Intersecting chords theorem:
[tex]7\cdot7=10x[/tex]
i.e. when two chords intersect, the products of the resulting line segments' lengths are equal. Then
[tex]10x=49\implies x=\dfrac{49}{10}=\boxed{4.9}[/tex]
Answer:
4.9
Step-by-step explanation:
got it right
Forty dash one percent of people in a certain country like to cook and 68% of people in the country like to shop, while 14% enjoy both activities. What is the probability that a randomly selected person in the country enjoys cooking or shopping or both?
Answer:
0.86 or 86%
Step-by-step explanation:
The data given represent 41% of people in a certain country like to cook and 68% of people in the country like to shop, while 14% enjoy both activities.
The probability that a randomly selected person in the country enjoys cooking or shopping or both.
People who like to cook P(C) = 41% = 0.40
People who like to shopping P(S) = 68% = 0.60
People who like cooking and shopping both P(C∩S) = 14% = 0.14
People who like cooking or shopping or both = P(C∪S)
= P(C) + P(S) - P(C∩S)
= 0.40 + 0.60 - 0.14
= 0.86
The probability that a randomly selected person in the country enjoys cooking or shopping or both is 0.86 or 86%
To calculate the probability that a selected person likes cooking or shopping or both, we add the probabilities of each individual event and subtract the overlapping probability. In this case, it's 94.1%.
Explanation:You want to find the probability that a randomly selected person in the country enjoys cooking, shopping, or both. To calculate this probability, you can use the principle of inclusion-exclusion for two sets A and B, where:
A is the event that someone enjoys cooking.B is the event that someone enjoys shopping.The formula for the probability that a randomly selected person enjoys either cooking or shopping (or both) is:
P(A ∪ B) = P(A) + P(B) - P(A ∩ B)
Given:
P(A) = 40.1%P(B) = 68%P(A ∩ B) = 14%Plug in the values:
P(A ∪ B) = 40.1% + 68% - 14%
= 94.1%
So, the probability that a randomly selected person enjoys cooking or shopping or both is 94.1%.
Learn more about Probability here:https://brainly.com/question/32117953
#SPJ3
HELP URGENT - put 27 points on question please help!
Write a quadratic function in standard form whose graph passes through (-5,0), (9,0), and (8, -39).
f(x) =
Answer:
f(x) = 3x² - 12x -135
Step-by-step explanation:
standard form of a quadratic equation is
y = Ax² + Bx + C
You are given 3 solutions for X and Y, i.e( x=-5, y = 0), (x = 9,y = 0) and (x = 8,y = -39)
Substitute each of this equations into the quadratic equation to obtain a system of 3 equations
For ( x=-5, y = 0), 25A - 5B + C = 0 ---------- eq (1)
For ( x= 9, y = 0), 81A + 9B + C = 0 ---------- eq (2)
For ( x= 8, y = -39), 64A + 8B + C = -39 ---------- eq (3)
You have 3 equations and 3 unknowns. Solving this system of 3 equations will give:
A = 3, B = -12, c = -135
Hence the quadratic equation is
y = 3x² - 12x -135
or in function form:
f(x) = 3x² - 12x -135
Which will result in a difference of squares?
(-7x+4)(-7x+4)
(-7x + 4)(4-7x)
(-7x+4)(-7x-4)
(-7x + 4)(7x-4)
Answer:
[tex]\large\boxed{(-7x+4)(-7x-4)}[/tex]
Step-by-step explanation:
[tex]\text{The difference of squares:}\ a^2-b^2=(a-b)(a+b)\\\\(-7x+4)(-7x-4)=(-7x)^2-4^2=49x^2-16[/tex]
(-7x + 4) (-7x - 4) can be written as a difference of squares.
Option C is the correct answer.
What is an expression?
An expression contains one or more terms with addition, subtraction, multiplication, and division.
We always combine the like terms in an expression when we simplify.
We also keep all the like terms on one side of the expression if we are dealing with two sides of an expression.
Example:
1 + 3x + 4y = 7 is an expression.com
3 + 4 is an expression.
2 x 4 + 6 x 7 – 9 is an expression.
33 + 77 – 88 is an expression.
We have,
The difference of squares is a special algebraic form that occurs when we multiply two binomials of the form (a + b)(a - b).
This results in the product of two terms:
The square of the first term minus the square of the second term.
In other words, we have (a + b)(a - b) = a² - b².
In the given options, only (-7x + 4) (-7x - 4) can be written as a difference of squares, by applying the above formula.
We can rewrite it as:
(-7x + 4) (-7x - 4) = (-7x)² - 4² = 49x² - 16
The other options do not follow this pattern and cannot be written as a difference of squares.
Thus,
(-7x + 4)(-7x - 4) = 49x² - 16
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ5
How many different three-digit numbers can be formed using the digits 1 comma 2 comma 9 comma 6 comma 4 comma 3 comma and 8 without repetition? For example, 664 is not allowed.
Answer:
129 468
Step-by-step explanation:
I'm not sure if you're supposed to reuse the same numbers just in a different Three digit number. Or if you're supposed to use the number one time and one time only. But if not here's there's some numbers that you could use
He basically all You have to do Is take the numbers and turning them into three digit numbers Without repetition.
Hope this helps you!
Also it's saying that 664 is not allowed Because it they are reusing the six When there's no Extra six to use. So remind you not to use the same number twice!
A student gently drops a ball from different heights and measures the time it takes to fall to the ground. Which statement BEST describes why the investigation is an experimental study? A) The student does not use a control group. B) There is only one independent variable involved. C) The student sets the values of the independent variable. D) It is possible to establish a cause-effect relation between the variables.
Answer:
c
Step-by-step explanation:
i think not 100 percent sure
Use partial fraction expansion to evaluate: LaTeX: \int\frac{x-1}{x^2+3x+2}dx ∫ x − 1 x 2 + 3 x + 2 d x a. LaTeX: -2\ln\left|x+1\right|+3\ln\left|x+2\right|+C − 2 ln | x + 1 | + 3 ln | x + 2 | + C b. LaTeX: \frac{-2}{x+1}+\frac{3}{x+2}+C − 2 x + 1 + 3 x + 2 + C c. LaTeX: \frac{2}{\left(x+1\right)^2}+\frac{-3}{\left(x+2\right)^2}+C 2 ( x + 1 ) 2 + − 3 ( x + 2 ) 2 + C d. LaTeX: \frac{1}{\left(x+3+\frac{2}{x}\right)^2}+C 1 ( x + 3 + 2 x ) 2 + C
The correct answer is -2 ln|x + 1| + 3 ln|x + 2| + C which corresponds to option (a).
We are asked to evaluate the integral:
∫ (x - 1) ÷ (x² + 3x + 2) dx
First, factor the denominator:
x² + 3x + 2 = (x + 1)(x + 2)
This allows us to use partial fraction decomposition to rewrite the integral :
(x - 1) ÷ [(x + 1)(x + 2)] = A ÷ (x + 1) + B ÷ (x + 2)
Next, solve for A and B:
Multiply both sides by the denominator (x + 1)(x + 2):x - 1 = A(x + 2) + B(x + 1)Set up equations by plugging in values for x to solve for A and B:When x = -1 : -1 - 1 = A(-1 + 2) + B(-1 + 1)-2 = A(1) + B(0) , so A = -2When x = -2 : -2 - 1 = A(-2 + 2) + B(-2 + 1)-3 = -B, so B = 3So, we can write :
(x - 1) ÷ [(x + 1)(x + 2)] = -2 ÷ (x + 1) + 3 ÷ (x + 2)
Integrate both terms separately :
∫ (-2 ÷ (x + 1)) dx + ∫ (3 ÷ (x + 2)) dx
This gives us :
-2 ln|x + 1| + 3 ln|x + 2| + C
Hence, the solution is :
-2 ln|x + 1| + 3 ln|x + 2| + C
The correct answer is option (a).
Complete Question :
Use Partial fraction expansion to evaluate : ∫ (x - 1) ÷ (x² + 3x + 2) dx
a. -2 ln|x + 1| + 3 ln|x + 2| + C b. [tex]\frac{-2}{x+1}+\frac{3}{x+2}+C - 2 x + 1 + 3 x + 2 + C[/tex]
c. [tex]\frac{2}{\left(x+1\right)^2}+\frac{-3}{\left(x+2\right)^2}+C 2 ( x + 1 ) 2 + - 3 ( x + 2 ) 2 + C[/tex]
d. [tex]\frac{1}{\left(x+3+\frac{2}{x}\right)^2}+C 1 ( x + 3 + 2 x ) 2 + C[/tex]
Suppose that 3% of all athletes are using the endurance-enhancing hormone EPO (you should be able to simply compute the percentage of all athletes that are not using EPO). For our purposes, a “positive” test result is one that indicates presence of EPO in an athlete’s bloodstream. The probability of a positive result, given the presence of EPO is .99. The probability of a negative result, when EPO is not present, is .90. What is the probability that a randomly selected athlete tests positive for EPO? 0.0297
Answer:
Step-by-step explanation:
So there is a 3% probability that an athlete is using EPO .
The probability of showing positive on a test when you've used it is 0.99.
3% x 0.99= 2.97%
The probability of a positive result without EPO is 0.1
97% x 0,1 = 9,7 %
My guess is that 2.97% + 9,7% = 12.67% or 0.1267.
I don't know i may be wrong because you've put as an answer 0.0297 but if you like you may take only the first part of the answer.
There is a 0.1267 = 12.67% probability that a randomly selected athlete tests positive for EPO.
A positive test can happen in two cases:
When EPO is present(3% of the time), with 0.99 probability.When EPO is not present(100 - 3 = 97% of the time), with 1 - 0.9 = 0.1 probability.Then, adding these probabilities:
[tex]p = 0.03(0.99) + 0.97(0.1) = 0.1267[/tex]
0.1267 = 12.67% probability that a randomly selected athlete tests positive for EPO.
A similar problem is given at https://brainly.com/question/24161830
52 POINTS, WILL GIVE BRAINLIEST!
Use the Polygon tool to draw a rectangle with a length of 6 units and a height of 4 units. One of the sides of the rectangle falls on line CD , and the rectangle has a vertex of C.
Each segment on the grid represents 1 unit.
Answer:
The answer is in the attachment.
Step-by-step explanation:
Look at the picture.
The rectangle that has a vertex of C and has one of it's sides on line CD, with the stated lengths is constructed as shown in the image attached below (see attachment).
What is a Rectangle?A rectangle can be described as a 4-sided polygon having all its four interior angles measuring 90 degrees each and has two pairs of opposite equal sides.
Thus, the rectangle that has a vertex of C and has one of it's sides on line CD, with the stated lengths is constructed as shown in the image attached below (see attachment).
Learn more about a rectangle on:
https://brainly.com/question/4141979
Complete the table for the function and find the indicated limit.
limx→0 (x^3−6x+8/x−2)
(EQUATION AND ANSWER CHOICES BELOW)
Answer:
The last choice is the one you want
Step-by-step explanation:
If you plug in the values of x to our rational function, the y values you get back match those in the last choice. The limit is -4; we see that as our x value approach 0 (but cannot equal 0!!), the y values get closer and closer to -4. So that's the limit!
Help need on 2 algebra problems !!!!!!! please
Evaluate the root without using a calculator, or note that the root isn't a real number.
1. square root 8√256
A. Not a real number
B. 16
C. 2
D. 4
2.square root 4√16
A. 2
B. –2
C. 3
D. Not a real number
Answer:
1) C. 2
2) A. 2
Step-by-step explanation:
1. We need to descompose 256 into its prime factors:
[tex]256=2*2*2*2*2*2*2*2=2^8[/tex]
We must rewrite the expression [tex]\sqrt[8]{256}[/tex]:
[tex]=\sqrt[8]{2^8}[/tex]
We need to remember that:
[tex]\sqrt[n]{a^n}=a[/tex]
Then:
[tex]=2[/tex]
2. Let's descompose 16 into its prime factors:
[tex]16=2*2*2*2=2^4[/tex]
We must rewrite the expression [tex]\sqrt[4]{16}[/tex]:
[tex]=\sqrt[4]{2^4}[/tex]
Then we get:
[tex]=2[/tex]
For [tex]\(\sqrt[8]{256}\)[/tex] , the answer is 2 (C), and for [tex]\(\sqrt[4]{16}\)[/tex], the answer is also 2(A), obtained through prime factorization and simplifying using the property [tex]\(\sqrt[n]{a^n} = a\)[/tex].
Let's go into more detail for both questions:
1. [tex]\(\sqrt[8]{256}\)[/tex]:
- First, find the prime factorization of 256: [tex]\(256 = 2^8\)[/tex]
- Rewrite the expression as [tex]\(\sqrt[8]{2^8}\)[/tex].
- Using the property [tex]\(\sqrt[n]{a^n} = a\)[/tex], simplify to 2.
- Therefore, [tex]\(\sqrt[8]{256} = 2\)[/tex]
- Correct answer: C. 2
2. [tex]\(\sqrt[4]{16}\)[/tex]:
- Start with the prime factorization of 16: [tex]\(16 = 2^4\)[/tex]
- Express the expression as [tex]\(\sqrt[4]{2^4}\)[/tex]
- Apply the property [tex]\(\sqrt[n]{a^n} = a\) to get \(2\).[/tex]
- Thus, [tex]\(\sqrt[4]{16} = 2\)[/tex]
- Correct answer: A. 2
In both cases, understanding the prime factorization and utilizing the property of radicals [tex](\(\sqrt[n]{a^n} = a\))[/tex] helps simplify the expressions and find the correct values.
Answer for number 12
Answer:
12 a. 4605 feet 12 b. 1,459,063 square feet
Step-by-step explanation:
For the perimeter, we simply add the lengths of each of the 5 sides together (or multiply 5 times one side length).
P = 5(921)
P = 4605 feet
For the area, we will use composition...add the area of the triangle to the area of the trapezoid.
For the area of the triangle, the formula is
[tex]A=\frac{1}{2}bh[/tex].
Filling in our values gives us
[tex]A=\frac{1}{2}(1490)(541)[/tex] and
A = 403,045 square feet.
Now for the trapezoid. The formula for a trapezoid is
[tex]A=\frac{1}{2}(b_{1}+b_{2})(h)[/tex]
where the b's represent the bases and the h represents the height. Filling in our values gives us
[tex]A=\frac{1}{2}(921+1490)(876)[/tex]
Work inside the parenthesis first:
[tex]A=\frac{1}{2}(2411)(876)[/tex] and
A = 1,056,018
Now we add those together to get that area of the Pentagon is 1,459,063 square feet
Which of the following is the graph of y=-4 sqrt x
Answer: The answer should be D on edg
Please see the attachment for graph.
We are a given a equation and need to graph it.It is square root function. We make table of x and y and then plot the points on graph and join the points.We will take some random values of x and then find the value of y corresponding to the value of x.For x=1, Put x=1 into equation:
[tex]y = -4\sqrt{1} = - 4[/tex]
For x=4, Put x=4 into equation:
[tex]y = -4\sqrt{4} = - 8[/tex]
For x=9, Put x=9 into equation:
[tex]y = -4\sqrt{9} = - 12[/tex]
Table of x and y: x y1 -4
4 -8
9 -12
Now we plot the points on graph and join the points.
Please see the attachment for graph.
Learn more about graph here:
https://brainly.com/question/19040584
#SPJ2
Use the definition of the Laplace transform to find L(f(t) if f(t)=t^5
Answer:
120/s^6
Step-by-step explanation:
There is an easy formula for this...
L(t^n)=n!/(s^(n+1))
Your n=5 here
L(t^5)=5!/(s^6)
L(t^5)=120/s^6
[tex]\mathcal{L}\{t^n\}=\dfrac{n!}{s^{n+1}}[/tex]
So
[tex]\mathcal{L}\{f(t)\}=\dfrac{5!}{s^{5+1}}=\dfrac{120}{s^6}[/tex]
David estimated he had about 20 fish in his pond. A year later, there were about 1.5 times as many fish. The year after that, the number of fish increased by a factor of 1.5 again. The number of fish is modeled by f(x)=20(1.5)^x.
Create a question you could ask that could be answered only by graphing or using a logarithm.
Answer:
After how many years is the fish population 60?
x=2.71 years
Step-by-step explanation:
The fish population increases by a factor of 1.5 each year. We have the equation that represents this situation
[tex]f (x) = 20 (1.5) ^ x[/tex]
Where x represents the number of years elapsed f(x) represents the amount of fish.
Given this situation, the following question could be posed
After how many years is the fish population 60?
So we do [tex]f (x) = 60[/tex] and solve for the variable x
[tex]60 = 20 (1.5) ^ x\\\\\frac{60}{20} = (1.5)^x\\\\3 = (1.5)^x\\\\log_{1.5}(3) = log_{1.5}(1.5)^x\\\\log_{1.5}(3) = x\\\\x =log_{1.5}(3)\\\\x=2.71\ years[/tex]
Observe the solution in the attached graph
If San Francisco accounts for 1.24 percent of total U.S. population, and has 1.43 percent of total U.S. laundry detergent sales, what is the CDI for this market? Also, what does this index mean? Remember the convention for CDIs and BDIs—they are expressed as whole numbers.
Answer:
CDI: 1.43/1.24x100= 115 What does this index mean? Good market potential.
Step-by-step explanation:
Answer: CDI: 1.43/1.24x100= 115 What does this index mean? Good market potential.
Step-by-step explanation:
Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 4 + ln (t), y = t^2 + 6, (4, 7)
Answer:
y = 2x − 1
Step-by-step explanation:
By eliminating the parameter, first solve for t:
x = 4 + ln(t)
x − 4 = ln(t)
e^(x − 4) = t
Substitute:
y = t² + 6
y = (e^(x − 4))² + 6
y = e^(2x − 8) + 6
Taking derivative using chain rule:
dy/dx = e^(2x − 8) (2)
dy/dx = 2 e^(2x − 8)
Evaluating at x = 4:
dy/dx = 2 e^(8 − 8)
dy/dx = 2
Writing equation of line using point-slope form:
y − 7 = 2 (x − 4)
y = 2x − 1
Now, without eliminating the parameter, take derivative with respect to t:
x = 4 + ln(t)
dx/dt = 1/t
y = t² + 6
dy/dt = 2t
Finding dy/dx:
dy/dx = (dy/dt) / (dx/dt)
dy/dx = (2t) / (1/t)
dy/dx = 2t²
At the point (4, 7), t = 1. Evaluating the derivative:
dy/dx = 2(1)²
dy/dx = 2
Writing equation of line using point-slope form:
y − 7 = 2 (x − 4)
y = 2x − 1
To find the tangent to the curve represented by the parametric equations x = 4 + ln(t), y = t² + 6, both methods, eliminating and not eliminating the parameter t, yield the same result. The slope of the tangent line at the point (4, 7) is determined to be 2, thus the equation of the tangent is y - 7 = 2(x - 4).
To find the equation of the tangent to the given curve at the point (4, 7) with the parametric equations x = 4 + ln(t) and y = t² + 6, we can approach the problem in two ways: with and without eliminating the parameter t.
Firstly, without eliminating the parameter, we need to find the derivatives dx/dt and dy/dt, and then use them to find dy/dx which is the slope of the tangent at the given point. Since dx/dt = 1/t and dy/dt = 2t, at the point (4, 7), we have t = 1, making the slope dy/dx = (dy/dt)/(dx/dt) = 2 × 1 / (1/1) = 2. The equation of the tangent line can thus be written as y - y₁ = m(x - x₁), where m is the slope, and (x₁, y₁) is the point of tangency.
This gives us the equation y - 7 = 2(x - 4).
What method would you choose to solve the equation 2x2 – 7 = 9? Explain why you chose this method.
The simplification method would be the best to solve the given equation.
What is simplification?simplify means making it in a simple form by reducing variables in an equation. we can achieve simplification easily by using PEMDAS.
Given equation 2x² - 7 = 9;
By simplify
2x² = 16
x² = 8
x = √8, -√8
Hence, for given equation simplification using PEMDAS is the best way of solving because it can be easily broken into parts to find the value of x.
Learn more about simplification here:
https://brainly.com/question/2804192
#SPJ5
Find the two geometric means between 20 and 5. 7. Solve: 44-32-3 8. Develop the identity for sin 2.4 using the identity for sin(A+ B).
Answer with explanation:
1.
Let a, and b be two numbers between 20 and 5 , which is in geometric progression.
So,the series is as Follows =20 , a, b, 5
Common ratio
[tex]=\frac{\text{Second term}}{\text{First term}}[/tex]
[tex]\frac{20}{a}=\frac{a}{b}=\frac{b}{5}\\\\b^2=5 a---(1)\\\\a^2=20 b\\\\\frac{b^4}{25}=20 b-----\text{Using 1}\\\\b^3=500\\\\b=(500)^{\frac{1}{3}}\\\\b=5\times (4)^{\frac{1}{3}}\\\\5a=25\times (4)^{\frac{2}{3}}\\\\a=5\times (4)^{\frac{2}{3}}[/tex]
2.
44 -32-3
=12-3
=9
3.
⇒Sin (2.4)=Sin(2+0.4)
⇒Sin 2 ×Cos (0.4)+Cos 2 × Sin (0.4)
⇒Sin (A+B)=Sin A×Cos B+Cos A×Sin B
1. Use Excel to answer the following. In each question, find the blank to make the statement true. Note that Z represents we are using the standard normal distribution. Note: Round your answers to two decimal places. A) P(Z < -0.69) = B) P(Z > 1.84) = C) P(Z > )= 0.921 D) P(Z < ) = 0.61 2. Use Excel to answer the following. In each question, find the blank to make the statement true. In this example assume we have a variable X that is distributed normally with mean 30 and standard deviation 6. Note: Round your answers to two decimal places. A) P(X < 28.40) = B) P(X > 39.30) = C) P(X > )= 0.043 D) P(X < ) = 0.086
Answer:
1. A: 0.25; B: 0.03; C: 1.41; D: -0.28
2. A: 0.39; B: 0.06; C: 40.30; D: 21.81
Step-by-step explanation:
For CDF lookups, we used the Excel NORMDIST(x, mean, stdev, TRUE) function. For inverse CDF lookups, we used the NORMINV(x, mean, stdev) function.
Each of these functions works with the area under the curve from -∞ to x, so for cases where we're interested in the upper tail, we subtract the probability from 1, or subtract the x value from twice the mean.
For question 1, we computed the Z values in each case. The NORMDIST function works directly with x, mean, and standard deviation, so does not need the z value.
You have two exponential functions. One function has the formula g(x) = 3(2 x ). The other function has the formula h(x) = 2 x+1. Which option below gives formula for k(x) = (g – h)(x)? k(x) = 2x k(x) = 5(2x) k(x) = 5(2x+1) k(x) = 2
Answer:
[tex]k(x)=2^{x}[/tex] ⇒ 1st answer
Step-by-step explanation:
* Lets explain how to solve the problem
∵ [tex]g(x)=3(2^{x})[/tex]
∵ [tex]h(x)=2^{x+1}[/tex]
- Lets revise this rule to use it
# If [tex]a^{n}*a^{m}=a^{n+m}====then==== a^{n+m}=a^{n}*a^{m}[/tex]
- We will use this rule in h(x)
∵ [tex]h(x)=2^{x+1}[/tex]
- Let a = 2 , n = x , m = 1
∴ [tex]h(x)=2^{x}*2^{1}[/tex]
- Now lets find k(x)
∵ k(x) = (g - h)(x)
∵ [tex]g(x)=3(2^{x})[/tex]
∵ [tex]h(x)=2^{x}*2^{1}[/tex]
∴ [tex]k(x)=3(2^{x})-(2^{x}*2^{1})[/tex]
- We have two terms with a common factor [tex]2^{x}[/tex]
∵ [tex]2^{x}[/tex] is a common factor
∵ [tex]\frac{3(2^{x})}{2^{x}}=3[/tex]
∵ [tex]\frac{2^{x}*2^{1}}{2^{x}}=2^{1}=2[/tex]
∴ [tex]k(x) = 2^{x}[3 - 2]=2^{x}(1)=2^{x}[/tex]
* [tex]k(x)=2^{x}[/tex]
How many liters of a 80% acid solution must be mixed with a 15% acid solution to get 585 L of a 70% acid solution?
Answer:
573 L is im sure the correct answer
Assume that adults have IQ scores that are normally distributed with a mean of mu equals 100 and a standard deviation sigma equals 20. Find the probability that a randomly selected adult has an IQ less than 132. The probability that a randomly selected adult has an IQ less than 132 is?
Answer:
There is a 94.52% probability that a randomly selected adult has an IQ less than 132.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
Assume that adults have IQ scores that are normally distributed with a mean of 100 and a standard deviation of 20. This means that [tex]\mu = 100, \sigma = 20[/tex].
The probability that a randomly selected adult has an IQ less than 132 is?
This probability is the pvalue of Z when [tex]X = 132[/tex]. So:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{132 - 100}{20}[/tex]
[tex]Z = 1.6[/tex]
[tex]Z = 1.6[/tex] has a pvalue of 0.9452.
This means that there is a 94.52% probability that a randomly selected adult has an IQ less than 132.
Assume that adults have IQ scores that are normally distributed with a mean of mu equals 100 and a standard deviation sigma equals 20. The probability that a randomly selected adult has an IQ less than 132 is 0.9452 or 94.52%.
What is the probability?Let standardize the IQ value of 132 using the formula for standardization:
Z = (X - μ) / σ
Where:
Z= standardized value (Z-score)
X = IQ value
μ = mean= 100
σ = standard deviation =20
Let's calculate the Z-score for an IQ of 132:
Z = (132 - 100) / 20
Z = 32 / 20
Z = 1.6
Using a standard normal distribution table, the probability is 0.9452.
Therefore, the probability that a randomly selected adult has an IQ less than 132 is 0.9452 or 94.52%.
Learn more about probability here:https://brainly.com/question/13604758
#SPJ6
Let f(x) = 1/x^2 (a) Use the definition of the derivatve to find f'(x). (b) Find the equation of the tangent line at x=2
Answer:
(a) [tex]f'(x)=-\frac{2}{x^3}[/tex]
(b) [tex]y=-0.25x+0.75[/tex]
Step-by-step explanation:
The given function is
[tex]f(x)=\frac{1}{x^2}[/tex] .... (1)
According to the first principle of the derivative,
[tex]f'(x)=lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}[/tex]
[tex]f'(x)=lim_{h\rightarrow 0}\frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}[/tex]
[tex]f'(x)=lim_{h\rightarrow 0}\frac{\frac{x^2-(x+h)^2}{x^2(x+h)^2}}{h}[/tex]
[tex]f'(x)=lim_{h\rightarrow 0}\frac{x^2-x^2-2xh-h^2}{hx^2(x+h)^2}[/tex]
[tex]f'(x)=lim_{h\rightarrow 0}\frac{-2xh-h^2}{hx^2(x+h)^2}[/tex]
[tex]f'(x)=lim_{h\rightarrow 0}\frac{-h(2x+h)}{hx^2(x+h)^2}[/tex]
Cancel out common factors.
[tex]f'(x)=lim_{h\rightarrow 0}\frac{-(2x+h)}{x^2(x+h)^2}[/tex]
By applying limit, we get
[tex]f'(x)=\frac{-(2x+0)}{x^2(x+0)^2}[/tex]
[tex]f'(x)=\frac{-2x)}{x^4}[/tex]
[tex]f'(x)=\frac{-2)}{x^3}[/tex] .... (2)
Therefore [tex]f'(x)=-\frac{2}{x^3}[/tex].
(b)
Put x=2, to find the y-coordinate of point of tangency.
[tex]f(x)=\frac{1}{2^2}=\frac{1}{4}=0.25[/tex]
The coordinates of point of tangency are (2,0.25).
The slope of tangent at x=2 is
[tex]m=(\frac{dy}{dx})_{x=2}=f'(x)_{x=2}[/tex]
Substitute x=2 in equation 2.
[tex]f'(2)=\frac{-2}{(2)^3}=\frac{-2}{8}=\frac{-1}{4}=-0.25[/tex]
The slope of the tangent line at x=2 is -0.25.
The slope of tangent is -0.25 and the tangent passes through the point (2,0.25).
Using point slope form the equation of tangent is
[tex]y-y_1=m(x-x_1)[/tex]
[tex]y-0.25=-0.25(x-2)[/tex]
[tex]y-0.25=-0.25x+0.5[/tex]
[tex]y=-0.25x+0.5+0.25[/tex]
[tex]y=-0.25x+0.75[/tex]
Therefore the equation of the tangent line at x=2 is y=-0.25x+0.75.
An Access Ramp to a freeway extends horizontally a distance of 80 feet while it rises a total of 15 feet . Find the Slope of the Access Ramp. A) 16/3 B) 19/16 C) 65 D) 3/16 E) 95
Answer:
D.
Step-by-step explanation:
Slope is rise over run by definition, and we are given the values for each in the problem. The run is 80 and the rise is 15 so
[tex]m=\frac{15}{80}=\frac{3}{16}[/tex]
The table below shows the approximate height of an object x seconds after the object was dropped. The function h(x)= -16x^2 +100 models the data in the table. For which value of x would this model make it the least sense to use?
A. -2.75
B. 0.25
C. 1.75
D. 2.25
Answer:
the awnser is a -2.75
Step-by-step explanation:
A university knows from historical data that 25% of students in an introductory statistics class withdraw before completing the class. Assume that 16 students have registered for the course. What is the probability that exactly 2 will withdraw?
Answer:
13.4%
Step-by-step explanation:
Use binomial probability:
P = nCr p^r q^(n-r)
where n is the number of trials,
r is the number of successes,
p is the probability of success,
and q is the probability of failure (1-p).
Here, n = 16, r = 2, p = 0.25, and q = 0.75.
P = ₁₆C₂ (0.25)² (0.75)¹⁶⁻²
P = 120 (0.25)² (0.75)¹⁴
P = 0.134
There is a 13.4% probability that exactly 2 students will withdraw.
The probability that exactly 2 out of 16 students will withdraw from an introductory statistics class, given a historical withdrawal rate of 25%, can be calculated using the binomial probability formula.
Explanation:This problem falls into the category of binomial probability. We define 'success' as a student withdrawing from the course. The number of experiments is 16 (as there are 16 students), the number of successful experiments we are interested in is 2 (we want to know the probability of exactly 2 student withdrawing), and the probability of success on a single experiment is 0.25 (as per the given 25% withdrawal rate).
To calculate binomial probability, we can use the binomial formula P(X=k) = C(n, k)*(p^k)*((1-p)^(n-k)), where:
P(X=k) = probability of k successes
C(n, k) = combination of n elements taken k at a time
p = probability of success
n, k = number of experiments, desired number of successes respectively.
Substituting our values into this formula, we get:
P(X=2) = C(16, 2) * (0.25^2) * ((1-0.25)^(16-2)).
You will have to calculate the combination and simplify the expression to get your final probability.
Learn more about Binomial Probability here:https://brainly.com/question/33993983
#SPJ11
Determine whether the random variable is discrete or continuous. In each case, state the possible values of the random variable. (a) The number of fish caught during a fishing tournament . (b) The time it takes for a light bulb to burn out .
Answer: a.- discrete b.- continous
Step-by-step explanation: Discrete Variable. Variables that can only take on a finite number of values are called "discrete variables." All qualitative variables are discrete. Some quantitative variables are discrete, such as performance rated as 1,2,3,4, or 5, or temperature rounded to the nearest degree.
Continuous Variable. If a variable can take on any value between its minimum value and its maximum value, it is called a continuous variable; otherwise, it is called a discrete variable.
The number of fish caught during a fishing tournament is a discrete variable, and the time it takes for a light bulb to burn out is a continuous variable
Further explanationLet's define what variables are. Variables are any representation of a phenomenon or property that changes over time. In simple terms, variables are "things" that change, meaning they don't have a constant value. Variables can be either discrete or continuous.
To understand these concepts it's better to understand first what continuous means, continuous variables are those which can take any value whatsoever over time. This last statement is the main idea but it's not self-explanatory, a test to check whether a variable is continuous or not is to take any 2 possible outcomes of that variable, and check if that variable can take any value between those 2 possible outcomes. If the test gives positive then our variable is continuous, if not then it's discrete.
Let's test the first question. During a fishing tournament, each person can fish only one fish at a time, therefor possible outcomes are 1 fish, or 2 fish, or 3, or 4, and so on. This means that we will never be able to get, for example, 1.5 fish (which is a value between 2 possible outcomes, 1 fish and 2 fish), therefor our variable is discrete.
Let's test the second question. The time it takes for a light bulb to burn out has many possible outcomes, examples are 1 second, 2.5 seconds, 10 minutes, etc. If we check between any of those possible outcomes, we will always be able to find a time, doesn't matter how precise, in which the light bulb could burn. This means that the time for a light bulb to burn is continuous.
Learn moreComparison of other variables: https://brainly.com/question/12967959Analysis of type of variable: https://brainly.com/question/10697348KeywordsVariable, Continuous, Discrete, Interval
Consider the given function and the given interval. f\(x\) = 2 sin\(x\) - sin\(2 x\) text(, ) [0 text(, ) pi] (a) Find the average value fave of f on the given interval. fave = Correct: Your answer is correct. (b) Find c such that fave = f(c). (Enter solutions from smallest to largest. If there are any unused answer boxes, enter NONE in the last boxes. Round the answers to three decimal places.)
a. The average value of [tex]f[/tex] on the given interval is
[tex]\displaystyle f_{\rm ave}=\frac1{\pi-0}\int_0^\pi(2\sin x-\sin2x)\,\mathrm dx=\boxed{\frac4\pi}[/tex]
b. Solve for [tex]c[/tex]:
[tex]\dfrac4\pi=2\sin c-\sin2c\implies\boxed{c\approx1.238\text{ or }c\approx2.808}[/tex]
what is the measurement of angle p? Round your answer to the nearest degree.
A. 29°
B.42°
C.65°
D.78°
You can use the law sines, which states that in a triangle the ratio between one side length and the sine of the opposite angle is constant.
So, we have
[tex]\dfrac{PR}{\sin(Q)}=\dfrac{QR}{\sin(P)}=\dfrac{PQ}{\sin(R)}[/tex]
In particular, we can use
[tex]\dfrac{PR}{\sin(Q)}=\dfrac{QR}{\sin(P)}[/tex]
to write
[tex]\dfrac{68}{\sin(73)}=\dfrac{47.6}{\sin(P)} \iff \sin(P) = \dfrac{47.6\sin(73)}{68}\approx 0.66[/tex]
Which means
[tex]P\approx \arcsin(0.66)\approx 42[/tex]
What would the value of an asset have to be now in order that it will grow to a value of $50,000 in 10 years if the value of the asset grows at 8% compounded continuously?
Answer: $ 22,466.45
Step-by-step explanation:
Given : Future value : [tex]FV= \$50,000[/tex]
The number of time period : [tex]t=10\text{ years}[/tex]
The rate of interest : [tex]r=8\ %=0.08[/tex]
Let P be the present value.
The formula to calculate the future value is given by :-
[tex]FV=Pe^{rt}[/tex]
[tex]50000=Pe^{0.08\times10}\\\\\Rightarrow\ 50000=P\times2.22554092849\\\\\Rightarrow\ P=\dfrac{50000}{2.22554092849}\\\\\Rightarrow\ P=22466.4482059\approx22,466.45[/tex]
Hence, the present value of asset would be $ 22,466.45.
The present value needed to obtain $50,000 in 10 years at an 8% continuously compounded interest rate is $22,466.48.
To determine the present value of an asset that grows to $50,000 in 10 years with an 8% annual compound interest rate, continuously compounded, we can use the formula for continuous compounding, which is:
A = Pe^rt
where:
A is the future value of the investment/loan, including interest,
P is the principal investment amount (the initial deposit or loan amount),
r is the annual interest rate (decimal),
t is the number of years the money is invested or borrowed for,
e is the base of the natural logarithm (approximately equal to 2.71828).
In this problem, we have A = $50,000, r = 0.08 (8% expressed as a decimal), and t = 10 years. We are solving for P, the present value.
Rearranging the formula to solve for P gives:
P = A / e^rt
P = 50000 / e^(0.08)(10)
Now calculate the value:
P = 50000 / e^0.8
P = 50000 / 2.22554... (using a calculator for e0.8)
P = $22,466.48 (rounded to two decimal places)
Thus, you would need to invest $22,466.48 now to have $50,000 in 10 years at an 8% annual compounded continuously interest rate.