A golf ball is hit with an angle of elevation 30∘ and speed 20????????/????. Find the horizontal and vertical components of the velocity vector.

Answers

Answer 1
Final answer:

The horizontal and vertical components of the velocity vector for the golf ball hit with an angle of elevation of 30° and speed of 20 m/s are determined to be 17.32 m/s and 10 m/s, respectively.

Explanation:

Velocity Vector Components

The components of the velocity vector, which are horizontal and vertical, are calculated by multiplying the speed of the object by cos(θ) for the horizontal component and sin(θ) for the vertical component, where θ is the angle of elevation.

Given that the angle of elevation is 30 degrees and the speed is 20 m/s, we can use these equations to find:

Horizontal Component: Vx = speed * cos(θ) = 20 * cos(30) = 17.32 m/sVertical Component: Vy = speed * sin(θ) = 20 * sin(30) = 10 m/s

Learn more about Velocity Vector Components here:

https://brainly.com/question/37190332

#SPJ3


Related Questions

How strong is the electric field between two parallel plates 4.8 mm apart if the potential difference between them is 220 V?

Answers

Answer:

Electric field, E = 45833.33 N/C

Explanation:

Given that,

Separation between the plates, d = 4.8 mm = 0.0048 m

The potential difference between the plates, V = 220 volts

We need to find the electric field between two parallel plates. The relation between the electric field and electric potential is given by :

[tex]V=E\times d[/tex]

[tex]E=\dfrac{V}{d}[/tex]

[tex]E=\dfrac{220}{0.0048}[/tex]

E = 45833.33 N/C

So, the electric field between two parallel plates is 45833.33 N/C. Hence, this is the required solution.

The electric field between the plates is 45833.33 N/C.

Electric Field

Given that the separation d between the plates is 4.8 mm and the potential difference V between the plates is 220 V.

The electric field E between the plates can be calculated by the formula given below.

[tex]E =\dfrac {V}{d}[/tex]

Substituting the values in the above equation, we get

[tex]E = \dfrac {220}{0.0048}[/tex]

[tex]E = 45833.33 \;\rm N/C[/tex]

Hence we can conclude that the electric field between the plates is 45833.33 N/C.

To know more about the electric field, follow the link given below.

https://brainly.com/question/12757739.

the earth has more rotational kinetic energy now than did the cloud of gas and dust from which it formed. where did this energy come from>

Answers

Explanation:

Earth or any planet are actually born from huge clouds of gas and dust. Their stellar mass are fairly distributed at a radius from the axis of rotation. Gravitational force cause the cloud to come together. Now the whole gathered in smaller area. Now, individual particles come close to the roational axis. Thus, decreasing the moment of inertia of the planet.

As

I=mr^2

reducing r reduces I. However, the angular moment of the system remains always conserved. So, to conserve the angular momentum the angular velocity of the planet increases and so did the  otational kinetic energy

The additional rotational kinetic energy of the Earth compared to the initial cloud comes from the gravitational potential energy that was present in the cloud before it collapsed. The conservation of angular momentum dictates that as the cloud shrinks, its rotation speed must increase, leading to an increase in rotational kinetic energy.

The Earth has more rotational kinetic energy now than did the cloud of gas and dust from which it formed because of the conservation of angular momentum. As the cloud collapsed under its own gravity, the rotation rate increased to conserve angular momentum, which is the product of moment of inertia and rotational velocity. Since the moment of inertia decreases as the mass moves closer to the axis of rotation (due to the shrinking size of the collapsing cloud), the rotational velocity must increase to keep the angular momentum constant. This results in an increase in rotational kinetic energy, which is given by the equation [tex]\( KE_{rot} = \frac{1}{2} I \omega^2 \)[/tex], where [tex]\( I \)[/tex] is the moment of inertia and [tex]\( \omega \)[/tex] is the angular velocity.

The gravitational potential energy of the cloud is converted into kinetic energy as the cloud collapses. The initial potential energy is high because the particles in the cloud are far from the center of mass. As the cloud contracts, this potential energy is transformed into kinetic energy, both linear and rotational, due to the conservation of energy. The increase in rotational kinetic energy is a direct consequence of this conversion and the conservation of angular momentum.

In summary, the additional rotational kinetic energy of the Earth compared to the initial cloud comes from the gravitational potential energy that was present in the cloud before it collapsed. The conservation of angular momentum dictates that as the cloud shrinks, its rotation speed must increase, leading to an increase in rotational kinetic energy.

The complete question is:

The Earth has more rotational kinetic energy now than did the cloud of gas and dust from which it formed. Where did this energy come from?

A 0.23 kg mass at the end of a spring oscillates 2.0 times per second with an amplitude of 0.15 m

Part A

Determine the speed when it passes the equilibrium point.

Part B

Determine the speed when it is 0.10 m from equilibrium.

Part C

Determine the total energy of the system.

Part D

Determine the equation describing the motion of the mass, assuming that at t=0, x was a maximum.

Determine the equation describing the motion of the mass, assuming that at , was a maximum.

x(t)=(0.075m)cos[2π(2.0Hz)t]
x(t)=(0.15m)sin[2π(2.0Hz)t]
x(t)=(0.15m)cos[2π(2.0Hz)t]
x(t)=(0.15m)cos[(2.0Hz)t]

Answers

Answer:

A) v = 1.885 m/s

B) v = 0.39 m/s

C) E = 0.03 J

D) [tex]x(t) = (0.15m)\cos(2\pi (2.0Hz)t)[/tex]

Explanation:

Part A

We will use the conservation of energy to find the speed at equilibrium.

[tex]K_{eq} + U_{eq} = K_A + U_A\\

\frac{1}{2}mv^2 + 0 = 0 + \frac{1}{2}kA^2\\

v = \sqrt{\frac{k}{m}}A[/tex]

where [tex]\omega = \sqrt{k/m}[/tex] and [tex]\omega = 2\pi f[/tex]

Therefore,

[tex] v = 2\pi f A = 2(3.14)(2)(0.15) = 1.885~m/s[/tex]

Part B

The conservation of energy will be used again.

[tex]K_1 + U_1 = K_2 + U_2\\

\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2\\

mv^2 + kx^2 = kA^2\\

(0.23)v^2 + k(0.10)^2 = k(0.15)^2\\

v^2 = \frac{k(0.15)^2-(0.10)^2}{0.23}\\

v = \sqrt{0.054k}[/tex]

where [tex]k = \omega^2 m = (2\pi f)^2 m = 2(3.14)(2)(0.23) = 2.89[/tex]

Therefore, v = 0.39 m/s.

Part C

Total energy of the system is equal to the potential energy at amplitude.

[tex]E = \frac{1}{2}kA^2 = \frac{1}{2}(2.89)(0.15)^2 = 0.03~J[/tex]

Part D

The general equation of motion in simple harmonic motion is

[tex]x(t) = A\cos(\omega t + \phi)\\

x(t) = (0.15m)\cos(2\pi (2.0Hz)t + \phi)[/tex]

where [tex]\phi[/tex] is the phase angle to be determined by the initial conditions. In this case, the initial condition is that at t = 0, x is maximum. Therefore,

[tex]x(t) = (0.15m)\cos(2\pi (2.0Hz)t)[/tex]

Final answer:

The speed of the mass when passing the equilibrium point is approximately 1.88 m/s, and when it is 0.10 m from equilibrium, the speed is approximately 1.26 m/s. The equation describing the motion of the mass when x was a maximum at t=0 is x(t) = (0.15 m)cos[2π(2.0 Hz)t].

Explanation:

Part A: To determine the speed when the mass passes the equilibrium point, we can use the formula for the velocity of an object in simple harmonic motion, which is v = ωA, where ω is the angular frequency and A is the amplitude. In this case, the angular frequency is given by ω = 2πf, where f is the frequency. So, ω = 2π(2.0 Hz) = 4π rad/s. The amplitude is 0.15 m. Substituting these values into the formula, we get v = (4π rad/s)(0.15 m) ≈ 1.88 m/s.

Part B: To determine the speed when the mass is 0.10 m from equilibrium, we can again use the formula for velocity. Using the same angular frequency ω, we find that v = (4π rad/s)(0.10 m) ≈ 1.26 m/s.

Part C: The total energy of the system can be found using the formula for the total energy of an object in simple harmonic motion, which is E = (1/2)kA², where k is the spring constant and A is the amplitude. In this case, k is not given, so we cannot determine the total energy.

Part D: The equation describing the motion of the mass, assuming that at t=0, x was a maximum, is given by x(t) = (0.15 m)cos[2π(2.0 Hz)t].

Learn more about Simple Harmonic Motion here:

https://brainly.com/question/28208332

#SPJ3

A 0.500-kg mass suspended from a spring oscillates with a period of 1.36 s. How much mass must be added to the object to change the period to 2.04 s?

Answers

The mass that must be added is 0.628 kg

Explanation:

The period of a mass-spring system is given by

[tex]T=2\pi \sqrt{\frac{m}{k}}[/tex]

where

m is the mass

k is the spring constant

For the initial mass-spring system in the problem, we have

m = 0.500 kg

T = 1.36 s

Solving for k, we find the spring constant:

[tex]k=(\frac{2\pi}{T})^2 m = (\frac{2\pi}{1.36})^2 (0.500)=10.7 N/m[/tex]

In the second part, we want the period of the same system to be

T = 2.04 s

Therefore, the mass on the spring in this case must be

[tex]m=(\frac{T}{2\pi})^2 k =(\frac{2.04}{2\pi})^2 (10.7)=1.128 kg[/tex]

Therefore, the mass that must be added is

[tex]\Delta m = 1.128 - 0.500 = 0.628 kg[/tex]

Learn more about period:

brainly.com/question/5438962

#LearnwithBrainly

In testing thousands of different materials for use as lightbulb filaments, Thomas Edison best illustrated a problem-solving approach known as:
Group of answer choices
a. fixation.
b. belief perseverance.
c. trial and error.
d. the confirmation bias.
e. the representativeness heuristic.

Answers

Answer:

Trial and error.

Explanation:

This approach of Thomas Edison where in testing of thousand of different material for light bulb filament are used to find the most suitable material is called trial and error approach of problem solving.

Trial and error pursue a method, seeing if it performs, and not trying a new mechanism. This mechanism will be repeated until a solution or success is attained. Assume moving a large object like a couch into your house for example.

PART ONE
A square plate is produced by welding together four smaller square plates, each of side
a. The weight of each of the four plates is
shown in the figure.
Find the x-coordinate of the center of gravity (as a multiple of a).
Answer in units of a.
(PICTURED)

PART TWO
Find the y-coordinate of the center of gravity
(as a multiple of a).
Answer in units of a

Answers

Explanation:

Make a table, listing the x and y coordinates of each square's center of gravity and its mass.  Multiply the coordinates by the mass, add the results for each x and y, then divide by the total mass.

[tex]\left\begin{array}{ccccc}x&y&m&xm&ym\\\frac{a}{2} &\frac{a}{2} &10&5a&5a\\\frac{3a}{2}&\frac{a}{2}&70&105a&35a\\\frac{a}{2}&\frac{3a}{2}&80&40a&120a\\\frac{3a}{2}&\frac{3a}{2}&50&75a&75a\\&\sum&210&225a&235a\\&&Avg&\frac{15a}{14}&\frac{47a}{42}\end{array}\right[/tex]

The x-coordinate of the center of gravity is 15/14 a.

The y-coordinate of the center of gravity is 47/42 a.

Wilma I. Ball walks at a constant speed of 5.93 m/s along a straight line from point A to point B and then back from B to A at a constant speed of 3.15 m/s.
(a)

What is Wilma's average speed over the entire trip?Wilma I. Ball walks at a constant speed of 4.51 m/s along a straight line from point A to point B and then back from B to A at a constant speed of 3.15 m/s.

(a)

What is Wilma's average speed over the entire trip?

(b)

What is Wilma's average velocity over the entire trip?

Answers

Final answer:

Wilma's average speed over the entire trip is approximately 3.71 m/s, calculated by dividing the total distance by the total time. However, as she returned to her starting point, her total displacement is zero, and thus, her average velocity is 0 m/s.

Explanation:

The average speed is given by the total distance divided by the total time. Since Wilma I. Ball travels the same distance twice (A to B and back), we can say the total distance is 2d. Suppose the distance between A to B is 'd' m. The time taken for the first trip is d/4.51 s, and the time taken for the return trip is d/3.15 s. Therefore, the average speed is given by (2d) / ((d/4.51) +(d/3.15)). This simplifies to approximately 3.71 m/s.

However, average velocity is the total displacement divided by total time. Since she ends at her starting point, her total displacement is zero. Thus, her average velocity over her round trip is 0 m/s.

Learn more about average speed and average velocity here:

https://brainly.com/question/32835566

#SPJ3

The sled is pulled up a steeperhill of the sameheightas the hill described above.

How will the velocity of the sled at the bottom of the hill (after it has slid down) compare to that of the sled at the bottom of the original hill?

Choose the best answer below.

A. The speed at the bottom is greater for the steeper hill.

B. The speed at the bottom is the same for both hills.

C. The speed at the bottom is greater for the original hill because the sled travels further.

D. There is not enough information given to say which speed at the bottom is faster.

E. None of these descriptions is correct.

Answers

Answer: B. The speed at the bottom is the same for both hills.

Explanation A sled which can also be called a sledge is a vehicle built with a smooth body on the side touching the ground underside which makes it easy for it to be able to slide towards the ground when on a slant hill. The velocity of the sled after it has slid down the Hill and the velocity at the bottom of the Hill will be the same because both point have the same level of steepness. Velocity of a material is directly proportional to the mass of a body and inversely proportional to the time traveled.

Final answer:

The speed of the sled at the bottom of both hills will be the same because the total energy, determined by the height of the hill and not its steepness, remains constant.

Explanation:

The best answer to this question is B. The speed at the bottom is the same for both hills. This is because the total energy of the sled (kinetic plus gravitational potential energy) must remain constant if we assume no friction or air resistance. The height of the hill, not its steepness, determines the total energy. The sled will convert all its potential energy (which depends on the height) into kinetic energy (which affects the speed) as it travels downhill. Hence, if the two hills are of the same height, the sled will have the same speed at the bottom of both hills.

Learn more about Conservation of Energy here:

https://brainly.com/question/35373077

#SPJ11

What equation gives the position at a specific time for an object with constant acceleration? a. x=x0+v0t+1/2}at^2b. x=v0t+at^2c. vf=v0+atd. v^2f=v0^2+2aΔx

Answers

The first option is mathematically described as

[tex]x = x_0 +v_0 t +\frac{1}{2} at^2[/tex]

Here,

[tex]x_0 =[/tex]Initial position

[tex]v_0 =[/tex] Initial velocity

t = Time

a = Acceleration

As we can see in this equation, the position of a body is described taking into account its initial point with respect to the reference system, the initial velocity of this body and the acceleration when it is constant. All this depending on time.

The second option despises the initial position, so it does not allow the exact calculation of the position.

The third option does not consider the position, only the speed and acceleration with respect to time

The fourth option considers acceleration and distance but does not take into account the time of the object.

Therefore the correct answer is A.

1. Suppose you have a pipe producing standing sound waves. Two adjacent harmonics of standing waves (i.e., no standing waves in between these) have wavelengths 2.000 meters and 1.500 meters.
Which wavelength corresponds to a higher mode?

Answers

Answer:

1.5 m

Explanation:

given,

wavelength of of the standing waves

λ₁ = 2 m

λ₂ = 1.5 m

to  find wavelength corresponding to higher mode.

we know,

     [tex]wavelength\ \alpha\ \dfrac{1}{n}[/tex]

where n is the mode number.

From the above expression we can say that wavelength is inversely proportional to mode.

Hence , the wavelength corresponding to higher mode is equal to 1.5 m

Air is contained in a rigid well-insulated tank with a volume of 0.6 m3. The tank is fitted with a paddle wheel that transfers energy to the air at a constant rate of 4 W for 1 h. The initial density of the air is 1.2 kg/m3.
If no changes in kinetic or potential energy occur, determine:

(a) the specific volume at the final state, in m^3/kg
(b) the energy transfer by work, in kJ.
(c) the change in specific internal energy of the air, in kJ/kg.

Answers

Answer:

0.833 m³/kg

-14.4 kJ

20 kJ/kg

Explanation:

[tex]\rho[/tex] = Density = 1.2 kg/m³

[tex]V[/tex] = Volume = 0.6 m³

t = Time taken = 1 hour

P = Power = 4 W

Mass is given by

[tex]m=\rho V\\\Rightarrow m=1.2\times 0.6\\\Rightarrow m=0.72\ kg[/tex]

As there is no change in kinetic and potential energy, the specific volume of the tank will be unaffected

[tex]V_{s}=\dfrac{0.6}{0.72}\\\Rightarrow V_s=0.833\ m^3/kg[/tex]

The specific volume at the final state is 0.833 m³/kg

Energy is given by

[tex]E=Pt\\\Rightarrow E=-4\times 1\times 3600\\\Rightarrow E=-14400\ J[/tex]

The energy transfer by work is -14.4 kJ

Change in specific internal energy is given by

[tex]E=-m\Delta u\\\Rightarrow \Delta u=-\dfrac{E}{m}\\\Rightarrow \Delta u=-\dfrac{-14.4}{0.72}\\\Rightarrow \Delta u=20\ kJ/kg[/tex]

The change in specific internal energy is 20 kJ/kg

Answers:

0.833 m³/kg-14.4 kJ20 kJ/kg

A farmer lifts his hay bales into the top loft of his barn by walking his horse forward with a constant velocity of 1 ft/s. Determine the velocity and acceleration of the hay bale when the horse is 10 ft away from the__________.

Answers

Final answer:

When an object moves with constant velocity, its acceleration is zero. So, the hay bale's velocity is 1 ft/s, and its acceleration is 0 ft/s2. These values persist irrespective of the horse's distance from the barn.

Explanation:

In the case of the farmer's horse and the hay bale, the horse is moving with a constant velocity of 1 ft/s. When an object moves with constant velocity, its acceleration is zero. This principle stems from the fundamental definition of acceleration as the rate of change of velocity over time. Since the horse's velocity is not changing, acceleration is zero.

Moving on to the velocity of the hay bale: if we suppose that the horse's movement directly influences the lifting of the hay bale, the bale's velocity would also be 1 ft/s. Provided that the system of lifting the bale is suitable for the task, it does not matter how far the horse is away from the barn; the velocity and acceleration values persist. Therefore, regardless of whether the horse is 10 ft away or 100 ft away, the velocity of the hay bale remains 1 ft/s and acceleration 0 ft/s2.

Learn more about Constant Velocity here:

https://brainly.com/question/33267484

#SPJ3

The hay bale being lifted by the farmer's horse, which is walking at a constant velocity of 1 ft/s, would have the sameconstant velocity with an acceleration of 0 m/s², because there is no change in velocity. Velocity vectors for the horse's movement would remain consistent, indicating the absence of acceleration.

The question involves determining the velocity and acceleration of a hay bale being lifted into a barn loft by a horse walking at a constant velocity. When dealing with such problems in physics, we typically look for changes in velocity over time to find acceleration. In this scenario, since the horse is moving with a constant velocity of 1 ft/s and no information is provided about forces acting on the hay bale or if there is any change in the speed of the horse, we can infer that the hay bale being lifted is moving at the same constant velocity of 1 ft/s, with an acceleration of 0 m/s² (or ft/s²) since there is no change in speed. This is because acceleration is defined as the rate of change of velocity over time, and a constant velocity means no change in velocity.

To conceptualize this, imagine sketching out a series of velocity vectors for the horse's path from one point to the next, indicating consistent motion with no alterations above or below the horizontal axis, representing that there is no acceleration occurring. An example in the given information refers to a racehorse accelerating from rest to 15.0 m/s, indicating that its acceleration can be calculated by dividing the change in velocity by the change in time, giving an average acceleration. But for the farmer's horse walking forward at a constant pace, the situation is quite different since there is no increase in speed.

To reiterate, if the horse maintains a constant velocity, the hay bale will have the same velocity (1 ft/s) and zero acceleration, provided that the system remains unaltered. Calculating acceleration in such cases is straightforward when there's a change in velocity; for constant velocity, the acceleration is simply zero.

The largest building in the world by volume is the boeing 747 plant in Everett, Washington. It measures approximately 632 m long, 710 yards wide, and 112 ft high. what is the cubic volume in feet, convert your result from part a to cubic meters.

Answers

Answer with Explanation:

We are given that

a.Length building=632 m

1 m=3.2808 feet

632 m=[tex]3.2808\times 632=2073.47 feet[/tex]

Length of building,l=2073.47 feet

Width of building,b=710 yards=[tex]710\times 3=2130 ft[/tex]

1 yard=3 feet

Height of building,h=112 ft

Volume of building=[tex]l\times b\times h[/tex]

Volume of building=[tex]2073.47\times 2130\times 112=494647003.2ft^3[/tex]

Volume of building=494647003.2  cubic feet

b. 1 cubic feet=0.028 cubic meter

Volume of building= [tex]494647003.2\times 0.028[/tex]cubic meters

Volume of building=13850116.0896 cubic meters

The velocity of P-waves in the crust is ~ 7 km/s. Of the epicenter of an M 7.6 earthquake occurred 280 km from the closest seismic station, how long does it take the P-wave to arrive at the station

Answers

Answer:

 t = 40 s

Explanation:

given,

Speed of the P-wave = 7 km/s

distance of the seismic station = 280 Km

time taken by the P-wave = ?

we know,

distance = speed x time

[tex]t = \dfrac{d}{s}[/tex]

[tex]t = \dfrac{280}{7}[/tex]

 t = 40 s

time taken by the P-wave to arrive at the station is equal to 40 s.

Final answer:

The P-wave takes approximately 40 seconds to arrive at the closest seismic station.

Explanation:

The P-waves in the crust travel at a velocity of approximately 7 km/s. To determine the time it takes for the P-wave to arrive at a seismic station, we can use the equation:

Time = Distance / Velocity

In this case, the distance to the epicenter of the earthquake is given as 280 km. Plugging this value into the equation, we get:

Time = 280 km / 7 km/s = 40 seconds

So, it takes approximately 40 seconds for the P-wave to arrive at the closest seismic station.

A pulse waveform with a frequency of 10 kHz is applied to the input of a counter. During 100 ms, how many pulses are counted?

Answers

Answer:

n = 1000 pulses

Explanation:

Given that,

The frequency of a pulse waveform, [tex]f=10\ kHz=10^4\ Hz[/tex]

To find,

The number of pulses counted during 100 ms.

Solution,

The frequency of a pulse waveform is equal to the number of pulses per unit time. It is given by :

[tex]f=\dfrac{n}{t}[/tex]

[tex]n=f\times t[/tex]

[tex]n=10^4\ Hz\times 100\times 10^{-3}\ s[/tex]

n = 1000 pulses

So, there are 1000 pulses counted in a pulse waveform.

A compressor receives air at 290 K, 100 kPa and a shaft work of 5.5 kW from a gasoline engine. It is to deliver a mass flow rate of 0.01 kg/s air to a pipeline. Assuming a constant-pressure specific heat of Cp = 1.004 kJ/kg-K for the air, determine the maximum possible exit pressure of the compressor

Answers

Answer:

[tex]P_2=4091\ KPa[/tex]

Explanation:

Given that

T₁ = 290 K

P₁ = 100 KPa

Power P =5.5 KW

mass flow rate

[tex]\dot{m}= 0.01\ kg/s[/tex]

Lets take the exit temperature = T₂

We know that

[tex]P=\dot{m}\ C_p (T_2-T_1)[/tex]

[tex]5.5=0.01\times 1.005(T_2-290})\\T_2=\dfrac{5.5}{0.01\times 1.005}+290\ K\\\\T_2=837.26\ K[/tex]

If we assume that process inside the compressor is adiabatic then we can say that

[tex]\dfrac{T_2}{T_1}=\left(\dfrac{P_2}{P_1}\right)^{0.285}[/tex]

[tex]\dfrac{837.26}{290}=\left(\dfrac{P_2}{100}\right)^{0.285}\\2.88=\left(\dfrac{P_2}{100}\right)^{0.285}\\[/tex]

[tex]2.88^{\frac{1}{0.285}}=\dfrac{P_2}{100}[/tex]

[tex]P_2=40.91\times 100 \ KPa[/tex]

[tex]P_2=4091\ KPa[/tex]

That is why the exit pressure will be 4091 KPa.

A gadget of mass 21.85 kg floats in space without motion. Because of some internal malfunction, the gadget violently breaks up into 3 fragments flying away from each other. The first fragment has mass m1 = 6.42 kg and speed v1 = 6.8 m/s while the second fragment has mass m2 = 8.26 kg and speed v2 = 3.54 m/s. The angle between the velocity vectors ~v1 and ~v2 is θ12 = 64 ◦ . What is the speed v3 of the third fragment? Answer in units of m/s.

Answers

The speed of third fragment of the given gadget is 8.62 m/s.

The given parameters:

total mass of the gadget, Mt = 21.85 kgmass of first fragment, m₁ = 6.42 kgmass of the second fragment, m₂ = 8.26 kgspeed of the first fragment, v₁ = 6.8 m/sspeed of the second fragment, v₂ = 3.54 m/sangle between the first and second fragment, θ = 64⁰

The mass of the third fragment is calculated as follows;

[tex]m_3 = 21.85-(6.42 + 8.26)\\\\m_3 = 7.17 \ kg[/tex]

Apply the principle of conservation of linear momentum to determine the speed of the third fragment as follows;

[tex]m_3v_3 = m_1v_1 cos(\frac{\theta}{2} ) \ + \ m_2v_2 cos(\frac{\theta}{2} )\\\\7.17v_3 = 6.42\times 6.8 \times cos(\frac{64}{2} ) \ + 8.26 \times 6.8 \times cos(\frac{64}{2} )\\\\7.17 v_3 = 61.82 \\\\v_3 = \frac{61.82}{7.17} \\\\v_3 = 8.62 \ m/s[/tex]

Thus, the speed of third fragment of the given gadget is 8.62 m/s.

Learn more about conservation of linear momentum here: https://brainly.com/question/22698801

Using conservation of momentum and resolving in x and y directions, we find the speed of the third fragment to be approximately 8.69 m/s. Initial conditions ensure total momentum is zero.

To solve this, we use the conservation of momentum. The total initial momentum of the system is zero since the gadget was initially at rest. For the fragments, the equation can be set up as follows:

m₁ * v₁ + m₂ * v₂ + m₃ * v₃ = 0

First, we resolve this in the x and y directions.

In the x-direction:

6.42 * 6.8 * cos(0°) + 8.26 * 3.54 * cos(64°) + 7.17 * v₃x = 0

⇒ 6.42 * 6.8 * 1 + 8.26 * 3.54 * 0.438 + 7.17 * v₃x = 0

⇒ 43.656 + 12.807 + 7.17 * v₃x =0

⇒ 7.17 * v₃x  = - 56.463

v₃x = -7.88 m/s

In the y-direction:

6.42 * 6.8 * sin(0°) + 8.26 * 3.54 * sin(64°) + 7.17 * v₃y = 0

⇒ 6.42 * 6.8 * 0 + 8.26 * 3.54 * 0.899 + 7.17 * v₃y = 0

⇒ 26.281 + 7.17 * v₃y =0

⇒ 7.17 * v₃y  = - 26.281

v₃y = -3.67 m/s

Then, using Pythagorean theorem to find v3:

v₃ = √(v₃x² + v₃y²)

= √((-7.88)² + (-3.67)²)

≈ √(62.1+ 13.5)

≈ √75.6

≈ 8.69 m/s

Thus, the speed of the third fragment is approximately 8.69 m/s.

What is the magnitude of the net gravitational force on the m1=20kgm1=20kg mass? Assume m2=10kgm2=10kg and m3=10kg.

Answers

Answer:

The net force on the 20kg mass m1 is equal to 6.09 x 10^-7 N. This force is due to the sun of the vertical components of the forces F1 and F2 of the masses m2 and m3 respectively on the mass m1.

The law of gravitational force has been applied and the use of the Pythagorean theorem also used.

Explanation:

The full solution can be found in the attachment below.

Thank you for reading this post and I hope it is helpful to you.

The magnitude of the net gravitational force on the masses can be determined using Newton's law when the distance between the two masses is known.

Magnitude of gravitational force

The magnitude of gravitaional force on the two given masses can be determined by applying Newton's law of universal gravitation as shown below;

F = Gm₁m₂/r²

where;

G is universal gravitation constantr is the distance between the two massesm₁ is the first mass m₂ is the second mass

Thus, the magnitude of the net gravitational force on the masses can be determined using Newton's law when the distance between the two masses is known.

Learn more about Newton's law of universal gravitation here: https://brainly.com/question/9373839

By what distance do two objects carrying 1.0 C of charge each have to be separated before the electric force exerted on each object is 5.5 N

Answers

Answer:

Distance between both the object will be 404.51 m

Explanation:  

We have given charge on two objects [tex]q_1=q_2=1C[/tex]

Coulomb force between the two objects is given F = 5.5 N

We have to fond the distance between both the object so that force between them is 5.5 N

According to coulomb law force between two charge particle is [tex]F=\frac{1}{4\pi \epsilon _0}\frac{q_1q_2}{r^2}[/tex]

So [tex]5.5=\frac{9\times 10^9\times 1\times 1}{r^2}[/tex]

[tex]r^2=16.36\times 10^8[/tex]

r = 404.51 m

So distance between both object will be 404.51 m

A truck covers 45.0 m in 8.80 s while smoothly slowing down to final speed of 3.00 m/s. Find Its Original Speed.

Answers

Answer:

7.23 m/s

Explanation:

From Newton's equation of motion,

v = u + at ...................... Equation 1.

Where v = final velocity, u = initial velocity, a = acceleration, t = time.

Also,

s = ut+ 1/2at²........................ Equation 2

Where s = distance.

Given: t = 8.8 s, s = 45.0 m.

Substitute into equation 2

Note: we find the value of a in terms of u

45 = u(8.8)+1/2a(8.8)²

45 = 8.8u+38.72a

38.72a = 45 -8.8u

38.72a = (45-8.8u)

a = (45-8.8u)/38.72

also, v = 3.00 m/s

Substituting into equation 1

3 = u + 8.8[(45-8.8u)/38.72)]

3 = u + (45-8.8u)/4.4

3×4.4 = 4.4u + 45 - 8.8u

13.2 - 45 = 4.4u - 8.8u

-31.8 = -4.4u

u = -31.8/-4.4

u = 7.23 m/s.

Hence the initial velocity = 7.23 m/s

Estimate the acceleration you subject yourself to if you walk into a brick wall at normal walking speed. Make a reasonable estimate of your speed and the time it takes you to come to a stop. Explain your answer!

Answers

Answer:

Walking into a brick wall at normal walking speed (1.4 m/s), you will come to a complete stop in a short time (0.1 s) and experience much more acceleration (14 m/s²) back the way you came, but because you are softer than the wall, the inelastic collision will probably cause you to bounce back off the wall, changing the actual experienced acceleration you feel.

Explanation:

Assuming normal human walking speeds and time it takes to come to rest.

Normal human walking speed = 5km/h = 1.4 m/s

Time it takes you to come to a complete stop = 0.1 seconds

acceleration = Δ Velocity/ Time

Δ Velocity = final velocity - initial velocity

Δ Velocity =  (1.4 - 0)m/s  = 1.4 m/s

acceleration = 1.4/0.1

acceleration = 14 m/s²

Walking into a brick wall at normal walking speed, you will experience much more acceleration back the way you came, but because you are softer than the wall, the inelastic collision will probably cause you to bounce back off the wall, changing the actual experienced acceleration you feel.

Acceleration of the subject.

The acceleration is the rate at which the body velocity changes with time. It can be referred to the body the speed and direction. The point of the object moves in the straight line as acceleration is both a magnitude and a direction. Estimated acceleration of the subject and yourself

thus the answer is 1.4 m/s and stops at 0.1s

As per the question of you walking into the brick wall at a normal walking speed than then walking towards the wall at normal walking at speed is 1.4 m, you will completely stop at a short time of 0.1 sec. The experience much more acceleration (14 m/s²) back the way you came, but due to the inelastic collision that probably causes you to bounce back by the wall, which will change the initial experience you felt.Hence answer is 1.4 and 01 sec.

Learn more about the acceleration.

brainly.com/question/13184753.

A strong man is compressing a lightweight spring between two weights. One weight has a mass of 2.3 kg , the other a mass of 5.3 kg . He is holding the weights stationary, but then he loses his grip and the weights fly off in opposite directions. The lighter of the two is shot out at a speed of 6.0 m/s .
What is the speed of the heavier weight?

Answers

To solve this problem we will apply the concepts related to the conservation of momentum. For this purpose we have that the initial momentum must be equivalent to the final momentum of the system. Mathematically this can be expressed as

[tex]m_1v_1 = m_2v_2[/tex]

Here,

[tex]m_{1,2}[/tex] = Mass of each object

[tex]v_{1,2}[/tex]= Velocity of each object

Rearranging to find the speed of the heavier weight,

[tex]v_2 = \frac{m_1v_1}{m_2}[/tex]

[tex]v_2 = \frac{(2.3)(6)}{5.3}[/tex]

[tex]v_2 = 2.6m/s[/tex]

Therefore the speed of the heavier weight is 2.6m/s

Suppose that a particular artillery piece has a range R = 5580 yards . Find its range in miles. Use the facts that 1mile=5280ft and 3ft=1yard. Express your answer in miles to three significant figures..

Answers

Answer:

3.170 miles

Explanation:

Conversion from yards to feet:

5580 yards = 5580 yard * 3 ft/yard = 16740 feet

Conversion from feet to miles:

16740 feet = 16740*(1/5280) mile/ft = 3.170 miles.

Therefore, that particular artillery piece has a range R = 3.170 miles

A 20 cm tall object is placed in front of a concave mirror with a radius of 31 cm. The distance of the object to the mirror is 94 cm. Calculate the focal length of the mirror.

Answers

Answer:

The focal length of the concave mirror is -15.5 cm

Explanation:

Given that,

Height of the object, h = 20 cm

Radius of curvature of the mirror, R = -31 cm (direction is opposite)

Object distance, u = -94 cm

We need to find the focal length of the mirror. The relation between the focal length and the radius of curvature of the mirror is as follows :

R = 2f

f is the focal length

[tex]f=\dfrac{R}{2}[/tex]

[tex]f=\dfrac{-31}{2}[/tex]

f = -15.5 cm

So, the focal length of the concave mirror is -15.5 cm. Hence, this is the required solution.

A crowbar 2727 in. long is pivoted 66 in. from the end. What force must be applied at the long end in order to lift a 600600 lb object at the short​ end?

Answers

To solve this problem we will apply the concepts related to equilibrium, for this specific case, through the sum of torques.

[tex]\sum \tau = F*d[/tex]

If the distance in which the 600lb are applied is 6in, we will have to add the unknown Force sum, at a distance of 27in - 6in will be equivalent to that required to move the object. So,

[tex]F*(27-6)= 6*600[/tex]

[tex]F = \frac{6*600}{21}[/tex]

[tex]F= 171.42 lb[/tex]

So, Force that must be applied at the long end in order to lift a 600lb object to the short end is 171.42lb

Calculate the rate of heat conduction through a layer of still air that is 1 mm thick, with an area of 1 m, for a temperature of 20C

Answers

Answer:

The rate of heat conduction through the layer of still air is 517.4 W

Explanation:

Given:

Thickness of the still air layer (L) = 1 mm

Area of the still air = 1 m

Temperature of the still air ( T) = 20°C

Thermal conductivity of still air (K) at 20°C = 25.87mW/mK

Rate of heat conduction (Q) = ?

To determine the rate of heat conduction through the still air, we apply the formula below.

[tex]Q =\frac{KA(\delta T)}{L}[/tex]

[tex]Q =\frac{25.87*1*20}{1}[/tex]

Q = 517.4 W

Therefore, the rate of heat conduction through the layer of still air is 517.4 W

Answer: Rate of heat transfer q = 517.4W

Explanation:

Thermal conductivity is a material property that describes its ability to conduct heat. Thermal conductivity is the quantity of heat transmitted through a unit thickness of a material, in a direction normal to a surface of unit area,due to a unit temperature gradient under steady state conditions. It can be shown mathematically using the equation below;

Q/t = kA(∆T)/d

q = kA(∆T)/d

q = Q/t = rate of heat transfer

Q = total amount of heat transfer

t = time

k = thermal conductivity of material

A = Area

d= distance

For the case above, the material used is still air.

k for still air at 20°C and 1bara = 0.02587W/mK

A = 1m^2

d = 1mm = 0.001m

∆T = 20°C = 20K

q = 0.02587×1×20/0.001

q = 517.4W

Therefore, the rate of heat conduction through the still air is 517.4W

A large truck breaks down out on the road and receives a push back to town by a small compact car.

Pick one of the choices A through F below which correctly describes the forces that the car exerts on the truck and the truck exerts on the car for each of the questions. You may use an answer more than once or not at all.

A. The force exerted by the car pushing against the truck is equal to that exerted by the truck pushing back against the car.

B. The force exerted by the car pushing against the truck is less than that exerted by the truck pushing back against the car.

C. The force exerted by the car pushing against the truck is greater than that exerted by the truck pushing back against the car.

D. The car's engine is running so it exerts a force as it pushes against the truck, but the truck's engine isn't running so it can't exert a force back against the car.

E. Neither the car nor the truck exert any force on each other. The truck is pushed forward simply because it is in the way of the car.

F. None of these descriptions is correct.

If the car and truck are moving at cruising speed, which choice(s) below are true?

1. The car is pushing on the truck, but not hard enough to make the truck move.

2. The car, still pushing the truck, is speeding up to get to cruising speed.

3. The car, still pushing the truck, is at cruising speed and continues to travel at the same speed.

4. The car, still pushing the truck, is at cruising speed when the truck puts on its brakes and causes the car to slow.

Answers

Final answer:

Newton's Third Law states the forces between the car and the truck are equal and opposite. Thus, the force the car exerts on the truck is equal to the force the truck exerts on the car, making Choice A correct for all situations described, including when the car and truck are at cruising speed or if the truck puts on its brakes.

Explanation:

According to Newton's Third Law of Motion, every action has an equal and opposite reaction. This law explains the forces between two objects—the car and the truck—when one object exerts force on another. In this scenario, when the compact car pushes the large truck:

Choice A is correct. The force exerted by the car on the truck is equal to the force exerted by the truck on the car.Choices B, C, and D are incorrect because they misrepresent Newton's Third Law.Choice E is incorrect as it suggests no force interaction, which is not possible according to Newton's laws.Choice F is incorrect because there is a correct description provided in Choice A.

Therefore, for the situations described:

Choice A is the correct answer.Choice A remains correct as the action-reaction forces are still present.When the car and truck are moving at cruising speed (Choice A), the forces are equal, even at a constant speed.If the truck puts on its brakes, the car will experience a change in motion, but the forces between the car and truck will remain equal (Choice A).

A rigid container equipped with a stirring device contains 1.5 kg of motor oil. Determine the rate of specific energy increase when heat is transferred to the oil at a rate of 1 W and 1.5 W of power is applied to the stirring device.

Answers

To solve this problem we will apply the first law of thermodynamics which details the relationship of energy conservation and the states that the system's energy has. Energy can be transformed but cannot be created or destroyed.

Accordingly, the rate of work done in one cycle and the heat transferred can be expressed under the function,

[tex]\dot{U} = \dot{Q}-\dot{W}[/tex]

Substitute 1W for [tex]\dot{Q}[/tex] and 1.5 W for [tex]\dot{W}[/tex]

[tex]\dot{U} = 1-1(1.5)[/tex]

[tex]\dot{U} = 2.5W[/tex]

Now calculcate the rate of specific internal energy increase,

[tex]\dot{u} = \frac{\dot{U}}{m}[/tex]

[tex]\dot{u} = \frac{2.5}{1.5}[/tex]

[tex]\do{u} = 1.6667W/kg[/tex]

The rate of specific internal energy increase is 1.6667W/kg

Final answer:

To answer the student's question, combine the total power input from heat and stirring, then calculate the temperature increase of the oil using its specific heat capacity with the energy conservation principle.

Explanation:

The student is asking about the rate of specific energy increase when heat is transferred to motor oil while work is being done on it by stirring. In thermodynamics, this relates to the conversion of work into thermal energy. The first step is to calculate the total energy input per second (power), which is the sum of heat transfer and the work done by stirring. The next step is to use the specific heat capacity to determine the rate of temperature increase for the oil.

Given the specific heat capacity of water and a weight lifting scenario, the student needs to apply the energy conservation principle, converting the work done into the thermal energy, which will result in raising the temperature of the water. To find this temperature increase, one should use the formula Q = mcΔT, where Q is the energy transferred as heat, m is the mass of the water, c is the specific heat capacity, and ΔT is the change in temperature.

Starting with an initial value of ​P(0)equals30​, the population of a prairie dog community grows at a rate of Pprime​(t)equals30minusStartFraction t Over 2 EndFraction ​(in units of prairie​ dogs/month), for 0less than or equalstless than or equals60.

a. What is the population 9 months​ later?
b. Find the population​ P(t) for 0less than or equalstless than or equals60.

Answers

Answer:

a) The population of prairie dogs after nine months is 280.

b) P(t) = 30 + 30 · t - t²/4 for 0 ≤ t ≤ 60

Explanation:

Hi there!

We have the following information:

The initial population is P(0) = 30.

The rate of growth of the population is the following:

P´(t) = 30 - t/2 where

a) Let´s find the function of the population of prairie dogs P(t). For that, let´s integrate the P´(t) function between t = 0 and t and between P = 30 and P

P(t) = ∫P´(t)

P´(t) = dP/dt = 30 - t/2

Separating variables:

dP = (30 - t/2) dt

∫dP = ∫(30 - t/2) dt

P - 30 = 30 · t - t²/4

P(t) = 30 + 30 · t - t²/4

The population of prairie dogs at t = 9 months will be equal to P(9):

P(9) = 30 + 30(9) - (9)²/ 4

P(9) = 280 prairie dogs

The population of prairie dogs after nine months is 280.

b) P(t) = 30 + 30 · t - t²/4 (it was obtained in part a).

Final answer:

The population of the prairie dog community 9 months later would be 294 prairie dogs, and the population equation for the entire prairie dog community for t months is P(t) = 30t - t^2 / 4 + 30 for 0 ≤ t ≤ 60.

Explanation:

The equation given is P'(t) = 30 - t / 2. This is a differential equation, and to get P(t), we need to find the anti-derivative or integrate P'(t) with respect to time, t. The integral of P'(t) = ∫(30 - t / 2) dt = 30t - t^2/4.

Adding the initial condition, P(0) = 30, we find P(t) = 30t - t^2 / 4 + 30 for 0 ≤ t ≤ 60. Therefore, a. The population of the prairie dog community 9 months later would be P(9) = 30*9 - (9^2) / 4 + 30 = 294 prairie dogs. b. P(t) = 30t - t^2 / 4 + 30 for 0 ≤ t ≤ 60 is the population equation for the entire prairie dog community for t months.

Learn more about Differential equation here:

https://brainly.com/question/33433874

#SPJ3

Waves on a string are described by the following general equation

y(x,t)=Acos(kx−ωt).

A transverse wave on a string is traveling in the +xdirection with a wave speed of 8.75 m/s , an amplitude of 6.50×10−2 m , and a wavelength of 0.540 m . At time t=0, the x=0 end of the string has its maximum upward displacement. Find the transverse displacement y of a particle at x = 1.59 m and t = 0.150 s .

Q. In general, the cosine function has maximum displacements, either positive or negative, when its argument is equal to an integer multiple of π. When t = 0.150 s , k = 11.6 rad/m , and ω = 102 rad/s use the wave equation to select all of the x positions that correspond to points of maximum displacement.

Check all that apply considering only positive arguments of the cosine function.

0.795 m
1.59 m
1.73 m
1.86 m
2.00 m
2.13 m

Answers

Answer:

The displacement is at x=1.59m and t=0.150s is [tex]-6.50\cdot10^{-2}\text{ m}.[/tex]

Out of the given points, the argument of the cosine is an integer multiple of [tex]\pi[/tex] for x=1.59m, 1.86m, 2.13m.

Explanation:

The displacement at x and t is given by y(x,t). We now need to find [tex]k[/tex] and [tex]\omega[/tex]. The speed of the wave is given by

[tex]c=\frac{\omega}{k}[/tex]

while the wavelength satisfies

[tex]k=\frac{2\pi}{\lambda}=\frac{2\pi}{0.540\text{ m}}=11.6\text{ m}^{-1}.[/tex]

Substituting this into the previous equation we find

[tex]\omega=ck=8.75\text{ m/s}\cdot 11.6\text{ m}^{-1}=102\text{ rad/s}.[/tex]

Now we have

[tex]y(1.59\text{ m},0.150\text{ s})=6.50\cdot10^{-2}\text{ m}\cos(11.6\cdot1.59-102\cdot0.150)=-6.50\cdot10^{-2}\text{ m}.[/tex]

Now we calculate [tex]kx-\omega t[/tex] at [tex]t=0.150\text{ s}[/tex] at each given x and check whether it is integer multiple of [tex]\pi[/tex].

[tex]11.6\text{ m}^{-1}\cdot 0.795\text{ m}-102\text{ rad/s}\cdot0.150\text{ s}=-6.08=-1.93\pi\text{ not an integer multiple of }\pi;[/tex]

[tex]11.6\text{ m}^{-1}\cdot 1.59\text{ m}-102\text{ rad/s}\cdot0.150\text{ s}=3.14=\pi\text{ it is an integer multiple of }\pi;[/tex]

[tex]11.6\text{ m}^{-1}\cdot 1.73\text{ m}-102\text{ rad/s}\cdot0.150\text{ s}=4.77=1.52\pi\text{ not an integer multiple of }\pi;[/tex]

[tex]11.6\text{ m}^{-1}\cdot 1.86\text{ m}-102\text{ rad/s}\cdot0.150\text{ s}=6.28=2\pi\text{ it is an integer multiple of }\pi;[/tex]

[tex]11.6\text{ m}^{-1}\cdot 2.00\text{ m}-102\text{ rad/s}\cdot0.150\text{ s}=7.90=2.51\pi\text{ not an integer multiple of }\pi;[/tex]

[tex]11.6\text{ m}^{-1}\cdot 2.13\text{ m}-102\text{ rad/s}\cdot0.150\text{ s}=9.41=3\pi\text{ it is an integer multiple of }\pi;[/tex]

Final answer:

The wave function y(x, t) = Acos(kx−ωt) can be used to find x positions of maximum displacement for a transverse wave on a string.

Explanation:

The wave function y(x, t) = Acos(kx−ωt) represents a transverse wave on a string. Given the values of k = 11.6 rad/m and ω = 102 rad/s, we can find the x positions that correspond to points of maximum displacement by setting the argument of the cosine function to be an integer multiple of π.

Using the wave equation, the x positions that correspond to points of maximum displacement are:

0.795 m

1.59 m

2.00 m

2.13 m

Other Questions
What objects tells the story of your life? And why? A client who has undergone a colostomy several days ago is reluctant to leave the hospital and has not yet looked at the ostomy site. Which measures will most likely promote coping? A chair is at rest on the floor. The chair absorbs thermal energy from the floor, and begins moving spontaneously with kinetic energy equal to the thermal energy absorbed. This process violates ___________.A- Both the 1st and 2nd laws of thermodynamicsB- Only the 1st law of thermodynamicsC- Neither the 1st nor the 2nd law of thermodynamicsD- Only the 2nd law of thermodynamics Darwin began to formulate his concept of evolution by natural selection after a experimentation with animals. b reading the writings of Wallace. c observations of many species and their geographical locations. d agreeing with Lamarck about the driving force behind evolution. ________ are consumer products that the consumer either does not know about or knows about but does not normally think about buying. These products require a lot of advertising, personal selling, and other marketing efforts. Kendras work is shown in the table. Where, if anywhere, did Kendra first make a mistake? Steps Kendras Work Step 1 Negative 3 x + 7 y = negative 15. Negative 2 x minus 7 y = 5. Negative 5 x = negative 10. Step 2 Negative 5 x = negative 10. x = 2. Step 3 Negative 3 (2) + 7 y = negative 15. Negative 6 + 7 y = negative 15. 7 y = negative 9. y = Negative StartFraction 9 Over 7 EndFraction = negative 1 and StartFraction 2 Over 7 EndFraction What document was created by Thomas Paine in order to boost morale of the ill-equipped and outnumbered soldiers? It was read by George Washington to his troops. Identify the predominant intermolecular forces in each of these substances. Note: If you answer any part of this question incorrectly, a single red X will appear indicating that one or more of the phrases are sorted incorrectly. 1. H 2 O 2. C a C l 2 3. C H 3 C H ( C H 3 ) O H 4. C H 4 5. N H 3 During studies of the reaction below, 2 N2H4(l) + N2O4(l) ? 3 N2(g) + 4 H2O(g) a chemical engineer measured a less-than-expected yield of N2 and discovered that the following side reaction occurs. N2H4(l) + 2 N2O4(l) ? 6 NO(g) + 2 H2O(g) In one experiment, 11.5 g of NO formed when 112.4 g of each reactant was used. What is the highest percent yield of N2 that can be expected? What is the main form of energy represented by each of the following?A spring is compressed.Oxygen bonds with carbon.An electron generates an electric field.A soccer ball rolls along the grass.please help. - 2X +3Y=75x+8y=-2Solution=(_,_) Describe when you use a solid line or a broken line when graphing inequalities. What does each type of line mean? 2m+4s=16What are the values for M and S? While a relatively inefficient mode of transmission, _____________ accounts for 90% of HIV infections worldwide. During the election for class president,40% of the students voted for Gerardo,35% of the students voted for Leonardo, and 25% of the students voted for juju.70 students voted for Leonard.how many more students voted for Gerardo than for juju According to Anne Hutchinson, a dissenter in Massachusetts Bay A) predestination was not a valid idea. B) the truly saved need not bother to obey the laws of God or man. C) antinomianism was heresy. D) direct revelation from God was impossible. E) a person needs only to obey the law of God. how is motion recognized Jeffery wants to locate reliable academic information on the effects of global warming and ways to conserve energy. What is the most efficient and effective search strategy to identify subject terms for a database search?a. He can look for common related subject terms in a dictionary, thesaurus or encyclopedia.b. He can look for relevant articles in the results list from a database search and scan the subject terms.c. He can use Google Scholar to retrieve relevant articles and find common related subject terms. What is 25% of 200? I need help pleaseeeeeeeeeeeeeee! Whats it called when you contact the public with unsolicited offers via a multitude of communication vehicles, and in high frequency, even with your buyers permission? Steam Workshop Downloader