A student takes an exam containing 1414 multiple choice questions. The probability of choosing a correct answer by knowledgeable guessing is 0.30.3. At least 99 correct answers are required to pass. If the student makes knowledgeable guesses, what is the probability that he will pass? Round your answer to four decimal places.

Answers

Answer 1

Answer:

0.0082 = 0.82% probability that he will pass

Step-by-step explanation:

For each question, there are only two possible outcomes. Either the students guesses the correct answer, or he guesses the wrong answer. The probability of guessing the correct answer for a question is independent of other questions. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

In this problem we have that:

[tex]n = 14, p = 0.3[/tex].

If the student makes knowledgeable guesses, what is the probability that he will pass?

He needs to guess at least 9 answers correctly. So

[tex]P(X \geq 9) = P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) + P(X = 13) + P(X = 14)[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 9) = C_{14,9}.(0.3)^{9}.(0.7)^{5} = 0.0066[/tex]

[tex]P(X = 10) = C_{14,10}.(0.3)^{10}.(0.7)^{4} = 0.0014[/tex]

[tex]P(X = 11) = C_{14,11}.(0.3)^{11}.(0.7)^{3} = 0.0002[/tex]

[tex]P(X = 12) = C_{14,12}.(0.3)^{12}.(0.7)^{2} = 0.000024[/tex]

[tex]P(X = 13) = C_{14,13}.(0.3)^{13}.(0.7)^{1} = 0.000002[/tex]

[tex]P(X = 14) = C_{14,14}.(0.3)^{14}.(0.7)^{0} \cong 0 [/tex]

[tex]P(X \geq 9) = P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) + P(X = 13) + P(X = 14) = 0.0066 + 0.0014 + 0.0002 + 0.000024 + 0.000002 = 0.0082[/tex]

0.0082 = 0.82% probability that he will pass


Related Questions

Listed below are the numbers of manatee deaths caused each year by collisions with watercraft. The data are listed in order for each year of the past decade.
(a) Find the​ range, variance, and standard deviation of the data set.
(b) What important feature of the data is not revealed through the different measures of​ variation?

80 68 71 72 95 89 97 72 75 81

Answers

Answer:

Range = 29

Variance=   (X₁- U) ² / N= 973/10 = 97.3

Standard Deviation= √variance= √97.3=  9.864

Step-by-step explanation:

Range = Difference between the highest and lowest value = 97-68= 29

Variance

                  X₁                X₁-U               (X₁- U) ²              

                 80               0                     zero

                 68                -12                   144

                 71                 -9                     81

                 72                -8                     64

                 95                 15                    225                  

                89                  9                     81

                97                   17                   289

                72                    -8                 64

                75                     -5                 25

                81                     1                   1

∑              800                ZERO            973  

u=  ∑X₁ /10=800/10=80

Variance=   (X₁- U) ² / N= 973/10 = 97.3

Standard Deviation= √variance= √97.3=  9.864

(b) The important feature of the data is not revealed through the different measures of​ variation is that the variability of two or more than two sets of data cannot be compared unless a relative measure of dispersion is used .

what are some questions to ask about a function when sketching its graph?

Answers

Some questions are: 1) what is the y intercept (if there is one, 2) where are the x intercepts (if there are any), 3) is the graph even or odd, 4) is the graph exponential or linear, and 5) where does the graph end (if it doesn’t go on for infinity)

Given that x is a normal variable with mean μ = 49 and standard deviation σ = 6.7, find the following probabilities. (Round your answers to four decimal places.) (a) P(x ≤ 60) (b) P(x ≥ 50) (c) P(50 ≤ x ≤ 60)

Answers

Answer:

0.9500, 0.4407, 0.3904

Step-by-step explanation:

(a) P(x ≤ 60).  We need to find the area under the standard normal curve to the left of x = 60.  The appropriate command when using a TI-83 Plus calculator with statistical functions is normcdf(-1000, 60, 49, 6.7).  This comes out to 0.9500.  P(x ≤ 60) = 0.9500

(b) P(x ≥ 50) would be normcdf(50, 1000,49, 6.7), or 0.4407

(c) P(50 ≤ x ≤ 60) would be normcdf(50,60,49,6.70, or 0.3904

Final answer:

The question involves finding probabilities for a normal distribution given mean μ and standard deviation σ. By converting x values to z-scores and using the standard normal distribution, we can calculate the desired probabilities.

Explanation:

The student is asking about probabilities related to a normally distributed random variable with a given mean (μ) and standard deviation (σ). To find these probabilities, we convert the x values to z-scores and use the standard normal distribution.

P(x ≤ 60): Subtract the mean from 60 and divide by the standard deviation to get the z-score. Then use the standard normal distribution table or a calculator's normalcdf function to find the probability.P(x ≥ 50): Find the z-score for x = 50, then calculate 1 minus the cumulative probability up to that z-score to obtain the probability that x is greater than or equal to 50.P(50 ≤ x ≤ 60): Calculate the z-scores for x = 50 and x = 60, then find the cumulative probability for each. The desired probability is the difference between these two cumulative probabilities.

Calculations here are based on the normal distribution parameters provided and the standard normal distribution. The z-score is the key to converting any normal distribution to the standard normal distribution, enabling the use of standard tables or software functions for probability calculations.

An aerospace company has submitted bids on two separate federal government defense contracts. The company president believes that there is a 40% probability of winning the first contract. If they win the first contract, the probability of winning the second is 65%. However, if they lose the first contract, the president thinks that the probability of winning the second contract decreases to 49%.
What is the probability that they win both contracts?

Answers

Answer:

26% probability that they win both contracts.

Step-by-step explanation:

These following probabilities are important to solve this question:

0.4 = 40% probability of winning the first contract.

0.65 = 65% probability of winning the second contract if the first contract is won.

What is the probability that they win both contracts?

[tex]P = 0.4*0.65 = 0.26[/tex]

26% probability that they win both contracts.

This table gives a few (x,y) pairs of a line in the coordinate plane

x (48) (61) (74)
y (-30) (-45) (-60)

what is the x-intercept of the line?

Answers

Answer:(22,0)

Step-by-step explanation: you have to find when y equals 0

What value of z divides the standard normal distribution so that half the area is on one side and half is on the other? Round your answer to two decimal places.

Answers

Answer:

Let X the random variable that represent the variable of interest of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(\mu,\sigma)[/tex]  

Where [tex]\mu[/tex] the mean and [tex]\sigma[/tex]  the deviation

We know that the z score is given by:

[tex] z = \frac{X -\mu}{\sigma}[/tex]

And by properties the value that separate the half  area on one side and half is on the other is z=0, since we have this:

[tex] P(Z<0) =0.5[/tex]

[tex] P(Z>0)=0.5[/tex]

So then the correct answer for this case would be z =0.00

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the variable of interest of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(\mu,\sigma)[/tex]  

Where [tex]\mu[/tex] the mean and [tex]\sigma[/tex]  the deviation

We know that the z score is given by:

[tex] z = \frac{X -\mu}{\sigma}[/tex]

And by properties the value that separate the half  area on one side and half is on the other is z=0, since we have this:

[tex] P(Z<0) =0.5[/tex]

[tex] P(Z>0)=0.5[/tex]

So then the correct answer for this case would be z =0.00

Final answer:

The z-score that divides the standard normal distribution into two equal halves is 0.00 as the mean of this distribution is also 0. Z-scores are standardized values expressing how many standard deviations a value is above or below the mean and can be determined using a Z-Table of Standard Normal Distribution.

Explanation:

The value of z that divides the standard normal distribution so that half the area is on one side and half is on the other is 0.00. The standard normal distribution is a symmetrical distribution where half of the values are less than the mean and half of the values are greater than the mean. In a standard normal distribution, the mean is 0. Hence, the z-score that will divide the distribution into half is also 0.

A z-score is a standardized value, expressing how many standard deviations a value is above or below the mean. These scores are particularly useful when comparing values from different data sets that have different means and standard deviations, such as exam scores from different classes or schools. They help us understand whether a particular score is common, or exceptionally high or low.

To find this value, you can use a Z-Table of Standard Normal Distribution, which shows the cumulative probability of a random variable from a standard normal distribution (with mean 0 and standard deviation 1), as being less than a certain value.

Learn more about Standard Normal Distribution here:

https://brainly.com/question/30390016

#SPJ12

The Whitt Window Company, a company with only three employees, makes two different kinds of hand-crafted windows: a wood-framed and an aluminum-framed window. The company earns $300 profit for each wood-framed window and $150 profit for each aluminum-framed window. Doug makes the wood frames and can make 6 per day. Linda makes the aluminum frames and can make 4 per day. Bob forms and cuts the glass and can make 48 square feet of glass per day. Each wood-framed window uses 6 square feet of glass and each aluminum-framed window uses 8 square feet of glass.
The company wishes to determine how many windows of each type to produce per day to maximize total profit.
(a) Describe the analogy between this problem and the Wyndor Glass Co. problem discussed in Sec. 3.1. Then construct and fill in a table like Table 3.1 for this problem, identifying both the activities and the resources.
(b) Formulate a linear programming model for this problem.(c) Use the graphical method to solve this model.

Answers

Answer:

Maximize Z = 6x1 + 3x2

other answers are as follows in the explanation

Step-by-step explanation:

Employee Glass Needed per product(sq feet) Glass available per                                                                                                  production

                            Product      

Wood framed glass Aluminium framed glass    

doug 6                         0                                            36  

linda 0                        8                                             32  

Bob         6                        8                                            48  

profit  $300              $150  

per batch

Z = 6x1 + 3x2,

with the constraint

6x1 ≤ 36    8x2 ≤ 32      6x1 + 8x2 ≤ 48  

and x1 ≥ 0, x2 ≥ 0

Maximize Z = 6x1 + 3x2

to get the points of the boundary on the graph we say

when 6x1= 36

x1=6

when

8x2= 32

x2=4

to get the line of intersect , we go to  

6x1 + 8x2 ≤ 48  

so,  6x1 + 8x2 = 48  

When X1=0

8x2=48

x2=6

when x2=0

x1=8

the optimal point can be seen on the graph as attached

In this exercise we have to write the maximum function of a company, in this way we find that:

A)[tex]M(Z) = 6x_1+ 3x_2[/tex]

B)[tex]X_1= 8 \ and \ x_2 = 6 \ or \ 0[/tex]

A)So to calculate the maximum equation we have:

[tex]Z = 6x_1 + 3x_2\\6x_1 \leq 36 \\ 8x_2 \leq 32 \\ 6x_1 + 8x_2 \leq 48[/tex]

B) To calculate the limits of the graph we have to do:

[tex]6x_1= 36\\x_1=6\\8x_2= 32\\x_2=4\\6x_1 + 8x_2 = 48\\X_1=0\\8x_2=48\\x_2=6\\x_2=0\\x_1=8[/tex]

See more about graphs at brainly.com/question/14375099

Agee Storage issued 35 million shares of its $1 per common stock at $16 per share several years ago. Last year, for the first time, Agee reacquired 1 million shares at $14 per share. If Agee now retires 1 million shares at $19 per share. By what amount will Agee's total paid-in capital decline?

Answers

Answer:

$18 Millions

Step-by-step explanation:

Decline in total paid in capital=Total value of reacquisition - Decline in retained earnings

$19-$1=$18 millions

Answer:

$18 000 000

Step-by-step explanation:

The first step is to calculate the par value of shares

$1*35000000=35000000

=$35000000

Issued shares of the the par

amount over par

=$16-$1=$15

Then paid capital in excess of par

$15*1000000

=$525000000

The first reacquire remember there were issued at $16

so for first reacquire

$16-$14=$2

$2*35000000=$70 000000

so Agee total paid-in capital will decline by

$15+$2+$1=$18 per share

A major television manufacturer has determined that its 44 inch screens have a mean service life that can be modeled by a normal distribution with a mean of 6 years and a standard deviation of one-half year (6 months). What is the probability that the service life of that product is between 5 and 7 years

Answers

Answer:

[tex]P(5<X<7)=P(\frac{5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{7-\mu}{\sigma})=P(\frac{5-6}{0.5}<Z<\frac{7-6}{0.5})=P(-2<z<2)[/tex]

And we can find this probability with thie difference:

[tex]P(-2<z<2)=P(z<2)-P(z<-2)[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(-2<z<2)=P(z<2)-P(z<-2)=0.97725-0.02275=0.9545[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the heights of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(6,0.5)[/tex]  

Where [tex]\mu=6[/tex] and [tex]\sigma=0.5[/tex]

We are interested on this probability

[tex]P(5<X<7)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(5<X<7)=P(\frac{5-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{7-\mu}{\sigma})=P(\frac{5-6}{0.5}<Z<\frac{7-6}{0.5})=P(-2<z<2)[/tex]

And we can find this probability with thie difference:

[tex]P(-2<z<2)=P(z<2)-P(z<-2)[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(-2<z<2)=P(z<2)-P(z<-2)=0.97725-0.02275=0.9545[/tex]

Final answer:

The probability that a 44 inch television screen will have a service life between 5 and 7 years, given a normal distribution with a mean of 6 years and a standard deviation of 0.5 years, is approximately 95.45%.

Explanation:

To calculate the probability that the service life of a 44 inch television screen is between 5 and 7 years, we use the properties of the normal distribution where the mean (μ) is 6 years and the standard deviation (σ) is 0.5 years. We need to find the z-scores for 5 and 7 years and then use the standard normal distribution table or a calculator to find the probability that the service life falls between these two z-scores.

First, calculate the z-score for 5 years:
z = (X - μ) / σ
z = (5 - 6) / 0.5
z = -2.0

Next, calculate the z-score for 7 years:
z = (7 - 6) / 0.5
z = 2.0

Once we have the z-scores, we look up the corresponding probabilities in the normal distribution table or use a calculator with normal distribution functions. The probability of z being between -2.0 and 2.0 in a standard normal distribution is approximately 0.9545.

Therefore, the probability that a television will last between 5 and 7 years is approximately 95.45%.

In the game of Pick-A-Ball without replacement, there are 10 colored balls: 3 red, 4 white, and 3 blue. The balls have been placed into a small bucket, and the bucket has been shaken thoroughly. You will be asked to reach into the bucket without looking and select 2 balls. Because the bucket has been shaken thoroughly, you can assume that each individual ball is selected at random with equal likelihood of being chosen. Now, close your eyes! Reach into the bucket, and pick a ball. (Click "Pick-A-Ball!" to simulate reaching into the bucket and drawing your ball.) Pick-A-Ball! What is the probability of selecting the color of ball that you just selected? (Enter your answer in decimal format and round it to two decimal places.) Don’t put your first ball back into the bucket. Now, reach in (again, no peeking!), and pick your second ball. (Click "Pick-A-Ball!" to simulate reaching into the bucket and selecting your next ball.) Pick-A-Ball! What is the probability of selecting the color of ball that you just selected? (Enter your answer in decimal format and round it to two decimal places.)

Answers

Final answer:

The probability of selecting the color of the first ball is 3/10. The probability of selecting the same color for the second ball depends on the remaining number of balls of that color divided by the total remaining number of balls.

Explanation:

The probability of selecting the color of the first ball is determined by the number of balls of that color divided by the total number of balls. In this case, there are 3 red balls out of 10, so the probability is 3/10.

After selecting the first ball without replacement, the probability of selecting the same color for the second ball depends on the remaining number of balls of that color divided by the total remaining number of balls. If the first ball was red, there are 2 red balls left out of 9, resulting in a probability of 2/9.

The probability of selecting a ball of the same color as the first ball drawn, without replacement, is as follows:

For red:[tex]\boxed{0.22}[/tex]

For white:[tex]\boxed{0.33}[/tex]

For blue:[tex]\boxed{0.22}[/tex]

Let's think step by step.To solve this problem, we need to calculate the probability of selecting a ball of the same color as the first ball drawn, without replacement. We will consider the two events separately: first, the probability of selecting a ball of the same color as the first ball when there are 10 balls in total, and second, the probability of selecting a ball of the same color as the first ball when there are only 9 balls left in the bucket (since the first ball is not replaced).

First Ball Selection:

When the first ball is picked, there are 10 balls in total, with 3 red, 4 white, and 3 blue balls. The probability of picking a ball of any specific color is the number of balls of that color divided by the total number of balls.

 For example, if the first ball drawn is red, the probability of drawing a red ball is:

[tex]\[ P(\text{first red}) = \frac{\text{Number of red balls}}{\text{Total number of balls}} = \frac{3}{10} \][/tex]

 Similarly, if the first ball is white, the probability is:

[tex]\[ P(\text{first white}) = \frac{\text{Number of white balls}}{\text{Total number of balls}} = \frac{4}{10} \][/tex]

 And if the first ball is blue, the probability is:

[tex]\[ P(\text{first blue}) = \frac{\text{Number of blue balls}}{\text{Total number of balls}} = \frac{3}{10} \][/tex]

 Second Ball Selection:

After the first ball is drawn and not replaced, there are 9 balls left in the bucket.

 If the first ball drawn was red, there are now 2 red balls left out of 9 total balls. The probability of drawing another red ball is:

[tex]\[ P(\text{second red} | \text{first red}) = \frac{\text{Number of red balls left}}{\text{Total number of balls left}} = \frac{2}{9} \][/tex]

If the first ball was white, there are now 3 white balls left out of 9 total balls. The probability of drawing another white ball is:

[tex]\[ P(\text{second white} | \text{first white}) = \frac{\text{Number of white balls left}}{\text{Total number of balls left}} = \frac{3}{9} = \frac{1}{3} \][/tex]

If the first ball was blue, there are now 2 blue balls left out of 9 total balls. The probability of drawing another blue ball is:

[tex]\[ P(\text{second blue} | \text{first blue}) = \frac{\text{Number of blue balls left}}{\text{Total number of balls left}} = \frac{2}{9} \][/tex]

Now, let's calculate the probabilities for each color and round them to two decimal places:

 For red:

[tex]\[ P(\text{second red} | \text{first red}) = \frac{2}{9} \approx 0.22 \][/tex]

 For white:

[tex]\[ P(\text{second white} | \text{first white}) = \frac{1}{3} \approx 0.33 \][/tex]

 For blue:

[tex]\[ P(\text{second blue} | \text{first blue}) = \frac{2}{9} \approx 0.22 \][/tex]

Final

The probability of selecting a ball of the same color as the first ball drawn, without replacement, is as follows:

For red:[tex]\boxed{0.22}[/tex]

For white:[tex]\boxed{0.33}[/tex]

For blue:[tex]\boxed{0.22}[/tex]

 These probabilities are rounded to two decimal places.

 The answer is: 0.22.

In ΔABC, b = 68 inches, ∠B=65° and ∠C=93°. Find the length of a, to the nearest inch.

Answers

Answer:

28 inches

Step-by-step explanation:

∠A + ∠B + ∠C = 180°

∠A + 65° +93° = 180°

∠A + 158° = 180°

∠A= 180°-158° = 22°

Using Law of Sines

a/sinA= b/sinB

a/sin22= 68 inches/sin65

a/sin22 = 68/0.9063 = 75.03

a = 75.03 x sin 22

a = 75.03 x 0.3746 = 28.106238≈28 inches

A card is drawn from a standard deck of 5252 playing cards. What is the probability that the card will be a heart or a face card? Express your answer as a fraction or a decimal number rounded to four decimal places.

Answers

Answer:

The probability that the card will be a heart or a face card is P=0.4231.

Step-by-step explanation:

We have a standard deck of 52 cards.

In this deck, we have 13 cards that are a heart.

We also have a total of 12 face cards (4 per each suit). So there are 3 face cards that are also a heart.

To calculate the probability that a card be a heart or a face card, we sum the probability of a card being a heart and the probability of it being a face card, and substract the probability of being a heart AND a face card.

We can express that as:

[tex]P(H\,or\,F)=P(H)+P(F)-P(H\&F)\\\\P(H\,or\,F)=13/52+12/52-3/52=22/52=0.4231[/tex]

Consider the problem of shrinkage in a supply chain. Use this data: Expected Consumer Demand = 5,000 Retail: Theft and Damage - 5% Distribution Center: Theft and Damage - 4% Packaging Center: Damage - 3% Manufacturing: Defect rate - 4% Materials: Supplier defects - 5% How many units should the materials plan account for in order to meet the expected consumer demand? (Choose the closest answer.)

Answers

Answer: units = 6198

Step-by-step explanation:

expected consumer demand is 5000, the units that must be planned given shrinkage percentage levels in different stages of the supply chain we have to use the trial and error method.

lets try 6200 units

6200 x 95% = 5890, 5890 x 96% = 5654.4, 5654.40 x 97% = 5484.768, 5484.768 x 96% = 5265.37728, 56265 x 95% = 5002.1084165002

6198 units

(6198  x 95% = 5888.10) (5888.10 x 96% = 5652.576) (5652.576 x 97% = 5482.99872) (5482.99872 x 96% = 5263.6787712) (5263.6787712 x 95% = 5000.4948326) ≈ 5000

using the same procedure for 6197 units the answer will be 4999.688041

units that should be produced to cover the demand of 5000 = 6198

Final answer:

To meet the 5,000 unit consumer demand, the materials plan should account for approximately 6,195 units, considering the cumulative loss percentages at each stage of the supply chain.

Explanation:

To meet the expected consumer demand of 5,000 units while accounting for shrinkage at various stages of the supply chain, we need to calculate the cumulative effect of theft, damage, and defects on the number of units. We need to work backwards from the consumer to the materials supplier to determine the initial quantity needed.

Start with the expected consumer demand: 5,000 units.Account for retail theft and damage: 5% loss means we need 5,000 / (1 - 0.05) = 5,263 units from the distribution centers.Account for distribution center theft and damage: 4% loss means we need 5,263 / (1 - 0.04) ≈ 5,482 units from the packaging center.Account for packaging center damage: 3% loss means we need 5,482 / (1 - 0.03) ≈ 5,650 units from manufacturing.Account for manufacturing defects: 4% loss means we need 5,650 / (1 - 0.04) ≈ 5,885 units from the materials.Finally, account for supplier defects: 5% loss means we need 5,885 / (1 - 0.05) ≈ 6,195 units.

The materials plan should account for approximately 6,195 units to meet the expected consumer demand, accounting for expected losses due to theft, damage, and defects throughout the supply chain stages.

An article in Medicine and Science in Sports and Exercise "Maximal Leg-Strength Training Improves Cycling Economy in Previously Untrained Men," (2005, Vol. 37 pp. 131–1236) studied cycling performance before and after eight weeks of leg-strength training. Seven previously untrained males performed leg-strength training three days per week for eight weeks (with four sets of five replications at 85% of one repetition maximum). Peak power during incremental cycling increased to a mean of 315 watts with a standard deviation of 16 watts. Construct a 99% two-sided confidence interval for the mean peak power after training. Assume population is approximately normally distributed.

Answers

The 99% confidence interval for the mean peak power after training is approximately [tex](292.61, 337.39)[/tex] watts.

Identify the given data:

Mean peak power after training: [tex]\bar{x} = 315[/tex] watts

Standard deviation: [tex]s = 16[/tex] watts

Sample size: [tex]n = 7[/tex]

Confidence level: 99%

Find the critical value:

Since the sample size is small (n < 30) and the population standard deviation is not known, we use the t-distribution. For a 99% confidence interval with [tex](n-1) = 6[/tex] degrees of freedom, the critical value (t-value) can be found from the t-table. Using the t-table, [tex]t_{\frac{\alpha}{2},6} = 3.707[/tex].

Calculate the standard error (SE):
[tex]SE = \frac{s}{\sqrt{n}} = \frac{16}{\sqrt{7}} = \frac{16}{2.6458} \approx 6.04[/tex] watts

Compute the margin of error (ME):
[tex]ME = t_{\frac{\alpha}{2}} \times SE = 3.707 \times 6.04 \approx 22.39[/tex] watts

Construct the confidence interval:

Lower bound: [tex]\bar{x} - ME = 315 - 22.39 \approx 292.61[/tex] watts

Upper bound: [tex]\bar{x} + ME = 315 + 22.39 \approx 337.39[/tex] watts

Pre Calculus, Trigonometry Help

Answers

Answer:

[tex]\displaystyle cos\theta=\frac{36}{164}=\frac{9}{41}[/tex]

[tex]\displaystyle tan\theta=\frac{160}{36}=\frac{40}{9}[/tex]

[tex]\displaystyle csc\theta=\frac{164}{160}=\frac{41}{40}[/tex]

[tex]\displaystyle sec\theta=\frac{164}{36}=\frac{41}{9}[/tex]

[tex]\displaystyle cot\theta=\frac{36}{160}=\frac{9}{40}[/tex]

Step-by-step explanation:

Trigonometric ratios in a Right Triangle

Let ABC a right triangle with the right angle (90°) in A. The longest length is called the hypotenuse and is the side opposite to A. The other sides are called legs and are shorter than the hypotenuse.

Some trigonometric relations are defined in a right triangle. Being [tex]\theta[/tex] one of the angles other than the right angle, h the hypotenuse, x the side opposite to [tex]\theta[/tex] and y the side adjacent to [tex]\theta[/tex], then

[tex]\displaystyle sin\theta=\frac{x}{h}[/tex]

[tex]\displaystyle cos\theta=\frac{y}{h}[/tex]

[tex]\displaystyle tan\theta=\frac{x}{y}[/tex]

[tex]\displaystyle csc\theta=\frac{h}{x}[/tex]

[tex]\displaystyle sec\theta=\frac{h}{y}[/tex]

[tex]\displaystyle cot\theta=\frac{y}{x}[/tex]

We are given the values of h=164 and x=160, let's find y

[tex]y=\sqrt{164^2-160^2}=36[/tex]

Now we compute the rest of the ratios

[tex]\displaystyle cos\theta=\frac{36}{164}=\frac{9}{41}[/tex]

[tex]\displaystyle tan\theta=\frac{160}{36}=\frac{40}{9}[/tex]

[tex]\displaystyle csc\theta=\frac{164}{160}=\frac{41}{40}[/tex]

[tex]\displaystyle sec\theta=\frac{164}{36}=\frac{41}{9}[/tex]

[tex]\displaystyle cot\theta=\frac{36}{160}=\frac{9}{40}[/tex]

One percent of all individuals in a certain population are carriers of a particular disease. A diagnostic test for this disease has a 93% detection rate for carriers and a 2% false positive rate. Suppose that an individual is tested. What is the probability that an individual who tests negative does not carry the disease? What is the specificity of the test?

Answers

Answer:

(1) The probability that an individual who tests negative does not carry the disease is 0.9709.

(2) The specificity of the test is 98%.

Step-by-step explanation:

Denote the events as follows:

X = a person carries the disease

Y = the test detected the disease.

Given:

[tex]P(X) = 0.01\\P(Y|X)=0.93\\P(Y|X^{c})=0.02[/tex]

The probability of a person not carrying the disease is:

[tex]P(X^{c})=1-P(X)=1-0.01=0.99[/tex]

The probability that the test does not detects the disease when the person is carrying it is:

[tex]P(Y^{c}|X)=1-P(Y|X)=1-0.93=0.07[/tex]

The probability that the test does detects the disease when the person is not carrying it is:

[tex]P(Y^{c}|X^{c})=1-P(Y|X^{c})=1-0.02=0.98[/tex]

(1)

Compute the probability that an individual who tests negative does not carry the disease as follows:

[tex]P(X^{c}|Y^{c})=\frac{P(Y^{c}|X^{c})P(X^{c})}{P(Y^{c}|X^{c})P(X^{c})+P(Y^{c}|X)P(X)} \\=\frac{(0.98\times 0.99)}{(0.98\times 0.99)+(0.07\times 0.01)} \\=0.9709[/tex]

Thus, the probability that an individual who tests negative does not carry the disease is 0.9709.

(2)

By specificity it implies that how accurate the test is.

Compute the probability of negative result when the person is not a carrier as follows:

[tex]P(Y^{c}|X^{c})=1-P(Y|X^{c})=1-0.02=0.98[/tex]

Thus, the specificity of the test is 98%.

Consider two people being randomly selected. (For simplicity, ignore leap years.)

(a) What is the probability that two people have a birthday on the 9th of any month?
(b) What is the probability that two people have a birthday on the same day of the same month?

Answers

Answer:

[tex](a) = \frac{144}{133225} \\\\(b) = \frac{1}{365}[/tex]

Step-by-step explanation:

Part (a) the probability that two people have a birthday on the 9th of any month.

Neglecting leap year, there are 365 days in a year.

There are 12 possible 9th in months that make a year calendar.

If two people have birthday on 9th; P(1st person) and P(2nd person).

[tex]=\frac{12}{365} X\frac{12}{365} = \frac{144}{133225}[/tex]

Part (b) the probability that two people have a birthday on the same day of the same month

P(2 people selected have birthday on the same day of same month) + P(2 people selected not having birthday on  same day of same month) = 1

P(2 people selected not having birthday on  same day of same month):

[tex]= \frac{365}{365} X \frac{364}{365} =\frac{364}{365}[/tex]

P(2 people selected have birthday on the same day of same month) [tex]= 1-\frac{364}{365} \\\\= \frac{1}{365}[/tex]

Final answer:

The probability that two people have a birthday on the 9th of any month is 1/133,225. The probability that two people have a birthday on the same day of the same month is also 1/133,225.

Explanation:

To calculate the probability that two people have a birthday on the 9th of any month, we need to consider the number of possible outcomes and the number of favorable outcomes. There are 12 months in a year, so the number of possible outcomes is 12. The probability of each person having a birthday on the 9th is 1/365. Therefore, the probability that two people have a birthday on the 9th of any month is (1/365) x (1/365) = 1/133,225.

To calculate the probability that two people have a birthday on the same day of the same month, we need to consider the number of possible outcomes and the number of favorable outcomes. There are 12 months in a year and each month has 30 or 31 days. So the number of possible outcomes is 12 x 31 = 372. The probability of each person having a birthday on a specific day is 1/365. Therefore, the probability that two people have a birthday on the same day of the same month is (1/365) x (1/365) = 1/133,225.

The number of accidents on a certain section of I-40 averages 4 accidents per weekday independent across weekdays. Assuming the number of accidents on a day follows a Poisson distribution.
What is the probability there are no car accidents on that stretch on Monday?

Answers

Answer:

1.83% probability there are no car accidents on that stretch on Monday

Step-by-step explanation:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given time interval.

The number of accidents on a certain section of I-40 averages 4 accidents per weekday independent across weekdays.

This means that [tex]\mu = 4[/tex]

What is the probability there are no car accidents on that stretch on Monday?

This is P(X = 0).

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-4}*(4)^{0}}{(0)!} = 0.0183[/tex]

1.83% probability there are no car accidents on that stretch on Monday

Final answer:

The probability of there being no car accidents on Monday on a certain section of I-40 can be calculated using the Poisson distribution. In this case, with an average of 4 accidents per weekday, the probability is approximately 1.83%.

Explanation:

To calculate the probability of there being no car accidents on Monday, we can use the Poisson distribution. In this case, the average number of accidents per weekday is given as 4. The Poisson distribution can be used to calculate the probability of a specific number of events occurring in a given time period.

The formula for calculating the probability of x events occurring in a Poisson distribution is:

P(x) = (e^-λ * λ^x) / x!

Where λ is the average number of events, and x is the number of events we want to calculate the probability for.

In this case, the average number of accidents per weekday is 4, so λ = 4. And we want to calculate the probability of there being no accidents, so x = 0.

Using the formula, we can calculate:

P(0) = (e^-4 * 4^0) / 0! = (e^-4 * 1) / 1 = e^-4, approximately 0.0183

Therefore, the probability of there being no car accidents on Monday is approximately 0.0183, or 1.83%.

plz help me answer this question

Answers

Answer:

The answer to your question is distance = 3500000 km

Step-by-step explanation:

Data

Scale  1 : 500000

7 cm

Process

1.- To solve this problem use direct proportions or rule of three.

                          1 : 500 000 :: 7 : x

2.- Multiply the middle numbers and the result divide it by the edge.

                x = (7 x 500000) / 1

Simplification

                x = 3500000 km                            

If the Durbin-Watson statistic has a value close to 0, which assumption is violated? In other words, which assumption is the Durbin-Watson statistic checking to see is violated?

a - Independence of errors
b- Normality of errors
c- Homoscedasticity
d- none of the above

Answers

Answer:

Null Hypothesis: No first order autocorrelation

Alternative hypothesis: first order correlation exists

The assumptions to run this test are:

1) Errors are normally distributed with mean 0

2) Errors follows an stationary process

3) Independence condition between the erros

The statistic is defined as:

[tex] DW = \frac{\sum_{t=2}^ T (e_t -e_{t-1})^2}{\sum_{t=1}^T e^2_t}[/tex]

And if the value for the DW is near to 0 we can conclude that the assumption of Independence is not satisfied.

Step-by-step explanation:

The Durbin Watson test is a way to check autocorrelation in residuals for a time seeries or a regression.

We need to remember that the autocorrelation is the similarity of the time series in successive intervals. When we conduct this type of test we are checking if the time series can be modeled with and AR(1) process autoregressive.

The system of hypothesis on this case are:

Null Hypothesis: No first order autocorrelation

Alternative hypothesis: First order correlation exists

The assumptions to run this test are:

1) Errors are normally distributed with mean 0

2) Errors follows an stationary process

3) Independence condition between the errors

The statistic is defined as:

[tex] DW = \frac{\sum_{t=2}^ T (e_t -e_{t-1})^2}{\sum_{t=1}^T e^2_t}[/tex]

And if the value for the DW is near to 0 we can conclude that the assumption of Independence is not satisfied.

You are staffing a new department, and you have applications on your desk. You will hire 2 of the 5 software engineers who have applied, and 3 of the 7 computer engineers who have applied. What is the total number of possible complete staffs you could hire

Answers

Answer:

The total number of possible complete staffs you could hire is 350.

Step-by-step explanation:

The order that the software engineers are is not important. For example, hiring John and Laura as the software engineers is the same as hiring Laura and John. The same applies for the computer engineers. So we use the combinations formula to solve this question.

Combinations formula:

[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

What is the total number of possible complete staffs you could hire?

2 software engineers from a set of 5

3 computer engineers from a set of 7

So

[tex]T = C_{5,2}*C_{7,3} = \frac{5!}{2!3!}*\frac{7!}{3!4!} = 10*35 = 350[/tex]

The total number of possible complete staffs you could hire is 350.

Find each difference in the photo below

Answers

Answer:

[tex]= - 2 x^{3} + 4x -8[/tex]

Step-by-step explanation:

The first step is to open the parenthesis,

Since there is a negative sign before the second parenthesis, so the sign of all the values in second parenthesis will be changed and the equation will look something like this

[tex]= 2x^{3} + 4x -2 - 4 x^{3} + 6[/tex]

The second step is to re arrange the equation

[tex]= 2x^{3} - 4 x^{3} + 4x - 2 + 6[/tex]

The last and final step is to solve the equation

[tex]= - 2 x^{3} + 4x -8[/tex]

This is our answer

Answer:

The difference is -2x³ + 4x + 4.

Step-by-step explanation:

Subtract the two expression as follows:

[tex](2x^{3}+4x-2)-(4x^{3}-6)=2x^{3}+4x-2-4x^{3}+6\\[/tex]

Combine the like terms together:

                                         [tex]=2x^{3}-4x^{3}+4x-2+6[/tex]

Simplify as follows:

                                         [tex]=-2x^{3}+4x+4[/tex]

Thus, the difference is -2x³ + 4x + 4.

A market analyst is developing a regression model to predict monthly household expenditures on groceries as a function of family size, household income, and household neighborhood (urban, suburban, and rural). The response variable in this model is _____.

Answers

Answer:

Monthly household expenditures on groceries

Step-by-step explanation:

The response variable is the one for which measurements are desired and that depends on other variables.

In this case, family size, household income, and household neighborhood are independent variables, while the response variable is the monthly household expenditures on groceries.

Lightbulbs of a certain type are advertised as having an average lifetime of 750 hours. The price of these bulbs is very favorable, so a potential customer has decided to go ahead with a purchase arrangement unless it can be conclusively demonstrated that the true average lifetime is smaller than what is advertised. A random sample of 50 bulbs was selected, the lifetime of each bulb determined, and the following information obtained:
Average lifetime = 738.44 hours and a standard deviation of lifetimes equal to 38.2 hours.
Should the customer purchase the light bulbs?
(a) Make the decision on a significance level of .05?
(b) Make the decision on a significance level of .01?

Answers

Answer:

(a) Customer will not purchase the light bulbs at significance level of 0.05

(b) Customer will purchase the light bulbs at significance level of 0.01 .

Step-by-step explanation:

We are given that Light bulbs of a certain type are advertised as having an average lifetime of 750 hours. A random sample of 50 bulbs was selected,  and the following information obtained:

Average lifetime = 738.44 hours and a standard deviation of lifetimes = 38.2 hours.

Let Null hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 750 {means that the true average lifetime is same as what is advertised}

Alternate Hypothesis, [tex]H_1[/tex] : [tex]\mu[/tex] < 750 {means that the true average lifetime is smaller than what is advertised}

Now, the test statistics is given by;

       T.S. = [tex]\frac{Xbar-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

where, X bar = sample mean = 738.44 hours

               s  = sample standard deviation = 38.2 hours

               n = sample size = 50

So, test statistics = [tex]\frac{738.44-750}{\frac{38.2}{\sqrt{50} } }[/tex] ~ [tex]t_4_9[/tex]

                            = -2.14

(a) Now, at 5% significance level, t table gives critical value of -1.6768 at 49 degree of freedom. Since our test statistics is less than the critical value of t, so which means our test statistics will lie in the rejection region and we have sufficient evidence to reject null hypothesis.

Therefore, we conclude that the true average lifetime is smaller than what is advertised and so consumer will not purchase the light bulbs.

(b) Now, at 1% significance level, t table gives critical value of -2.405 at 49 degree of freedom. Since our test statistics is higher than the critical value of t, so which means our test statistics will not lie in the rejection region and we have insufficient evidence to reject null hypothesis.

Therefore, we conclude that the true average lifetime is same as what it has been advertised and so consumer will purchase the light bulbs.

) Let y(1) = y0, y 0 (1) = v0. Solve the initial value problem. What is the longest interval on which the initial value problem is certain to have a unique twice differentiable solution?

Answers

QUESTION IS INCOMPLETE.

Nevertheless, I will explain how to find, without solving, the longest interval in which an initial value problem is certain to have a unique twice differentiable solution.

Step-by-step explanation:

Consider the Existence and uniqueness theorem:

Let p(t) , q(t) and r(t) be continuous on an interval a ≤ t ≤ b, then the differential equation given by:

y''+ p(t) y' +q(t) y = r(t) ;

y(t_0) = y_0, y'(t_0) = y'_0

has a unique solution defined for all t in the stated interval.

Example:

Consider the differential equation

ty'' + 9y = t

y(1) = y_0,

y'(1) = v_0

ty'' + 9y = t .................................(1)

First, write the differential equation (1) in the form:

y'' + p(t)y' + q(t)y = r(t) ..................(2)

by dividing (1) by t

So

y''+ (9/t)y = 1 ....................................(3)

Comparing (3) with (2)

p(t) = 0

q(t) = 9/t

r(t) = 1

For t = 0, p(t) and r(t) are continuous, but q(t) is undefined.

q(t) is continuous everywhere apart from the point t = 0.

We say (-∞, 0) and (0,∞) are the points where p(t), q(t) and r(t) are continuous.

But t = 1, which is contained in the initial conditions y(1) = y_0 and y'(1) = v_0 is found in (0,∞).

So, we conclude that this interval is the longest interval in which the initial value problem has a unique twice differentiable solution.

Suppose a survey of 500 people age 18 to 34 indicated that 32.2% of them live with one or both of their parents. Calculate and interpret a confidence interval estimate for the true proportion of all people age 18 to 34 who live with one or both parents. Use a 94% confidence level. ____________________________________________________________________________________________________________________________ CHAPTER 8: FLOW CHART VIEW OF FORMULAS FOR CONFIDENCE INTERVAL

Answers

Answer:

[tex]0.322 - 1.88\sqrt{\frac{0.322(1-0.322)}{500}}=0.283[/tex]

[tex]0.322 + 1.88\sqrt{\frac{0.322(1-0.322)}{500}}=0.361[/tex]

The 94% confidence interval would be given by (0.283;0.361)

Step-by-step explanation:

Notation and definitions

[tex]n=500[/tex] random sample taken

[tex]\hat p=0.322[/tex] estimated proportion of people between 18 to 34 who live with their parents

[tex]p[/tex] true population proportion of people between 18 to 34 who live with their parents  

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

The population proportion have the following distribution

[tex]p \sim N(p,\sqrt{\frac{p(1-p)}{n}})[/tex]

Solution to the problem

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 94% of confidence, our significance level would be given by [tex]\alpha=1-0.94=0.06[/tex] and [tex]\alpha/2 =0.03[/tex]. And the critical value would be given by:

[tex]z_{\alpha/2}=-1.88, z_{1-\alpha/2}=1.88[/tex]

The confidence interval for the mean is given by the following formula:  

[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]

If we replace the values obtained we got:

[tex]0.322 - 1.88\sqrt{\frac{0.322(1-0.322)}{500}}=0.283[/tex]

[tex]0.322 + 1.88\sqrt{\frac{0.322(1-0.322)}{500}}=0.361[/tex]

The 94% confidence interval would be given by (0.283;0.361)

In 2001, a total of 15,555 homicide deaths occurred among males and 4,753 homicide deaths occurred among females. The estimated 2001 midyear populations for males and females were 139,813,000 and 144,984,000 respectively
a) Calculate the homicide-related death rates for males per 100,000.
b) Calculate the homicide-related death rates for females per 100,000.
c) What type(s) of mortality rates did you calculate in Questions 17and 18?
d) Calculate the ratio of homicide-mortality rates for males compared to females.
e) Interpret the rates you calculated in Question 20 as if you were presenting information to a policymaker.

Answers

Answer:

a. 11

b. 3

c. homicide mortality rate

d. 11:3

Step-by-step explanation:

a.) If 15,555 homicide cases were recorded among males of 139,813,000 population, then in every 100,000 males, the number of homicides cases will become:

= [15,555/139,813,000] * 100,000

= 11.13 aproximately 11 homicide cases in every 100,000 males.

b.) If 4,753 homicide cases were recorded among Females of 144,984,000 population, then in every 100,000 Females, the number of homicides cases will become:

= [4753/144,984,000] * 100,000

= 3.28 approximately 3 homicide cases in every 100,000 females

C.) Homicide-mortality rate

d.) ratio of male to female homicide rate = 11 : 3

e.) What those rates means is that in every 100,000

Males in 2001, 11 of them were Victims of homicide and in every 100,000 females, 3 of them are victims of homicide.

On a certain airline, the chance the early flight from Atlanta to Chicago is full is 0.8. The chance the late flight is full is 0.7. The chance both flights are full is 0.6. Are the two flights being full independent events?

Answers

Answer:

No

Step-by-step explanation:

A- full early flight atlanta to chicago

P(a)=0,8

B- full late night flightt

P(b)=0,7

A&b- both are full

P(a&b) probability that both flights are full

Suppose that they are independet, then we have:

P(a&b)=p(a)*p(b)=0,8*0,7=0,56.

So if they are independet then p(a&b)=0,56, and that is not true.

Positive Test Result Negative Test Result
Hepatitis C 335 10
No Hepatitis C 2 1153

Based on the results of this study, how many false negatives should you expect out of 1000 tests

Answers

Answer:

In a sample of 1000 test the expected number of false negatives is 8.6.

Step-by-step explanation:

The table provided is:

                             Positive      Negative    TOTAL

Hepatitis C             335                  10            345

No Hepatitis C           2               1153           1155

TOTAL                     337               1163          1500

A false negative test result implies that, the person's test result for Hepatitis C was negative but actually he/she had Hepatitis C.

Compute the probability of false negative as follows:

[tex]P(Negative|No\ Hepapatits\ C)=\frac{n(Negative\cap No\ Hepapatits\ C)}{n(No\ Hepapatits\ C)} \\=\frac{10}{1163}\\ =0.0086[/tex]

Compute the expected number of false negatives in a sample is n = 1000 tests as follows:

E (False negative) = n × P (Negative|No Hepatitis C)

                              [tex]=1000\times0.0086\\=8.6[/tex]

Thus, in a sample of 1000 test the expected number of false negatives is 8.6.

A product has a 4 week lead time. The standard deviation of demand for each of the week is given below. What is the standard deviation of demand over the lead time? (Answer to 2 decimal places) Week Standard deviation of demand 1 16 2 15 3 17 4 13

Answers

÷Answer:

Standard Deviation  =  176.5

Step-by-step explanation:

To calculate the standard deviation, calculate the mean score for the 4 standard deviation scores:

mean, m = Σx ÷ n

where Σx represents summation of each value = 162 + 153 + 317 + 413

= 1045

n = number of samples to be considered = 4

mean, m = 1045 ÷4

= 261.25

To calculate the standard deviation, use the formula below

SD    =   [tex]\sqrt{\frac{Σ(x-m)}{n} ^{2} }[/tex]

where x =  each value from the week lead time

m = mean = 261.25

n = the size = 4

The Standard deviation formula can be simplified further

when x = 162

[tex]\sqrt{\frac{(x1-m)}{n} ^{2} }[/tex] = 49.625

when x = 153

[tex]\sqrt{\frac{(x2-m)}{n} ^{2} }[/tex] = 23.125

when x = 317

[tex]\sqrt{\frac{(x3-m)}{n} ^{2} }[/tex]=  27.875

when x = 413

[tex]\sqrt{\frac{(x4-m)}{n} ^{2} }[/tex]= 75.875

Note that the above 4 equations can be lumped up into one giant equation by applying a big square root function instead of breaking it down

SD = 49.625 + 23.125 + 27.875 + 75.875

SD = 176.5

Other Questions
How long does PowerPoint maintain your customization options?until you close all presentationsuntil you update your Windows settingsuntil you close all programs and log outuntil your installation ends or you make changes Explain the ways in which the Indus, the Nile, the Tigris and Euphrates, and the Yangzi and Yellow Rivers shaped the development of ancient Chinese, Indian, Egyptian, and Mesopotamian civilizations. In your essay cover the economic, political, religious, and social development of each, particularly with respect to differences in the development of these civilizations. In addition, explain why the earliest known sedentary, agricultural civilizations crystallized along these rivers. Mercury and oxygen react to form mercury(II) oxide, like this: 2 Hg(l)+02(g)--HgO(s) At a certain temperature, a chemist finds that a 6.9 L reaction vessel containing a mixture of mercury, oxygen, and mercury(II) oxide at equilibrium has the following composition: compound amount Hg 16.9 g O 10.9 g HgO 23.8 g Calculate the value of the equilibrium constant Kc for this reaction. Round your answer to 2 significant digits. a. Write a balanced chemical equation for this reaction below.Fe(s) + H2O2(aq) produces FeO3(s) + H2O (l) Brenda is the CEO of a large corporation. While presenting a proposal to a commercial bank for a corporate loan, she offered the bank's commercial loan manager a $10,000 "gift" for favorable treatment. Is Brenda guilty of bribery?A. Brenda is guilty of bribery because she is dealing with a commercial bank in the normal course of business.B. Brenda is guilty of bribery whether the manager accepts or not because the offer constitutes the crime.C. Brenda is not guilty of bribery.D. Brenda is guilty of bribery only if the manager accepts because the crime has not occurred without acceptance by the other party. A baseball manager who clings to old strategies that are ineffective, a lawyer who selects juries according to false stereotypes, and a political leader who does not withdraw support for a failing program are all exhibiting:________.a) belief perseverance.b) confirmatory hypothesis testing.c) the fundamental attribution error.d) need for closure. Explain how beginning the story with the dialogue between Rainsford and Whitney contributes to both the authors characterization of Rainsford and the storys mood. Cite evidence from the story in your response. 1)Businessmen during the Gilded Age of the late 19th century often favored relaxed immigration laws because theyA)remembered their immigrant heritage.B)were advocates of multicultural education.C)were supporters of the Temperance Movement.D)valued cheap and relatively unskilled labor.2)In World War II, the title of Supreme Allied Commander belonged toA)Harry Truman.B)Omar Bradley.C)George Patton.D)Dwight Eisenhower.3)This cartoon from 1933 represents FDR's promise toA)end the era of Prohibition.B)start the era of Prohibition.C)have Congress fund bottling plants.D)build more breweries in the United States.4)Which of these statements is true according to the graph?A)By 1900 the majority of the U.S. population lived in urban areas.B)In 1810, less than 90% of the U.S. population lived in rural areas.C)Rural and urban populations in the United States were roughly equal in 1920.D)Between 1940 and 1960 there was a steady increase in the U.S.'s rural population.5)According to the Treaty of Versailles, what country was expected to pay for the damages in World War I?A)Austria-HungaryB)FranceC)GermanyD)Russia6)According to this map, which part of the country did women have the least voting rights in 1919?A)WestB)MidwestC)SoutheastD)Northeast7)Which is the BEST definition for the term tenement ?A)an urban area with a fixed boundary that is smaller than a cityB)a subsidiary urban area surrounding and connected to a central cityC)an apartment building in which several families rent rooms often with little sanitation or safetyD)the restoration of run-down urban areas by the middle class resulting in the displacement of lower-income people8)"Every Man a King" Speechby Huey Long"It is not the difficulty of the problem which we have; it is the fact that the rich people of this country -- and by rich people I mean the super-rich -- will not allow us to solve the problems, or rather the one little problem that is afflicting this country, because in order to cure all of our woes it is necessary to scale down the big fortunes, that we may scatter the wealth to be shared by all of the people."Huey Long's concerns are describing the problems faced by the country during which of these eras?A)Cold WarB)World War IC)World War IID)Great Depression9)Why is the Harlem Renaissance of major importance in American History?A)The government finally passed a law banning slavery.B)The area of New York was rebuilt after a devastating fire.C)It finally gave much needed jobs to African-Americans during the Great Migration.D)It brought the African-American experience into the cultural conscious of the country.10)When the Scopes Trial began, the prosecution focused on which of these strategies?A)the law had been violatedB)evolution contradicted the BibleC)John Scopes was not a good teacherD)the U.S. should ban the teaching of evolution11)Which of these marketing methods helped Henry Ford sell the Model T to many people who had never before owned a car?A)offering free maintenance on cars for a full yearB)airing television commercials with memorable slogansC)advertising with the new communication outlets such as radioD)offering many different colors and models for buyers to choose from12)"I have always been fond of the East Africa proverb: 'Speak softly and carry a big stick; you will go far.'-Theodore Roosevelt, January 26, 1900Given this quote and the actions of Roosevelt's presidency, it is MOST likely that in the early 1900s the United StatesA)sought to reverse the Monroe Doctrine of the 1820s.B)isolated itself from nearly all international activity.C)de-emphasized the importance of international diplomacy.D)expanded its military in hopes of becoming a world power.13)President Franklin Roosevelt said that December 7, 1941, would "live in infamy" because on that dayA)Germany invaded Poland.B)Japan bombed Pearl Harbor.C)France was invaded by Germany.D)Japan invaded the Philippines.14)In an effort to deal with an increasing number of immigrants, in 1892 the U.S. governmentA)banned all immigrants into the country.B)required all immigrants to speak English.C)reduced the number of years required to become a U.S. citizen.D)opened an immigration station on Ellis Island in New York City. Suppose that a country experiences growth strongly biased toward its export, cloth, Group of answer choices this will tend to improve the country's terms of trade. this will tend to worsen the terms of trade for the country's trading partner. this will tend to worsen the country's terms of trade. this will increase the price of cloth relative to the imported good. this will tend to leave the country's terms of trade unchanged. When you jump from a height to the ground, you let your legs bend at the knees as your feet hit the floor.Why we do this in terms in physics in momentum? What is the solution of the system of equations shown in the graph?I Think it's c. 0,4 but I could be wrong You are studying a bacterium that utilizes a sugar called athelose. This sugar can be used as an energy source when necessary. Metabolism of athelose is controlled by the ath operon. The genes of the ath operon code for the enzymes necessary to use athelose as an energy source. You have found the following: The genes of the ath operon are expressed only when the concentration of athelose in the bacterium is high. When glucose is absent, the bacterium needs to metabolize athelose as an energy source as much as possible. The same catabolite activator protein (CAP) involved with the lac operon interacts with the ath operon. Based on this information, how is the ath operon most likely controlled? How did television programs affect society during the 1950s? Factor the polynomial: 1bxx+b dan is building a circular swimming pool and wants the circumference to be no more than 95 feet what is the largest radius possible for the pool. Round to the nearest tenth of a foot. Hemos conocido a varios bolivianos este ao. (t)________ Gilberto ha disfrutado de sus vacaciones. (yo)_______Has ido al Museo de Arte en Boston? (ustedes)__________ Paula y Sonia han comenzado a levantar pesas. (Virginia)________ He asistido a tres conferencias de ese escritor. (los estudiantes)_____ Mi hermano ha engordado un poco este verano. (mi madre y yo)________ While testing for biological macromolecules in an unknown, you find that it reacts strongly with iodine and the solution immediately turns a very dark black. The macromolecule at hand must be:_________. Solve for all the missing angles for triangle ABC: a= 10cm, b=15cm, c= 20cm. State the angles in order (Angle A,B,C) and round answers to the nearest hundredth Two times a number, x, plus 3 times a number, y, equals 50. Four times x minus 2 times y equals 4. What are the numbers? A) x = 7, y = 12 B) x = 19, y = 4 C) x = 10, y= 18 D) x = -11, y = 24 force which we witnessed after a sock and balloon were rubbed together.