height from which it fell. We'll use the known acceleration due to gravity (g = 9.81 m/s²) and apply kinematic equations.

Given that the object travels 0.540h in the last 1.00 s, we can set up two equations using the kinematic formula h = ½gt², where h is the height, g is the acceleration due to gravity, and t is the time in seconds:

Total height fallen (h) after time t: h = ½g(t²)Height fallen in the last 1 second (0.540h): 0.540h = ½g(t²) - ½g((t-1)²)

We solve the second equation for t, which will then be used to find the total height using the first equation.

Solving the second equation: 0.540h = ½g(t²) - ½g((t-1)²)

Expand and simplify the equation: 0.540h = ½g(t²) - ½g(t² - 2t + 1)

0.540 = t² - ½g(t² - 2t + 1)

Now, assuming g is approximately 9.8 m/s², we can plug in values and solve for t:

0.540 = t² - 0.5(9.81)(t² - 2t + 1)

After solving for t, we find:

(a) Total time of fall, t = 3.13 s(b) Total height fallen, h = 0.5(9.81)(3.13²) = 47.9 m

This calculation assumes that air resistance is negligible and the acceleration due to gravity is constant.

What is the freezing point of an aqueous solution that boils at 101 degrees C? Kfp = 1.86 K/m and Kbp = 0.512 K/m. Enter your answer to 2 decimal places.

Answers

Answer:

-3.63 degree Celsius

Explanation:

We are given that

Boiling point of solution=[tex]T_b=101^{\circ}[/tex] C

Boiling point water=100 degree Celsius

[tex]K_f=1.86K/m[/tex]

[tex]K_b=0.512 K/m[/tex]

[tex]\Delta T_b=T-T_0[/tex]

Where [tex]T[/tex]=Boiling point of solution

[tex]T_0=[/tex]Boiling point of pure solvent

[tex]\Delta T_b=101-100=1^{\circ}[/tex]C

[tex]\Delta T_b=k_bm[/tex]

Using the formula

[tex]1=0.512\times m[/tex]

Molality,[tex]m=\frac{1}{0.512}[/tex] m

[tex]\Delta T_f=k_fm[/tex]

Using the formula

[tex]\Delta T_f=\frac{1}{0.512}\times 1.86[/tex]

[tex]\Delta T_f=3.63 C[/tex]

We know that

[tex]\Delta T_f=T_0-T_1[/tex]

Where [tex]T_0[/tex] =Freezing point of solvent

[tex]T_1=[/tex] Freezing point of solution

Using the formula

[tex]3.63=0-T_1[/tex]

Freezing point of water=0 degree Celsius

[tex]T_1=0-3.63=-3.63 C[/tex]

Hence, the freezing point of solution=-3.63 degree Celsius

Final answer:

The freezing point of an aqueous solution can be calculated using the freezing point depression equation ΔTf = Kf * m. In this case, the solution boils at 101°C, indicating the boiling point elevation constant (Kb) is provided. Assuming complete dissociation, we can calculate the freezing point depression to be -0.512°C.

Explanation:

The freezing point depression can be calculated by using the equation:

ΔTf = Kf * m

Where ΔTf is the change in freezing point, Kf is the cryoscopic constant, and m is the molality of the solution.

In this case, since we have the boiling point elevation constant (Kb), we need to use the equation:

ΔTf = Kb * m

Given that Kb is 0.512 K/m and assuming complete dissociation, a 1.0 m aqueous solution of a solute will contain 1.0 mol of particles per kilogram of water. Therefore, the freezing point depression (ΔTf) will be:

ΔTf = 0.512 K/m * 1.0 m = 0.512 K

Since the freezing point of pure water is 0°C, the freezing point of the aqueous solution will be:

0°C - 0.512 K = -0.512°C

The diffuser in a jet engine is designed to decrease the kinetic energy of the air entering the engine compressor without any work or heat interactions. Calculate the velocity at the exit of a diffuser when air at 100 kPa and 30°C enters it with a velocity of 350 m/s and the exit state is 200 kPa and 90°C.

Answers

Explanation:

Expression for energy balance is as follows.

        [tex]\Delta E_{system} = E_{in} - E_{out}[/tex]

or,          [tex]E_{in} = E_{out}[/tex]

Therefore,  

         [tex]m(h_{1} \frac{v^{2}_{1}}{2}) = m (h_{2} \frac{V^{2}_{2}}{2})[/tex]

          [tex]h_{1} + \frac{V^{2}_{1}}{2} = h_{2} + \frac{V^{2}_{2}}{2}[/tex]

Hence, expression for exit velocity will be as follows.

           [tex]V_{2} = [V^{2}_{1} + 2(h_{1} - h_{2})^{0.5}[/tex]

                      = [tex]V^{2}_{1} + 2C_{p}(T_{1} - T_{2})]^{0.5}[/tex]

As [tex]C_{p}[/tex] for the given conditions is 1.007 kJ/kg K. Now, putting the given values into the above formula as follows.

       [tex]V_{2} = V^{2}_{1} + 2C_{p}(T_{1} - T_{2})]^{0.5}[/tex]                    

                  = [tex][(350 m/s)^{2} + 2(1.007 kJ/kg K) (30 - 90) K \frac{1000 m^{2}/s^{2}}{1 kJ/kg}]^{0.5}[/tex]

                 = 40.7 m/s

Thus, we can conclude that velocity at the exit of a diffuser under given conditions is 40.7 m/s.

You and your roommate are moving to a city360 mi away. Your roommate drives a rental truck at a constant 50 mi/h , and you drive your car at 60 mi/h . The two of you begin the trip at the same instant. An hour after leaving, you decide to take a short break at a rest stop

If you are planning to arrive at your destination a half hour before your roommate gets there, how long can you stay at the rest stop before resuming your drive?

Answers

Answer:

42 minutes

Explanation:

First, let us find out the time required by the roommate, who is driving the truck, to reach the city.

We know that,

[tex]time=\frac{distance}{speed} =\frac{360}{50} hrs=7.2hrs[/tex]

Now, you are planning to rest a bit after traveling for an hour. So,

distance covered in that 1 hour = [tex]60mi/h\times1h=60 miles[/tex]

time required by you to cover the total distance = [tex]\frac{360mi}{60mi/h} =6hours[/tex]

If you wish reach at the destination half an hour (0.5 h) before your roommate, you can expend a total of [tex]7.2-0.5=6.7hours[/tex] throughout your journey.

Hence, you can rest for  [tex]6.7-6=0.7hours=(0.7\times60)minutes=42minutes[/tex]

Final answer:

After driving 60 miles in the first hour and intending to arrive half an hour before your roommate who travels at 50 mph, you can afford a break time of 30 minutes at the rest stop.

Explanation:

The subject of your question is

relative speed

and

time management

, which falls under Mathematics. Your overall travelling speed is 60 mph. After driving for an hour, you decide to take a break at a rest stop. In that one hour, you've driven 60 miles, so there are 300 miles left to the destination.  Your roommate, who doesn't stop for a break, continues to drive at 50 mph. You want to arrive half an hour before she does, which means you essentially have her travel time less 30 minutes to reach the destination. Because her speed in relation to the remaining distance is constant, her remaining travel time is 300 miles divided by 50 mph which equals to 6 hours. So, you actually have 6 - 0.5 = 5.5 hours to travel the remaining 300 miles including your rest stop. Considering your speed of 60 mph, it will take you 300/60 = 5 hours to reach the destination. Therefore, the length of the break you can take while still beating your roommate to the destination is 5.5 hours minus 5 hours, which is

30 minutes

.

Learn more about relative speed here:

https://brainly.com/question/32038972

#SPJ3

An iron block with mass mB slides down a frictionless hill of height H. At the base of the hill, it collides with and sticks to a magnet with mass mM.
Now assume that the two masses continue to move at the speed v from Part A until they encounter a rough surface. The coefficient of friction between the masses and the surface is μ. If the blocks come to rest after a distance s, which of the following equations would you use to find s?View Available Hint(s)Now assume that the two masses continue to move at the speed from Part A until they encounter a rough surface. The coefficient of friction between the masses and the surface is . If the blocks come to rest after a distance , which of the following equations would you use to find ?((mB)2mB+mM)gH=μmBgs((mB)2mB+mM)gH=μmMgs((mB)2mB+mM)gH=μ(mB+mM)gs((mB)2mB+mM)gH=−μ(mB+mM)gs((mB)2mB+mM)gH=μ(mB+mM)g

Answers

Final answer:

The correct equation to use to find the distance 's' when the iron block and magnet come to a rest is ((mB)2mB+mM)gH=μ(mB+mM)gs. This equation represents the conversion of potential energy into work done against friction.

Explanation:

((mB)^2 + mM)gH = μ(mB + mM)gs.

This question represents a problem of mechanics in Physics, specifically involving both potential energy and work-energy theorem. The relevant equation to use in finding the distance 's' in this scenario is: ((mB)2mB+mM)gH=μ(mB+mM)gs. This equation derives from setting the initial potential energy of the system equal to the final kinetic energy when it rests, including the energy dissipated due to friction.

Learn more about Mechanics here:

https://brainly.com/question/35147838

#SPJ12

Final answer:

The correct equation to find 's' when an iron block slides down a hill and collides with a magnet before encountering a rough surface, is ((mB)^2 + mB + mM)gH = μ(mB + mM)gs. This equation is derived from equating the kinetic energy at the base of the hill with the work done by friction.

Explanation:

The correct equation to use to define s in this scenario would be: ((mB)2mB+mM)gH=μ(mB+mM)gs. This equation stems from equating the energy at the top of the hill (kinetic + potential energy) with the work done against friction (which eventually stops the two masses). Let's understand it in a detailed step-by-step manner.

Step 1: At the base of the hill, the kinetic energy of the block is equal to the potential energy at the top of the hill, which can be represented as (mB + mM)gH = 0.5(mB + mM)v^2. From this, we can turn the speeds into velocities, which in turn gives us v = sqrt(2gH).

Step 2: When the two masses encounter the rough surface, they will lose their kinetic energy due to friction. The total kinetic energy lost, which is equal to work done by friction, can be represented as 0.5(mB + mM)v^2 = μ(mB + mM)gs. Substituting the value of v from step 1 into this equation gives us the final formula: ((mB)^2 + mB + mM)gH = μ(mB + mM)gs.

Learn more about Physics of Energy and Friction here:

https://brainly.com/question/31847138

#SPJ11

The gravitational force exerted by a proton on an electron is 2x1039 times weaker than the electric force that the proton exerts on an electron? True or False? explain.

Answers

To solve this problem we will rely on the theorems announced by Newton and Coulomb about the Gravitational Force and the Electrostatic Force respectively.

In the case of the Force of gravity we have to,

[tex]F_g = G\frac{m_pm_e}{d^2}[/tex]

Here,

G = Gravitational Universal Constant

[tex]m_p[/tex] = Mass of Proton

[tex]m_e[/tex] = Mass of Electron

d  = Distance between them.

[tex]F_g = (6.673*10^{-11} kg^{-1} \cdot m^3 \cdot s^{-2}) (\frac{(1.672*10^{-27}kg)(9.109*10^{-31})}{(52.9pm)^2})[/tex]

[tex]F_g = 3.631*10^{-47}N[/tex]

In the case of the Electric Force we have,

[tex]F_e = k\frac{q_pq_e}{d^2}[/tex]

k = Coulomb's constant

[tex]q_p[/tex] = Charge of proton

[tex]q_e[/tex] = Charge of electron

d = Distance between them

[tex]F_e = (9*10^9N\cdot m^2 \cdot C^{-2})(\frac{(1.602*10^{-19}C)(1.602*10^{-19}C)}{(52.9pm)^2})[/tex]

[tex]F_e = 82.446*10^{-9}N[/tex]

Therefore

[tex]\frac{F_e}{F_g} = 2.270*10^{39}[/tex]

We can here prove that the statement is True

It has been proved in below calculation that the gravitational force exerted by a proton on an electron is [tex]2\times10^{39}[/tex]times weaker than the electric force that the proton exerts on an electron

What is gravitational force?

Gravitational force is the universal force of attraction acting between two bodies.

It is given by,

[tex]Fg=G\times\dfrac{m_1 \times m_2}{x^2}[/tex]

Here [tex]G[/tex] is gravitational constant [tex]m[/tex] is the mass of the bodies and [tex]x[/tex] is the distance between bodies.

What is electric force?

Electric force is the force of attraction or repulsion acting between two charged bodies,

[tex]F_E=k\times\dfrac{q_1 \times q_2}{x^2}[/tex]

Here, [tex]k[/tex] is Coulomb's constant [tex]q[/tex] is the charge and [tex]x[/tex] is the distance between bodies.

The gravitational force exerted by a proton on an electron is,

[tex]Fg=6.673\times{10^{-11}}\times\dfrac{1.673\times10^{-27}\times9.1094\times10^{-31}}{x^2}[/tex]

The electric force exerted by a proton on an electron is,

[tex]F_E=9\times{10^{9}}\times\dfrac{1.602\times10^{-19}\times1.602\times10^{-19}}{x^2}[/tex]

Compare both,

[tex]\dfrac{F_g}{F_e} =\dfrac{6.673\times{10^{-11}}\times\dfrac{1.673\times10^{-27}\times9.1094\times10^{-31}}{x^2}}{9\times{10^{9}}\times\dfrac{1.602\times10^{-19}\times1.602\times10^{-19}}{x^2}}\\\dfrac{F_g}{F_e} =\dfrac{1}{2\times10^{39}}[/tex]

Thus, It has been proved in below calculation that the gravitational force exerted by a proton on an electron is [tex]2\times10^{39}[/tex]times weaker than the electric force that the proton exerts on an electron.

Learn more about the gravitational force electric force here;

https://brainly.com/question/1076352

A block with a mass of 8.7 kg is dropped from rest from a height of 8.7 m, and remains at rest after hitting the ground. 1)If we consider the system to consist of the block, the ground, and the surrounding air, what is the change in the internal energy of the system

Answers

To solve this problem we will apply the concepts related to gravitational potential energy.

This can be defined as the product between mass, gravity and body height.

Mathematically it can be expressed as

[tex]\Delta P = mgh[/tex]

[tex]\Delta P = (8.7)(9.8)(3)[/tex]

[tex]\Delta P = 255.78J[/tex]

Therefore the change in the internal energy of the system is 255.78

A muon has a rest mass energy of 105.7 MeV, and it decays into an electron and a massless particle. If all the lost mass is converted into the electron’s kinetic energy, what is the electron’s velocity?

Answers

Answer:

The electron’s velocity is 0.9999 c m/s.

Explanation:

Given that,

Rest mass energy of muon = 105.7 MeV

We know the rest mass of electron = 0.511 Mev

We need to calculate the value of γ

Using formula of energy

[tex]K_{rel}=(\gamma-1)mc^2[/tex]

[tex]\dfrac{K_{rel}}{mc^2}=\gamma-1[/tex]

Put the value into the formula

[tex]\gamma=\dfrac{105.7}{0.511}+1[/tex]

[tex]\gamma=208[/tex]

We need to calculate the electron’s velocity

Using formula of velocity

[tex]\gamma=\dfrac{1}{\sqrt{1-(\dfrac{v}{c})^2}}[/tex]

[tex]\gamma^2=\dfrac{1}{1-\dfrac{v^2}{c^2}}[/tex]

[tex]\gamma^2-\gamma^2\times\dfrac{v^2}{c^2}=1[/tex]

[tex]v^2=\dfrac{1-\gamma^2}{-\gamma^2}\times c^2[/tex]

Put the value into the formula

[tex]v^2=\dfrac{1-(208)^2}{-208^2}\times c^2[/tex]

[tex]v=c\sqrt{\dfrac{1-(208)^2}{-208^2}}[/tex]

[tex]v=0.9999 c\ m/s[/tex]

Hence, The electron’s velocity is 0.9999 c m/s.

According to the Stefan-Boltzmann law, how much energy is radiated into space per unit time by each square meter of the Sun’s surface? If the Sun’s radius is 696,000 km, what is the total power output of the Sun?

Answers

Answer:

[tex]3.8469943828\times 10^{26}\ W[/tex]

Explanation:

[tex]\sigma[/tex] = Stefan-Boltzmann constant = [tex]5.67\times 10^{-8}\ W/m^2K^4[/tex]

T = Surface temperature of the Sun = 5778 K

r = Radius of the Sun = 696000 km

From Stefan-Boltzmann law

[tex]F=\sigma T^4\\\Rightarrow F=5.67\times 10^{-8}\times 5778^4\\\Rightarrow F=63196526.546\ W/m^2K[/tex]

Power is given by

[tex]P=F4\pi r^2\\\Rightarrow P=63196526.546\times 4\pi\times (696000000)^2\\\Rightarrow P=3.8469943828\times 10^{26}\ W[/tex]

The power output of the Sun is [tex]3.8469943828\times 10^{26}\ W[/tex]

A 9-hp (shaft) pump is used to raise water to an elevation of 15 m. If the mechanical efficiency of the pump is 82 percent, determine the maximum volume flow rate of water. Take the density of water to be rho = 1000 kg/m3.

Answers

Answer:

The maximum volume flow rate is 0.03745m^3/s

Explanation:

Power input (Pi) = 9-hp = 9×746W = 6,714W

Elevation (h) = 15m

Efficiency (E) = 82% = 0.82

Density (D) of water = 1000kg/m^3

E = Po/Pi

Po (power output) = E×Pi = 0.82×6,714W = 5505.48W

Po = mgh/t

m/t (mass flow rate) = Po/gh = 5505.48/9.8×15 = 37.45kg/s

Volume flow rate = mass flow rate ÷ density = 37.45kg/s ÷ 1000kg/m^3 = 0.03745m^3/s

Other Questions
Mr. Bingley was good-looking and gentlemanlike; he had a pleasant countenance, and easy, unaffected manners.Which of these is the BEST meaning for countenance as it is used in this sentence?A)personalityB)face or facial featuresC)agreeable tone of voiceD)style of dress or fashion sense solve the equation (3x+10)+81=0 2. A sailor pushes a 100.0 kg crate up a ramp that is 3.00 m high and 5.00 m long onto the deck of a ship. Heexerts a 650.0 N force parallel to the ramp. What is the mechanical advantage of the ramp? What is theefficiency of the ramp? Your response should include all of your work and a free-body diagram. In a model ensemble system, what do meteorologists change each time they run a simulation of the same model?a) the predicted forecastB) the mathematical equations usedc) the initial conditionsD) the range of possible outcomes a right rectangel prism has a height of 6.5cm a wudth of 8 cm and a legnth of 12.1 cm. what is the volume of the prism? A platinum nugget weighs 3 1/2 ounces. How many 1/4 ounces prices can be cut from nugget? An entity had cash receipts from sales of US $175,000 during Year 2. At the end of Year 1, the company had US $40,000 of deferred revenue, all of which was earned in Year 2. The companys sales revenue for Year 2 would be:__________ A charge of 12.6 C is at the geometric center of a cube. What is the electric flux through one of the faces? The permittivity of a vacuum is 8.85419 1012 C 2 /N m2 . Answer in units of N m2 /C. Which American dancer eschewed the technical virtuosity of ballet, was not particularly interested in storytelling or expressing emotions through dance, and devised a type of dance that focused on the shifting play of lights and colors on the voluminous skirts or draperies she wore what is seven tenths of 180? 4.trichomoniasisA. STD that can result in damage to joints B. STD caused by a protozoan C. Most common STD among teens D. STD diagnosed by a Pap test E. STD that result in death Jordan studies consciousness by training himself to report on his own sensations as objectively as he can. Jordan's research is similar to how the ______________ school investigated psychology. Changes in tariffs and quotas are A) a means of slowing outsourcing. B) corporate strategies designed to maximize profits. C) business actions stimulating imports. D) efforts to stimulate choices among government agencies. E) government actions that reduce competition from international firms. A bar extends perpendicularly from a vertical wall. The length of the bar is 2 m, and its mass is 10 kg. The free end of the rod is attached to a point on the wall by a light cable, which makes an angle of 30 with the bar. Find the tension in the cable. Q. Youre in charge of filling out the office supply purchase orders for your company. If you need 20,000 sheets of paper, and one ream of paper equals 500 sheets, where will you get the best deal? Click on the crate to bring it to a stop, then replace it with the refrigerator. Use the slider to apply a force of about 400 N. After 2 s have elapsed in the simulation, decrease the Applied Force (force exerted) slowly back to zero. Try to do this adjustment in roughly 2 s . While the Applied Force (force exerted) is decreasing, the velocity is:______.a. constant. b. increasing. c. decreasing. Why is having an extra chromosome 21 tolerable to the point that someone with this condition can survive to maturity? (as compared to having an extra chromosome 2 , for example) This modern dance choreographer emigrated to Los Angeles from Mexico, still has a dance company today in New York City, based his technique on concepts of "swing and suspend", and is famous for choreographing stories about the human condition, often based on his Mexican-American upbringing. For each entity, select the attribute that could be the unique identifier of each entity. Entities: Student, Movie, LockerAttributes: student ID, first name, size, location, number, title, date released, last name, address, produced, director. What is log 81 base 3