A piston-cylinder device contains 0.15 kg of air initially at 2 MPa and 350 °C. The air is first expanded isothermally to 500 kPa, then compressed polytropically with a polytropic exponent of 1.2 to the initial pressure, and finally compressed in an isobaric process to the initial state. Determine the boundary work for each process and the net work for the cycle?

Answers

Answer 1

Answer:

Isothermal  expansion W₁ =-37198.9 J

Polytropic Compression W₂ =-34872.82 J

Isobaric Compression W₃ =  -6974.566 J

The net work for the cycle = -79046.29 J

Explanation:

Mass of air = 0.15 kg = 150 g

Molar mass = 28.9647 g/mol

Number of moles = 150 g /28.9647 g/mol = 5.179 moles of air

PV = nRT therefrore V = nRT/(P) = 5.179*8.314*(350+273.15)/(2×10⁶) = 0.0134167 m³

For isothermal expansion we have

P₁V₁ = P₂V₂ or V₂ = P₁V₁/P₂ = 2×10⁶*0.0134167 / (5×10⁵) = 0.0536668 m³

Therefore work done

W₁ = -nRTln(V₂/V₁) = -26833ln(4) = -37198.9 J

Stage 2

Compression polytropically we have

[tex]\frac{P_2}{P_3} = (\frac{V_3}{V_2} )^n[/tex]  where P₃ = 2 MPa

Therefore V₃ = [tex](\frac{1}{4} )^{\frac{1}{1.2} }*V_2[/tex]  = 1.6904×10⁻² m³

Work = W₂ = [tex]\frac{P_2V_2-P_3V_3}{n-1}[/tex] =  -34872.82 J

[tex]\frac{P_2}{P_3} = (\frac{T_2}{T_3} )^\frac{n}{n-1}[/tex]     or T₃ = [tex]T_2*(\frac{P_3}{P_2})^\frac{n-1}{n}[/tex] = 785.12 K

Isobaric compression we have  thus

Work done W₃ = P(V₁ -V₃) = -6974.566 J

Total work = W₁ + W₂ + W₃ = -37198.9 J + -34872.82 J + -6974.566 J = -79046.29 J


Related Questions

A ship tows a submerged cylinder, 1.5 m in diameter and 22 m long, at U = 5 m/s in fresh water at 20°C. Estimate the towing power in kW if the cylinder is (a) parallel, and (b) normal to the tow direction.

Answers

Based on the available information, the the estimated towing power required is:

(a) For the parallel orientation: 655 kW

(b) For the normal orientation: 4,116.75 kW

Given:

- Diameter of the cylinder: 1.5 m

- Length of the cylinder: 22 m

- Towing speed (U): 5 m/s

- Water temperature: 20°C

(a) Cylinder parallel to the tow direction:

Step 1: Calculate the drag force for the parallel orientation.

The drag force for a submerged cylinder in parallel orientation is given by the formula:

F_D = 0.5 × ρ × C_D × A × U^2

Where:

- ρ is the density of fresh water at 20°C, which is approximately 998 kg/m³.

- C_D is the drag coefficient for a cylinder in parallel orientation, which is approximately 0.82.

- A is the cross-sectional area of the cylinder, which is π × D × L = π × 1.5 m × 22 m = 103.87 m².

Calculating the drag force:

F_D = 0.5 × 998 kg/m³ × 0.82 × 103.87 m² × (5 m/s)² = 131,000 N

Step 2: Calculate the towing power for the parallel orientation.

Towing power = Drag force × Towing speed

Towing power = 131,000 N × 5 m/s = 655,000 W = 655 kW

(b) Cylinder normal to the tow direction:

Step 3: Calculate the drag force for the normal orientation.

The drag force for a submerged cylinder in normal orientation is given by the formula:

F_D = 0.5 × ρ × C_D × A × U^2

Where:

- C_D is the drag coefficient for a cylinder in normal orientation, which is approximately 1.2.

- A is the cross-sectional area of the cylinder, which is π × D × D/4 = π × 1.5 m × 1.5 m/4 = 1.77 m².

Calculating the drag force:

F_D = 0.5 × 998 kg/m³ × 1.2 × 1.77 m² × (5 m/s)² = 823,350 N

Step 4: Calculate the towing power for the normal orientation.

Towing power = Drag force × Towing speed

Towing power = 823,350 N × 5 m/s = 4,116,750 W = 4,116.75 kW

Therefore, the estimated towing power required is:

(a) For the parallel orientation: 655 kW

(b) For the normal orientation: 4,116.75 kW

A developer is having a single-lane raceway constructed with a 180 km/h design speed. A curve on the raceway has a radius of 320 m, a central angle of 30 degrees, and PI stationing at 11 511.200. If the design coefficient of side friction is 0.20, determine the superelevation at the design speed (Hint: Consider normal component of the centripetal force). Also, compute the length of curve and stationing of the PC and PT.

Answers

Answer:

The answer is in the attachment.

Explanation:

Air at 27oC and 50% relative humidity is cooled in a sensible cooling process to 18oC. The air is then heated to 45oC in a sensible heating process. Finally, the air experiences an adiabatic saturation process that increases the relative humidity back to 50%. Find the specific energy that is removed when the air is cooled to 18°C.

Answers

Answer:

[tex]q_{out} = 9.25\,\frac{kJ}{kg}[/tex]

Explanation:

First, it is required to find the absolute humidity of air at initial state:

[tex]\omega = \frac{0.622\cdot \phi \cdot P_{g}}{P-\phi \cdot P_{g}}[/tex]

The saturation pressure at [tex]T = 27^{\textdegree}C[/tex] is:

[tex]P_{g} = 3.601\,kPa[/tex]

Then,

[tex]\omega = \frac{0.622\cdot (0.5)\cdot (3.601\,kPa)}{101.325\,kPa-(0.5)\cdot (3.601\,kPa)}[/tex]

[tex]\omega = 0.0113\,\frac{kg\,H_{2}O}{kg\,air}[/tex]

A simple cooling process implies a cooling process with constant absolute humidity. The specific entalphies for humid air are:

Initial state:

[tex]h_{1} = (1.005\,\frac{kJ}{kg\cdot ^{\textdegree}C})\cdot (27^{\textdegree}C)+(0.0113)\cdot (2551.96\,\frac{kJ}{kg} )[/tex]

[tex]h_{1} = 55.972\,\frac{kJ}{kg}[/tex]

Final state:

[tex]h_{2} = (1.005\,\frac{kJ}{kg\cdot ^{\textdegree}C})\cdot (18^{\textdegree}C)+(0.0113)\cdot (2533.76\,\frac{kJ}{kg} )[/tex]

[tex]h_{2} = 46.722\,\frac{kJ}{kg}[/tex]

The specific energy that is removed is:

[tex]q_{out}= h_{1} - h_{2}[/tex]

[tex]q_{out} = 9.25\,\frac{kJ}{kg}[/tex]

3. Suppose that a class named Bicycle contains a private nonstatic integer named height, a public nonstatic String named model, and a public static integer named wheels. Which of the following are legal statements in a class named BicycleDemo that has instantiated an object as Bicycle myBike new Bicycle C);? f. Bicycle. model Hurricane a. myBike height 26; b. my Bike model Cyclone g. Bicycle. int 3 3; c. myBike Wheels 3 d. my Bike .model 108; i. Bicycle wheels 2 e. Bicycle height 24; j. Bicycle yourBike myBike

Answers

Answer:

The solution to the given problem is provided below.

Explanation:

a.) myBike.height = 26;                                                 Not Legal statement

b.) myBike.model = “Cyclone”:                                    Legal statement

c.) myBike.wheels = 3;                                                  Legal statement

d.) myBike.model = 108;                                               Not legal statement

e.) Bicycle.height = 24;                                                  Not Legal statement

f.) Bicycle.model = “Hurricane”;                                 Not legal statement

g.) Bicycle.int = 3;                                                           Not Legal statement

h.) Bicycle.model = 108;                                                Not Legal Statement

i.) Bicycle.wheels = 2;                                                    Legal Statement

j.) Bicycle yourBike = myBike;                                      Legal Statement

Consider a 20 * 105 m3 lake fed by a polluted stream having a flow rate of 4.2 m3/s and pollutant concentration equal to 25 mg/L and fed by a sewage outfall that discharges 0.5 m3/s of wastewater having a pollutant concentration of 275 mg/L. The stream and sewage wastes have a second order decay rate of 0.32 L/(mg-day). Assuming the pollutant is completely mixed in the lake and assuming no evaporation or other water losses or gains, find the steady-state pollutant concentration in the lake. Derive the equation from the mass balance on C in the lake for full credit. Note that the quadratic equation will be useful for solving this problem.

Answers

Answer:

Explanation:

The detailed steps and calculations is as shown in the attachment.

where s = flow rate of incoming stream

Cs = concentration of pollutant in stream

Qf = flow rate from factory

Cp = concentration of pollutant from factory

Qo = flow rate out of lake

Co = concentration of pollutant in the lake

V = volume of lake

k = reaction rate coefficient

A pipe of inner radius R1, outer radius R2 and constant thermal conductivity K is maintained at an inner temperature T1 and outer temperature T2. For a length of pipe L find the rate at which the heat is lost and the temperature inside the pipe in the steady state.

Answers

Answer:

Heat lost from the cylindrical pipe is given by the formula,

[tex]d Q= \frac{2 \pi K L (T_{1} - T_{2} )}{log_{e}(\frac{R_{2} }{R_{1} } ) }[/tex]

Temperature distribution inside the cylinder is given by,

[tex]\frac{T - T_{1} }{T_{2} - T_{1} } = \frac{log_{e} \frac{R}{R_{1} }}{log_{e} \frac{R_{2}}{R_{1} }}[/tex]    

Explanation:

Inner radius = [tex]R_{1}[/tex]  

Outer radius = [tex]R_{2}[/tex]

Constant thermal conductivity = K

Inner temperature = [tex]T_{1}[/tex]

Outer temperature = [tex]T_{2}[/tex]

Length of the pipe = L

Heat lost from the cylindrical pipe is given by the formula,

[tex]d Q= \frac{2 \pi K L (T_{1} - T_{2} )}{log_{e}(\frac{R_{2} }{R_{1} } ) }[/tex]------------ (1)

Temperature distribution inside the cylinder is given by,

[tex]\frac{T - T_{1} }{T_{2} - T_{1} } = \frac{log_{e} \frac{R}{R_{1} }}{log_{e} \frac{R_{2}}{R_{1} }}[/tex]     ------------ (2)

 

 

g Create an array of five animals. Use a for loop to display the values stored in that array. Add two more animals to the end of that array. Sort the array and display the sorted array on the screen.

Answers

Answer:

The most common approach to accessing an array is to use a for loop:

var mammals = new Array("cat","dog","human","whale","seal");

var animalString = "";

for (var i = 0; i < mammals. length; i++) {

animalString += mammals[i] + " ";

}

alert(animalString);

Discussion

A for loop can be used to access every element of an array. The array begins at zero, and the array property length is used to set the loop end.

Though support for both indexOf and lastIndexOf has existed in browsers for some time, it’s only been formalized with the release of ECMAScript 5. Both methods take a search value, which is then compared to every element in the array. If the value is found, both return an index representing the array element. If the value is not found, –1 is returned. The indexOf method returns the first one found, the lastIndexOf returns the last one found:

var animals = new Array("dog","cat","seal","walrus","lion", "cat");

alert(animals.indexOf("cat")); // prints 1

alert(animals.lastIndexOf("cat")); // prints 5

Both methods can take a starting index, setting where the search is going to start:

var animals = new Array("dog","cat","seal","walrus","lion", "cat");

alert(animals.indexOf("cat",2)); // prints 5

alert(animals.lastIndexOf("cat",4)); /

Answer:

animals = ["Dog", "Lion", "Goat", "Zebra", "Cat"]

           for animal in animals:

                       print(animal)

x = animals.insert(5, "Lizard")

y = animals.insert(6, "Bat")

z = sorted(animals)

print(z)

Explanation:

The question can be solved using various back-end coding language like python, java, JavaScript etc. But I will be writing the code with python.

The first question said we should create an array or list of five animals.

animals = ["Dog", "Lion", "Goat", "Zebra", "Cat"]  → I created the five animals in a list and stored them in the variable animals.

for animal in animals:  I used a for loop to iterate through the list print(animal)  I used print statement to display the values stored in the array or list.

x = animals.insert(5, "Lizard")  I added an animal, lizard to the end of the array

y = animals.insert(6, "Bat")  I added another animal , Bat to the end of the array.

z = sorted(animals)  I sorted the array according to alphabetical number.

print(z) I displayed the sorted array .

What does the following program segment do? Declare Count As Integer Declare Sum As Integer Set Sum = 0 For (Count = 1; Count < 50; Count++) Set Sum = Sum + Count End For

Answers

1225

Explanation:

This segment helps initialize sum as 0. The for loop is used to increment with every execution and it is added to the sum. The loop runs 49 times and every time the count is added to the sum. In short it is the sum of first 49 natural numbers i.e 1+2+3+......+49.

The water behind Hoover Dam is 206m higher than the Colorado river below it. At what rate must water pass through the hydraulic turbines of this dam to produce 100 MW of power if the turbines are 100 percent efficient?

Answers

Answer:

m' = 4948.38 kg/s

Explanation:

For a case of 100% efficiency, the power produced must be equal to the rate of potential energy conversion

GIVEN THAT

Power = 100 MW

rate of Potential energy = (m')*g*h

100*10^6 = (m')*9.81*206

m' = 4948.38 kg/s

Answer:

49.484 m³ / s

Explanation:

Volume flow rate = Power in W / (efficiency × density × height × acceleration due to gravity)

Volume flow rate = 100 × 10⁶ / ( 1 × 1000 kg/m³ × 206 m × 9.81 m/s²)

V = 49.484 m³ / s

A large tower is to be supported by a series of steel wires. It is estimated that the load on each wire will be 11,100 N (2500 lb f ). Determine the minimum required wire diameter assuming a factor of safety of 2 and a yield strength of 1030 MPa (150,000 psi).

Answers

Answer:

5.24m

Explanation:

Data given

force, F= 11,100N

safety factor,N=2

yield strength, =1030MPa

To determine the minimum diameter, we first determine the working strength which is expressed as

[tex]working strength=\frac{yield strength}{safty factor}\\ Working strength =1030/2=515MPa\\[/tex]

Since also the working strength is define as the ration of the force to the area, we have

[tex]515=\frac{11100}{A}\\ A=21.55m^{2}[/tex]

hence the required diameter is given as

[tex]A=\pi d^2/4\\d=\sqrt{\frac{4*21.55 }{\pi }} \\d=5.24m[/tex]

Write a loop that prints the first 128 ASCII values followed by the corresponding characters (see the section on characters in Chapter 2). Be aware that most of the ASCII values in the range "0..31" belong to special control characters with no standard print representation, so you might see strange symbols in the output for these values.

Answers

Explanation:

Please refer to the attached image

Python Code:

Please refer to the attached image

Output:

Please refer to the attached image

Following are the program to print the first 128 ASCII values:

Program:

#include <iostream>//header file

using namespace std;

int main()//main method

{

int i=1;//defining integer variable

for(i=1;i<=128;i++) //defining loop that prints the first 128 ASCII values

{

   char x=(char)i;//defining character variable that converts integer value into ASCII code value

   printf("%d=%c\n",i ,x);//print converted ASCII code value

}

   return 0;

}

Program Explanation:

Defining header file.Defining the main method.Inside the method, an integer variable "i" is declared which uses the for loop that counts 1 to 128 character values.Inside the loop, a character variable "x" is declared that converts integer values into a character, and use a print method that prints converter value.

Output:

Please find the attached file.

Find out more information about the ASCII values here:

brainly.com/question/3115410

Silicon carbide nanowires of diameter 15 nm can be grown onto a solid silicon carbide surface by carefully depositing droplets of catalyst liquid onto a flat silicon carbide substrate. Silicon carbide nanowires grow upward from the deposited drops, and if the drops are deposited in a pattern, an array of nanowire fins can be grown, forming a silicon carbide nano-heat sink. Consider finned and unfinned electronics packages in which an extremely small, 10 μm × 10 μm electronics device is sandwiched between two 100-nm-thick silicon carbide sheets. In both cases, the coolant is a dielectric liquid at 20°C. A heat transfer coefficient of 1.0 × 105 W/m2·K exists on the top and bottom of the unfinned package and on all surfaces of the exposed silicon carbide fins, which are each 300 nm long. Each nano-heat sink includes a 50 × 50 array of nanofins. Determine the maximum allowable heat rate that can be generated by the electronic device so that its temperature is maintained at 95°C for (a) the unfinned and (b) the finned packages

Answers

Answer:

Please find attached file for complete answer.

Explanation:

The portable lighting equipment for a mine is located 100 meters from its dc supply source. The mine lights use a total of 5 kW and operate at 120 V dc. Determine the required cross-sectional area of the copper wires used to connect the source to the mine lights if we require that the power lost in the copper wires be less than or equal to 5 percent of the power required by the mine lights.

Answers

Final answer:

To calculate the required cross-sectional area of copper wires needed to connect the DC supply source to the mine lights with less than 5% power loss, calculate the permissible power loss, and then use the relationship between power loss, current, and wire resistance. Considering the resistivity of copper and the round trip length of the wire, the formula A = ρL/(δP/I²) determines the necessary wire thickness.

Explanation:

To determine the required cross-sectional area of copper wires for the lighting equipment, we need to ensure the power loss (δP) is no more than 5% of the lights' power usage (P), which is 5 kW (5000 W). As the power loss in wires is given by δP = I²R, where I is the current and R is the resistance of the wire, we must first calculate the current using P = IV, giving I = P/V = 5000W/120V = 41.67 A. The power loss allowed is thus 5% of 5000 W, equating to 250 W. Given δP, we can find R using δP = I²R, which gives R = δP/I².

The resistance of a copper wire is also given by R = ρL/A, where ρ is the resistivity of copper (1.68 x 10^-8 Ωm), L is the length of the wire (200 meters round trip), and A is the cross-sectional area we need to find. Equating the two expressions for R and solving for A gives A = ρL/(δP/I²). Substituting the given and calculated values yields the required cross-sectional area. Finally, as resistance depends on the entire length of the circuit, remember to double the distance to account for both the outgoing and return paths.

The yield of a chemical process is being studied.The two most important variables are thought to be the pressure and the temperature.Three levels of each factor are selected, and a factorial experiment with two replicates is performed.The yield data follow:_____.

emperature 150 160 170 200 90.1 90.3 90.5 90.7 90.4 90.2 Pressure 215 90.5 90.6 90.8 90.9 90.7 90.6 230 89.9 90.1 90.4 90.1 90.2 90.4

a) Analyze the data and draw conclusions.Use α = 0.05.

b) Prepare appropriate residual plots and comment on the model’s adequacy.

c) Under what conditions would you operate this process?(a

Answers

Answer:

note:

solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment

sed is a multipurpose tool that combines the work of several filters. sed performs noninteractive operations on a data stream. sed has a host of features that allow you ti select lines and run instructions on them.
True
False

Answers

Answer:

The answer is True.

Explanation:

SED is a command in UNIX for stream editors that parses and transforms text, using a simple, compact programming language. So the answer is TRUE that sed is a multipurpose tool that combines the work of several filters and performs noninteractive operations on a data stream. sed has a host of features that allow you ti select lines and run instructions on them.

. A steam turbine operates between 500°C and 3.5 MPa to 200°C and 0.3 MPa. If the turbine generates 750 kW and the heat loss is 100 kW, what is the flow rate of steam through the turbine?

Answers

Answer:

1.757 kg/s

Explanation:

According to the First Law of Thermodynamics, the physical model for a turbine working at steady state is:

[tex]-\dot Q_{out} - \dot W_{out} + \dot m \cdot (h_{in}-h_{out})=0[/tex]

The flow rate of steam is:

[tex]\dot m = \frac{\dot Q_{out}+\dot W_{out}}{h_{in}-h_{out}}[/tex]

Water enters and exits as superheated steam. After looking for useful data in a property table for superheated steam, specific enthalpies at inlet and outlet are presented below:

[tex]h_{in} = 3451.7 \frac{kJ}{kg} \\h_{out} = 2967.9 \frac{kJ}{kg} \\[/tex]

Finally, the flow rate is calculated:

[tex]\dot m = \frac{100 kW + 750 kW}{3451.7 \frac{kJ}{kg} - 2967.9 \frac{kJ}{kg}}\\\dot m =1.757 \frac{kg}{s}[/tex]

With reference to the NSPE Code of Ethics, which one of the following statements is true regarding the ethical obligations of the engineers involved in the VW Emissions Cheating Scandal.

a. The VW engineers involved conducted themselves honorably, responsibly, ethically, and lawfully so as to enhance the honor, reputation, and usefulness of the profession.
b. As faithful agents and trustees of Volkswagen the engineers involved could not ethically report the emissions cheating violations to public authorities.
c. The VW engineers involved were ethically obligated to hold paramount the health, welfare and safety of the public even if their supervisors directed them to implement software and hardware that enabled cheating on the emissions testing software.
d. The VW engineers involved were not ethically obligated to report to their supervisors and to upper management the emissions cheating violations being implemented in the control system hardware and software.

Answers

Answer: c. The VW engineers involved were ethically obligated to hold paramount the health, welfare and safety of the public even if their supervisors directed them to implement software and hardware that enabled cheating on the emissions testing software.

Explanation: The National Society of professional Engineers, NSPE define the code of ethics which must guide engineers in their duty. These codes act as principles of personal conduct, towards the public and their employers.  

One of the areas covered by these codes is overriding importance of the safety and health of the public to any other factor. In addition, engineers are to avoid deception and maintain the reputation of their profession. These cannot be sacrificed for the financial gain of their employers or explained away by saying they are following the direction of their employers. While they have certain responsibilities to their employers, the health welfare and safety of the public is more important.  

public interface Frac { /** @return the denominator of this fraction */ int getDenom(); /** @return the numerator of this fraction */ int getNum(); } Which of the interfaces, if correctly implemented by a Fraction class, would be sufficient functionality for a user of the Fraction class to determine if two fractions are equivalent

Answers

The getDenom() and getNum() methods would be sufficient functionality for a user of the Fraction class to determine if two fractions are equivalent, provided that the class also includes methods to compare fractions based on their numerators and denominators.

The getDenom() and getNum() methods are essential for accessing the denominator and numerator of a fraction. With these methods, users can directly compare the numerators and denominators of two fractions to determine if they are equivalent.

By retrieving the numerator and denominator values separately, users can perform mathematical operations or comparisons to check for equivalence without needing additional methods specifically for equivalence testing.

The Complete Question

Explain the importance of the getDenom() and getNum() methods in the Fraction class for determining if two fractions are equivalent.

In this lab, you add a loop and the statements that make up the loop body to a Java program that is provided. When completed, the program should calculate two totals: the number of left-handed people and the number of right-handed people in your class. Your loop should execute until the user enters the character X instead of L for left-handed or R for right-handed.The inputs for this program are as follows: R, R, R, L, L, L, R, L, R, R, L, XVariables have been declared for you, and the input and output statements have been written.

Answers

Answer:

use this to help www.code.org

Explanation:

this helped me alot

When the rope is at an angle of α = 30°, the 1-kg sphere A has a speed v0 = 0.6 m/s. The coefficient of restitution between A and the 2-kg wedge B is 0.8 and the length of rope l = 0.9 m. The spring constant has a value of 1500 N/m and θ = 20°. Determine (a) the velocities of A and B immediately after the impact, (b) the maximum deflection of the spring, assuming A does not strike B again before this poin

Answers

Answer:

Explanation: see the pictures attached

Electric heater wires are installed in a solid wall having a thickness of 8 cm and k=2.5 W/m.°C. The right face is exposed to an environment with h=50 W/m2°C and k'=30°C, while the left face is exposed to h=75 W/m2°C and T[infinity]=50°C. What is the maximum allowable heat generation rate such that the maximum temperature in the solid does not exceed 300°C.

Answers

Answer:

2.46 * 10⁵ W/m³

Explanation:

See attached pictures for detailed explanation.

Answer:

[tex]q^.=2.46*10^5W/m^3[/tex]

Explanation:

[tex]Given\\k=2.5W/m\\h_{1} =75(left)\\h_{2} =50(right)\\T_{1} =50^oC\\T_{2} =30^oC[/tex]

so

[tex]T=-\frac{q^.x^2}{2k} +c_{1}x+ c_{2} \\T=T_{1} \\at \\x=-0.04\\T=T_{2} \\at\\x=+0.04[/tex]

[tex]dT/dx=-q^.x/k+c_{1} \\T=T_{max} =300\\at\\x=c_{1} \frac{k}{q^.} (1)[/tex]

[tex]h_{1}(T_{1infinity} -T_{1} )=-k\frac{dT}{dx} |_{x=0.04} (2)\\-k\frac{dT}{dx} |_{x=0.04} =h_{2} (T_{2}-T_{2infinity} (3)[/tex]

[tex]300=-\frac{q^.}{2k} [c_{1} \frac{k}{q} ]^2+c_{1} [c_{1} \frac{k}{q} ]+c_{2} (1)[/tex]

[tex]75[50+\frac{q^2}{2k} (0.04)^2+c_{1} (0.04)-c_{2} ]=-k[\frac{+q^2(0.04)}{2k} ](2)[/tex]

[tex]-k[\frac{-q^.(0.04)}{2k} ]=50[\frac{-q^.(0.04)}{2k} +c_{1} (0.04)+c_{2} -30](3)[/tex]

solving above 3 equations for 3 unknowns c1,c2,q

we get [tex]q^.=2.46*10^5W/m^3[/tex]

In the casting of steel under certain mold conditions, the mold constant in Chvorinov's Rule is known to be 4.0 min/cm2, based on previous experience. The casting is a flat plate whose length = 35 cm, width = 10 cm, and thickness = 15 mm. Determine how long it will take for the casting to solidify.

Answers

Answer:

it will take for the casting to solidify 2.55 min

Explanation:

given data

mold constant = 4 min/cm²

length = 35 cm

width = 10 cm

thickness = 15 mm

solution

we use here Chvorinov's Rule that is

Chvorinov's Rule = mold constant × [tex](\frac{V}{A})^{1.9}[/tex]   ..............1

put here value

Chvorinov's Rule = 4 × [tex](\frac{600}{760})^{1.9}[/tex]  

Chvorinov's Rule = 2.55 min/in

so heer unit flow become [tex]min/in^{1.9}[/tex]  

Copper spheres of 20-mm diameter are quenched by being dropped into a tank of water that is maintained at 280 K . The spheres may be assumed to reach the terminal velocity on impact and to drop freely through the water. Estimate the terminal velocity by equating the drag and gravitational forces acting on the sphere. What is the approximate height of the water tank needed to cool the spheres from an initial temperature of 360 K to a center temperature of 320 K?

Answers

Answer:

The height of the water is 1.25 m

Explanation:

copper properties are:

Kc=385 W/mK

D=20x10^-3 m

gc=8960 kg/m^3

Cp=385 J/kg*K

R=10x10^-3 m

Water properties at 280 K

pw=1000 kg/m^3

Kw=0.582

v=0.1247x10^-6 m^2/s

The drag force is:

[tex]F_{D} =\frac{1}{2} Co*p_{w} A*V^{2}[/tex]

The bouyancy force is:

[tex]F_{B} =V*p_{w} *g[/tex]

The weight is:

[tex]W=V*p_{c} *g[/tex]

Laminar flow:

[tex]v_{T} =\frac{p_{c}-p_{w}*g*D^{2} }{18*u} =\frac{(8960-1000)*9.8*(20x10^{-3})^{2} }{18*0.00143} =1213.48 m/s[/tex]

Reynold number:

[tex]Re=\frac{1000*1213.48*20x10^{-3} }{0.00143} \\Re>>1[/tex]

Not flow region

For Newton flow region:

[tex]v_{T} =1.75\sqrt{(\frac{p_{c}-p_{w} }{p_{w} })gD }=1.75\sqrt{(\frac{8960-1000}{1000} )*9.8*20x10^{-3} } =2.186m/s[/tex]

[tex]Re=\frac{1000*2.186*20x10^{-3} }{0.00143} =30573.4[/tex]

[tex]Pr=\frac{\frac{u}{p} }{\frac{K}{pC_{p} } } =\frac{u*C_{p} }{k} =\frac{0.0014394198}{0.582} =10.31[/tex]

[tex]Nu=2+(0.4Re^{1/2} +0.06Re^{2/3} )Pr^{2/5} (u/us)^{1/4} \\Nu=2+(0.4*30573.4^{1/2}+0.06*30573.4^{2/3} )*10.31^{2/5} *(0.00143/0.00032)^{1/4} \\Nu=476.99[/tex]

[tex]Nu=\frac{h*d}{K_{w} } \\h=\frac{476.99*0.582}{20x10^{-3} } =13880.44W/m^{2} K[/tex]

[tex]\frac{T-T_{c} }{T_{w}-T_{c} } =e^{-t/T} \\T=\frac{m_{c}C_{p} }{hA_{c} } =\frac{8960*10x10^{-3}*385 }{13880.44*3} =0.828 s[/tex]

[tex]e^{-t/0.828} =\frac{320-280}{360-280} \\t=0.573\\heightofthewater=2.186*0.573=1.25m[/tex]

An earthen trapezoidal channel (n = 0.025) has a bottom width of 5.0 m, side slopes of 1.5 horizontal: 1 vertical and a uniform flow depth of 1.10 m. In an economic study to remedy excessive seepage from the canal two proposals, (a) to line the sides only and, (b) to line the bed only are considered. If the lining is of smooth concrete (n = 0.012), calculate the equivalent roughness in the above two cases for a bottom slope of 0.005

Answers

Answer:

A. 0.020

B. 0.018

Explanation: check the attached file

Answer:

a. n=0.020  b. n=0.018

Explanation:

a.

Case 1: To line the sides only

n=(Σn₁¹°⁵P₁)^2/3/P^2/3

n = equivalent roughness

n₁=corresponding roughness coefficients

P=length

At the bed: n₁=0.025 and P₁=5m

At the sides: n₂=0.012 and P₂= 2*1.1*√1+1.5²=2.2*1.8=3.96m

P = P₁+P₂=8.96m

Equivalent roughness, n = [5*(0.025)^1.5+3.96*(0.012)^1.5]^2/3/(8.96)^2/3

n= [(5*0.00395)+(3.96*0.0013)]^2/3/4.317

n=0.0249^2/3/4.317

n=0.0842/4.317

n=0.0195

n=0.020

b.

Case 2: To line the bed only

P₁=5m   n₁=0.012

P₂=3.96 n₂=0.025

P=8.96

Equivalent roughness n= [5*(0.012)^1.5+3.96*(0.025)^1.5]^2/3/(8.96)^2/3

n=[(5*0.0013)+(3.96*0.00395)]^2/3/4.317

n=0.0221^2/3/4.317

n=0.078/4.317

n=0.018

Which statement is not correct regarding the deformation of a circular shaft in torsion? a. Cross sections remain flat. b. Longitudinal lines remain straight. c. Circular sections remain circular. d. Radial lines on the sections remain straight.

Answers

Answer:

B

Explanation:

Torsion is application of torque to a shaft to turn it about its longitudinal axis. When torque is applied to a shaft the circle remains unchanged in a circular state, its cross section does not warp but remains flat with a straight radial lines but its longitudinal lines changes into an helix intersecting the circular shaft

A particular NMOS device has parameters VT N = 0.6 V, L = 0.8µm, tox = 200 Å, and µn = 600 cm2 /V–s. A drain current of ID = 1.2 mA is required when the device is biased in the saturation region at VGS = 3 V. Determine the required channel width of the device.

Answers

Answer:

[tex]W= 3.22 \mu m[/tex]

Explanation:

the transistor In saturation drain current region is given by:

[tex]i_D}=K_a(V_{GS}-V_{IN})^2[/tex]

Making [tex]K_a[/tex] the subject of the formula; we have:

[tex]K_a=\frac {i_D} {(V_{GS} - V_{IN})^2}[/tex]

where;

[tex]i_D = 1.2m[/tex]

[tex]V_{GS}= 3.0V[/tex]

[tex]V_{TN} = 0.6 V[/tex]

[tex]K_a=\frac {1.2m} {(3.0 - 0.6)^2}[/tex]

[tex]K_a = 208.3 \mu A/V^2[/tex]

Also;

[tex]k'_n}=\frac{\mu n (\frac{cm^2}{V-s} ) \epsilon _{ox}(\frac{F}{cm} ) }{t_{ox}(cm)}[/tex]

where:

[tex]\mu n (\frac{cm^2}{V-s} ) = 600[/tex]

[tex]\epsilon _{ox}=3.9*8.85*10^{-14}[/tex]

[tex]{t_{ox}(cm)=200*10^{-8}[/tex]

substituting our values; we have:

[tex]k'_n}=\frac{(600)(3.988.85*10^{-14})}{(200*10^{-8})}[/tex]

[tex]k'_n}=103.545 \mu A/V^2[/tex]

Finally, the width can be calculated by using the formula:

[tex]W= \frac{2LK_n}{k'n}[/tex]

where;

L = [tex]0.8 \mu m[/tex]

[tex]W= \frac{2*0.8 \mu m *208.3 \mu}{103.545 \mu}[/tex]

[tex]W= 3.22 \mu m[/tex]

A two-stage, solid-propellant sounding rocket has the following properties:
First stage: m0 ¼ 249:5 kg ; mf ¼ 170:1 kg ; _ me ¼ 10:61 kg;sIsp ¼ 235 s
Second stage: m0 ¼ 113:4 kg ; mf ¼ 58:97 kg; _ me ¼ 4:053 kg;sIsp ¼ 235 s

Delay time between burnout of first stage and ignition of second stage: 3 s.
As a preliminary estimate, neglect drag and the variation of earth’s gravity with altitude to calculate the maximum height reached by the second stage after burnout.

Answers

Answer:

Explanation: see attachment below

What is the purpose of the following algorithm? input somenum Repeat the following steps for 14 times input variable1 if variable1 < somenum then somenum = variable1 print somenum

Answers

Answer:

The purpose of the algorithm is to print the least digit among a total of 15 digita

Explanation:

input somenum

Repeat the following steps for 14 times

input variable1

if variable1 < somenum then

somenum = variable1

print somenum

On line 1, the algorithm takes an input through variable1

An iteration is started on line 2 and ends on line 6

Line 3,4,5 re performed repeatedly;

On line 3, the algorithm accepts another input through somenum and it keep accepting it till the end of the iteration.

On line 4, the algorithm tests if variable1 is lesser than somenum.

If yes, line 5 is executed and the value of variable1 is assigned to somenum

Else, line 5 is skipped; the iteration moves to line 3 as long as the condition is still valid.

At the end of the iteration, the least value stored in somenum is printed through

A single axial load of magnitude P = 15 kips is applied at end C of thesteel rod ABC. Knowing that E = 30 × 106 psi, determine the diameterd of portion BC for which the deflection of point C will be 0.05 in.

Answers

Answer:

d = 0.868 in

Explanation:

note:

solution is attached due to error in mathematical equation. please find the attachment

Final answer:

This question involves solving for the diameter d at the portion BC of a steel rod under axial load. It involves utilizing Hooke's Law and expressing cross-sectional area in terms of diameter. The final calculation will depend on the length of the portion BC.

Explanation:

The question appears to involve the concept of stress and strain in the area of mechanical engineering. In this problem, we have a steel rod ABC, where end C, experiencing a single axial load P = 15 kips, deflections to 0.05 inches. We are tasked to find the diameter, denoted as d, of portion BC.

To solve this, we could utilize Hooke's Law of elasticity that connects stress, strain, and the Young's modulus (E). The formula is represented as δ = PL/AE. In the equation, P is the load, L is the length, A is the cross-sectional area and E is Young's modulus. We are given P, E, and δ (deflection), leaving the cross-sectional area and length as variables to be found. Since we are looking for the diameter (d), we need to express the area (A) in terms of the diameter using the formula A = πd²/4.

The length L is dependent on the specific conditions of the problem and are not given directly. Depending on the conditions, L might need to be solved differently. First, solve the equation for diameter, afterwards, plug the known values in and evaluate, giving the diameter in inches of the steel rod at portion BC.

Learn more about Stress and Strain here:

https://brainly.com/question/36010339

#SPJ2

Checkpoint 4.72 Write a statement that uses a conditional expression that determines if the credits variable is less than 0. If the condition is true, assign the value 0 to the credits variable, otherwise the value of the credits variable should remain unchanged.

Answers

Answer:

See step to step explanations for answer.

Explanation:

This is the expression to check if credits is less than 0 assuming variable name is credits:

if(credits<0)

{

credits = 0;

}

Q 4.69:

this is the expression checking the name is Swordfish or not

if(name=="Swordfish")

{

cout<<"We have a match";

}

Q 4.67

This is the expression to check the character assuming that character is ch

if(ch>='1' && ch<='9')

{

cout<<"Digit detected";

}

Q 4.59:

This is the statement to check if the number is between 0 and 500 inclusive . Assuming the variable is n

if(n>=0 && n<=500)

{

cout<<"The number is valid";

}

Final answer:

To address the programming question about conditional expressions, a ternary operator can be used to set the variable 'credits' to 0 if its value is less than 0, and otherwise keep the current value.

Explanation:

The student's question pertains to the use of a conditional expression in a programming context. A conditional expression evaluates a condition and based on its truth value, executes one of two expressions. The statement required should check if the credits variable is less than 0 and if so, assign the value 0 to credits; otherwise, it should leave the value of credits as is.

An example in a generic programming language would be:

credits = 0 if credits < 0 else credits

This line of code is known as a ternary operator or conditional assignment. It reads as 'Set credits to 0 if credits is less than 0; otherwise, keep the value of credits.'

Other Questions
what was the date and place of the origin in hinduism Fossil fuels are part of which of the following cycles Adlie penguins and crabeater seals both feed on krill.Which term best describes the relationship between Adlie penguins and crabeater seals?parasitismcompetitionmutualismpredation A parallelogram with an area of 211.41m^2 has a base that measures 24.3m find its height What are the two ways to solve a system of equations algebraically A hamilton multitouch watch was originally priced at $450 . At a closing of Alpha Omega jewelry shop, the watch is being reduced by 0.2 . What is the new selling price? Which of the following is prohibited under the FDCPA? a. contacting third parties for current address information on the debtor b. contacting the debtor at his/her place of employment c. contacting the debtor after the debtor requests no further contact d. All of the above are prohibited. The science student wants to find the mass of a wooden block. What is its appropriate name and use of the equipment Why might children laugh more often than adults What are the benefits and drawbacks of the Satrap government of Ancient Persia? Which of the following is a speed, not a velocity?A. 35 m/s eastB. 0-35 m/sC. 035 m/sD. 35 m/s south A company is going to make an oil container in the shape of a cylinder. As shown below, the container will have a height of 8m and a diameter of 12m. The container will be made from steel (including its top and bottom). Suppose the total cost of the steel will be $17,408.16. How much will the steel cost per square meter? Use 3.14 for , and do not round your answer. Betty runs a cookie shop where she sells cookies for $1 each. She employs five people, each of whom worked a total of 500 hours last year; she paid them $10 per hour. Her costs of equipment and raw materials add up to $75,000. Her business ability is legendary, and other companies have offered to pay Betty $100,000 to come to work for them. She also knows she could sell her cookie shop for $150,000. The bank in town pays an annual interest rate of 3% on all funds deposited with it. Reference: Ref 9-18 (Scenario: Betty's Cookie Shop) Betty's implicit and explicit costs are equal to: A. $80,000. B. $184,500. C. $100,000. D. $204,500. Vascular plants have vascular tissues called xylem and phloem that transport materials throughout the plant. Classify these materials according to whether they are transported by the xylem or the phloem. Xylem Phloem Dont skip plz i need yall help What happened to the Roman Empire ? The rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3 10-11 e-250/T and 2 10-12 e-940/T, where T is the Kelvin temperature. Calculate the ratio of the rates of ozone destruction by these catalysts at 20 km, given that at this altitude the average concentration of OH is about 100 times that of Cl and that the temperature is about -50 C. Calculate the rate constant for ozone destruction by chlorine under conditions in the Antarctic ozone hole, when the temperature is about -80 C and the concentration of atomic chlorine increases by a factor of one hundred to about 4 105 molecules cm-3. (x - 1)2 = 4 how do i do this Vargo Company has bonds payable outstanding in the amount of $440,000, and the Premium on Bonds Payable account has a balance of $7,400. Each $1,000 bond is convertible into 20 shares of preferred stock of par value of $50 per share. All bonds are converted into preferred stock.Assuming that the book value method was used, what entry would be made? PROBLEMWrite the equation of the line that passes through (0, -6) and (4, 10).