Answer:
Velocity = 4.33[m/s]
Explanation:
The total energy or mechanical energy is the sum of the potential energy plus the kinetic energy, as it is known the velocity and the height, we can determine the total energy.
[tex]E_{M}=E_{p} + E_{k} \\E_{p} = potential energy [J]\\E_{k} = kinetic energy [J]\\where:\\E_{p} =m*g*h\\E_{p} = 4*9.81*0.5=19.62[J]\\E_{k}=\frac{1}{2} *m*v^{2} \\E_{k}=\frac{1}{2} *4*(3)^{2} \\E_{k}=18[J]\\Therefore\\E_{M} =18+19.62\\E_{M}=37.62[J][/tex]
All this energy will become kinetic energy and we can find the velocity.
[tex]37.62=\frac{1}{2} *m*v^{2} \\v=\sqrt{\frac{37.62*2}{4} } \\v=4.33[m/s][/tex]
Which of the following is a result of gravitational forces in the Solar System?
A.
the radiation given off by Jupiter
B.
Saturn is further away from the Sun than Earth
C.
the difference in surface temperature on each of the planets
D.
the orbit of moons around their planets in the Solar system
Answer:
D
Explanation:
the answer is d because gravitational force is what allows them to rotate
hope this was helpful
A lab assistant has been given data with units from an experiment to enter into the computer. Unfortunately, there are only numbers and no labels. Which of the
following could be a wavelength?
A. 10 m/s
B. 20 Hz
C. 30 cm
D. 40 s
Answer:
the answer ia A
Explanation:
The wavelength of the given data will be 30 cm since the unit of wavelength is meter or centimeter.
What is wavelength ?The distance between two successive troughs or crests is known as the wavelength. The peak of the wave is the highest point, while the trough is the lowest.
The wavelength is also defined as the distance between two locations in a wave that have the same oscillation phase.
The length of a wave is measured in its propagation direction. The wavelength is measured in meters, centimeters, nanometers, and other units since it is a distance measurement.
The relationship between the wave's wavelength, frequency, and speed is given as
[tex]\rm wavelength = \dfrac{speed of light} { frequency}[/tex]
Hence the wavelength of the given data will be 30 cm
To know more about Wavelength follow
https://brainly.com/question/10728818
A cylinder contains 12liters of O2 at 20°c and 15atm. The temperature is raised to 35°c and volume is reduced to 8.5L. Calculate the final pressure. What will be the new pressure if the volume is doubled
Pressure : 11 atmosphere
Explanation:
According to gas equation P₁V₁/T₁ = P₂V₂/T₂
Where P₁ is the initial pressure , V₁ is the initial volume and T₁ is the initial temperature
P₂ is the final pressure , V₂ is the final volume and T₂ is the final temperature
Thus P₁ = 15 atmosphere , V₁ = 12 liters and T₁ = 273 + 20 = 293 K
P₂ = ? , V₂ = 8.5 liters , T₂ = 273 + 35 = 308 K
From gas equation P₂ = P₁V₁T₂/T₁V₂ = 15 x 12 x 308/ 293 x 8.5
= 22.3 atmosphere .
If the volume is doubled
The gas equation will be P₁V₁ = P₂V₂ ; because temperature is constant
Here V₂ = 2 V₁ therefore pressure P₂ = P₁/2 = 22.3/2 = 11.1 atmosphere
Can any one help me please
Answer:
Vc = 60[v], I = 5[amp]; Vx = 20 [v]
Explanation:
To solve this problem we have to perform a mesh analysis, we identify the meshes of the circuit we can appreciate that they are two meshes, in each we suppose a direction of current and we make a sum of voltages equal to zero for each mesh. Remember that ohm's voltage by law is defined as the product of current by resistance.
In the attached image, you can see the direction of the supposed current in each of the meshes, from this analysis we obtain two equations with the I & i2 currents
Mesh 1
[tex]60+(6*i)-(6*i_{2})+8*i = 0\\60+(14*i)-(6*i_{2})=0[/tex]
Mesh 2
[tex](12*i_{2}) + (6*i_{2})-(6*i)=0\\(18*i_{2})-(6*i)=0\\(18*i_{2})=(6*i)\\i = 3*i_{2}[/tex]
Now we can find the current i, replacing in the first equation.
[tex]60+(14*3*i_{2})-(6*i_{2})=0\\-60= (42-6)*i_{2}\\i_{2} = - 1.66666[amp]\\[/tex]
and
i = 3* (-1.66666)
i = -5 [amp]
Note: The negative sign means that the current has the opposite direction to the supposed originally.
Therefore:
Vc = 60 [v]
io = 5 [amp]
Now to determine the current in the resistance of 6 [ohms], we must know the current that passes through it, by means of a summation of currents in any of its nodes.
This current is equal to:
-1.66 = I + (-5)
I = 3.33[amp]
And using the ohm's law we can find the voltage
Vx = (3.33*6)
Vx = 20 [V]
A 1.6-m wire is wound into a coil with a radius of 3.2cm.
-If this coil is rotated at 93 rpm in a (7.1x10^-2)-T magnetic field, what is it’s maximum emf? (In 2 significant figures in mV)
Answer:
18 mV
Explanation:
The maximum emf is:
ε = N B A ω
where N is the number of turns in the coil,
B is the strength of the magnetic field,
A is the area of the coil,
and ω is the angular velocity.
The number of turns N is equal to the length of the wire divided by the circumference of the coil.
N = L / (2πr)
Area of the coil is:
A = πr²
The angular velocity in rad/s is:
ω = rpm × 2π / 60 s
Therefore:
ε = (L / (2πr)) B (πr²) (rpm × 2π / 60 s)
ε = L B r (rpm × π / 60 s)
Plugging in values:
ε = (1.6 m) (0.071 T) (0.032 m) (93 × π / 60 s)
ε = 0.018 Tm²/s
ε = 18 mV
To find the maximum emf for a rotating coil in a magnetic field, use Faraday's law. The given wire length, rotation speed, and magnetic field strength can be used to calculate the emf after determining the number of turns and the coil area. The calculation results in an approximate maximum emf of 18 mV.
Explanation:To find the maximum emf induced in a rotating coil within a magnetic field, we can use Faraday's law of electromagnetic induction which states that the emf (ε) induced in a coil is directly proportional to the rate of change of magnetic flux through the coil. Mathematically, ε = NABωsin(ωt+φ), where N is the number of turns, A is the area of the coil, B is the magnetic field strength, ω is the angular velocity, and ωt+φ is the phase angle. In this scenario, the coil is rotating at 93 RPM (revolutions per minute), which we can convert to radians per second (rad/s) since 1 revolution is equal to 2π radians: 93 RPM * 2π rad/rev * 1 min/60 s = 9.735 rad/s. The area (A) of the coil with radius (r = 3.2 cm = 0.032 m) can be found using the formula for the area of a circle: A = πr².
As the wire length is 1.6 m, we need to calculate the number of turns (N) by dividing the length of the wire (L = 1.6 m) by the circumference of the coil (C = 2πr), yielding N = L/C. Finally, to find the peak or maximum emf, we consider that sin(ωt+φ) is 1 at maximum. Plugging in the values, we get the maximum emf:
N = 1.6 m / (2π * 0.032 m) ≈ 7.958 turns (approx. 8 turns since a coil cannot have a fraction of a turn).
A = π * (0.032 m)² ≈ 0.0032 m².
ε(max) ≈ 8 turns * 0.0032 m² * 9.735 rad/s * 7.1 x 10⁻² T.
Calculating this givesapproximately 18 mV as the maximum emf, which should be provided in millivolts (mV) and rounded to two significant figures according to the question, resulting in 18 mV.
Volume (mL) Mass (g)
200 180
300 270
400 360
A liquid of unknown density is studied. Based on the data, what is the density of the liquid?
Group of answer choices
A 1.1 mL/g
B 0.9 mL/g
C 1.1 g/mL
D 0.9 g/mL
Answer:
A. 1.11[mL/g]
Explanation:
We have to remember the expression to calculate the density, which says it's the relationship between mass and volume.
We can calculate the different densities for each of the samples.
density1 = m/V = 200/180 = 1.11[mL/g]
density2 = m/V = 300/270 = 1.11[mL/g]
density3 = m/V = 400/270 = 1.11[mL/g]
According to the initial data, we can determine that the density corresponds to 1.11 [mL/g]
I need help with this problem. It’s calculating net force.
Answer:
The net force on the frog is zero Newton.
Explanation:
Balance forces are 2 forces that is acting in opposite directions on an object, and equal in size. Anytime there is a balanced force on an object, the object stays still or continues moving continues to move at the same speed and in the same direction
In Figure , the forces exerted on the frog is equal in magnitude and opposite in direction.
Hence
The force , F1 = 200 N and F2 = -200 N since it is acting in opposite direction
Now the net force =F1 + F2 = 200 - 200 = 0
Which option correctly identifies the graph that represents an object increasing its position with a constant velocity and describes why?
A --It is Graph D because a vertical line indicates the object is increasing its position, and a straight line means it is moving with a constant velocity.
B--It is Graph C because curving upward indicates the object is increasing its position, and a positive slope means it is moving with a constant velocity.
C--It is Graph A because a horizontal line indicates the object is moving with a constant velocity, and the positive value means it is increasing its position.
D--It is Graph B because a straight, diagonal line indicates the object is moving with a constant velocity, and a positive slope means it is increasing its position.
Answer: D
Explanation:
The graph that represents an object increasing its position with a constant velocity is Graph B because a straight, diagonal line indicates the object is moving with a constant velocity, and a positive slope means it is increasing its position. Hence, option (D) is correct.
What is velocity?The rate at which a body's displacement changes in relation to time is known as its velocity. Velocity is a vector quantity with both magnitude and direction. SI unit of velocity is meter/second.
Mathematically:
velocity = ( final position - initial position)/time interval
Hence,
Final position = initial position + velocity ×time interval
Hence, the x-t graph of a object with constant velocity, is linear in nature with a positive slope. Hence, graph (B) is the correct option.
Learn more about velocity here:
https://brainly.com/question/18084516
#SPJ2
A is the area of a chromosome pair that attaches to a fiber stretching
across the cell during cell division.
the particle in the atom with a negative charge is the blank
Answer:
the electron.
Explanation:
the atom has 3 types of particles: protons, neutrons, and electrons. protons have a positive charge, neutrons have a neutral charge, and they are both located in the nucleus. the electron is negatively charged, and it's located in the electron cloud, outside the nucleus.
Find Spearman's rank correlation coefficient between X and Y for this set of data:
X 13 20 22 18 19 11 10 15
Y 17 19 23 16 20 10 11 18
y= 2.52 - 14.10x
Explanation:
Form a table as shown below
x y x² y² xy
13 17 169 289 221
20 19 400 361 380
22 23 484 529 506
18 16 324 256 288
19 20 361 400 380
11 10 121 100 110
10 11 100 121 110
15 18 225 324 270
128 134 2184 2383 2265 sum
The formula for correlation is given by;
y=a + bx
a= ( ∑y)(∑x²) - (∑x)(∑xy) / n (∑x²)-(∑x)²
a=(134)(2184) - (128)(2265) / 8 (2184)-(128²)
a=292656 - 289920 / 17472-16384
a=2.515
b= n (∑xy) -(∑x)(∑y) / n (∑x²)-(∑x)²
b=8 (226) -(128)(134) / 8 (2184) - 128²
b=1808-17152 / 17472-16384
b= -14.10
The equation is thus;
y= a+bx
y= 2.52 - 14.10x
Learn More
Correlation coefficient : https://brainly.com/question/3900657
Keywords : rank, correlation coefficient, set, data
#LearnwithBrainly
Final answer:
To find Spearman's rank correlation coefficient for the given data, rank the values of X and Y, calculate the differences and squared differences of these ranks, and apply the Spearman's coefficient formula. A direct calculation cannot be provided without these intermediate steps. Spearman's correlation is appropriate for non-linear relationships.
Explanation:
To calculate Spearman's rank correlation coefficient between X and Y for the provided set of data, we must first rank the values of X and Y separately from lowest to highest and then compute the differences between the ranks for each pair of X and Y. After finding the squared differences of the ranks, we utilize the formula for Spearman's rank correlation coefficient:
rs = 1 - ( (6 ∑ d2 ) / (n(n2 - 1)) )
where d is the difference between the ranks of each pair and n is the number of pairs of scores. However, with the given information and without the ordered ranks and the differences of ranks, we cannot proceed to calculate the coefficient directly. We also need to note that if the variables show a curvilinear relationship or no clear linear relationship, Spearman's correlation would be a better measure of correlation than Pearson's.
The student should rank the values, compute the differences, square those differences, and substitute into the above formula to find Spearman's rank correlation coefficient.
the force is the sum of all the forces that act upon an object
Answer:
net force
Explanation:
The net force is the vector sum of all the forces that act upon an object. That is to say, the net force is the sum of all the forces, taking into account the fact that a force is a vector and two forces of equal magnitude and opposite direction will cancel each other out.
Find the momentum of a 25kg object traveling at a speed of 4m/s
Answer:
100Kg.m/s
Explanation:
From the question, we obtained the following information:
M= Mass = 25kg
V = Velocity = 4m/s
Momentum =?
Momentum = MV = 25x4= 100Kg.m/s
Choose each that apply
Which ones of the following are designed to interrupt the current flow of electricity when unsafe conditions arise
•gfcis(ground fault circuit interrupters
•transformers
•circuit breakers
•regulators
•fuses
Answer:
Circuit breakers
Explanation:
This is an automatic device designed for stopping the flow of current in an electric circuit as a safety measure.
Ground Fault Circuit Interrupters (GFCIs), circuit breakers, and fuses are designed to interrupt the current flow of electricity when unsafe conditions arise.
Explanation:Ground Fault Circuit Interrupters (GFCIs), circuit breakers, and fuses are all designed to interrupt the current flow of electricity when unsafe conditions arise. GFCIs are specifically designed to detect ground faults, which occur when current leaks to the ground, and they quickly shut off the power to prevent electric shocks. Circuit breakers monitor the current flowing through a circuit and trip when the current exceeds a certain threshold, protecting against overloads and short circuits. Fuses also protect against overloads and short circuits by melting and interrupting the current flow.
Learn more about Electrical Safety here:https://brainly.com/question/34518143
#SPJ3
Which of these is a type of matter that rarely interacts with other matter and is created in some nuclear fusion reactions within stars?
A. photon
B. positron
C. neutrino
D. helium-4
Answer:
the answer is helium you already know that because im in college on my way to the military next week bless me
Explanation:
The initial speed of a body is 7.1 m/s. What is its speed after 2.23 s if it accelerates uniformly at 2.64 m/s 2 ? Answer in units of m/s. What is its speed after 2.23 s if it accelerates uniformly at −2.64 m/s 2 ? Answer in units of m/s
The final speed of a body after 2.23 s with a positive acceleration of 2.64 m/s² is 12.988 m/s. With a negative acceleration of -2.64 m/s², the speed after 2.23 s is 1.212 m/s.
Explanation:To find out the speed of a body after 2.23 s when it accelerates uniformly, we need to use the formula for calculating final velocity (v) which is:
v = u + at, where:
For the first scenario with an acceleration of 2.64 m/s², we have:
v = 7.1 m/s + (2.64 m/s² × 2.23 s) = 7.1 m/s + 5.888 m/s = 12.988 m/s.
For the second scenario with an acceleration of -2.64 m/s² (which indicates deceleration), we have:
v = 7.1 m/s + (-2.64 m/s² × 2.23 s) = 7.1 m/s - 5.888 m/s = 1.212 m/s.
Therefore, the final speed after 2.23 s with a positive acceleration of 2.64 m/s² is 12.988 m/s, and with a negative acceleration (deceleration) of -2.64 m/s², the final speed is 1.212 m/s.
What is the current in a 120V circuit if the resistance 10?
Explanation:
V=IR; I=V/R
V=120V, R=10
I= 120/10=12
The current in the circuit is 12A
The current in a 120V circuit with a resistance of 10 ohms is 12 amperes, as calculated using Ohm's Law.
Explanation:To calculate the current in a 120V circuit with a resistance of 10 ohms, you can use Ohm's Law, which states that current (I) is equal to voltage (V) divided by resistance (R). Thus,
I = V / R
I = 120V / 10Ω
I = 12A
The current in the circuit is therefore 12 amperes (A).
. A car moves forward up a hill at 12 m/s with a uni-
form backward acceleration of 1.6 m/s2.
a. What is its displacement after 6.0 s?
b. What is its displacement after 9.0 s?
A) Displacement after 6.0 s 43.2 m uphill.
B) Displacement after 9.0 s 43.2 m uphill.
Explanation:
A car moving upwards in a hill is [tex]12 ms^{-1}[/tex].
Its uniform backward acceleration is [tex]-1.6ms^{-2}[/tex]. (since backward acceleration is a negative acceleration, it is mentioned in negative)
We need to find the displacement of the car after some time.
Using the equation of the motion formula, we know can identify the displacement.
D=[tex]vt+\frac{1}{2} at^2[/tex].
a) Displacement after 6.0 seconds,
D = [tex]12(6.0)+\frac{1}{2}(-1.6)(6.0)^2[/tex].
=[tex]72+\frac{1}{2} (36)(-1.6).[/tex]
=[tex]72+\frac{1}{2}(-57.6).[/tex]
=72-28.8.
D=43.2 m.
b) Displacement after 9.0 seconds,
D= [tex]12(9.0)+\frac{1}{2}(-1.6)(9.0)^2[/tex].
=[tex]108+\frac{1}{2} (81)(-1.6).[/tex]
=[tex]108+\frac{1}{2}(-129.6).[/tex]
= 108-64.8.
D=43.2 m.
The car's displacement after 6.0 s is 14.4 m and after 9.0 s is 43.2 m.
To find the displacement of the car after a given time, we can use the equation:
Displacement (d) = Initial velocity (v) * time (t) + (1/2) * acceleration (a) * time^2
a. After 6.0 s:
Initial velocity (v) = 12 m/s
Acceleration (a) = -1.6 m/s^2 (negative because it's a backward acceleration)
Substituting the values into the equation:
d = (12 m/s) * (6.0 s) + (1/2) * (-1.6 m/s^2) * (6.0 s)^2 = 72 m - 57.6 m = 14.4 m
b. After 9.0 s:
Using the same equation and substituting the new time, we can calculate the displacement:
d = (12 m/s) * (9.0 s) + (1/2) * (-1.6 m/s^2) * (9.0 s)^2 = 108 m - 64.8 m = 43.2 m
https://brainly.com/question/33459975
#SPJ3
a child pulls on a string that is attached to a car. if the child does 80.2 J of work while pulling the car 25.0 m, with what force is the child pulling?
Answer:
F = 3.20 N
Explanation:
Given:
Work done by child = 80.2 j
Distance that the car moves = 25.0 m
We need to find the force acting on the car.
Solution:
Using work done formula as.
[tex]W = F\times d[/tex]
Where:
W = Work done by any object.
F = Force (push or pull)
d = distance that the object moves.
Substitute [tex]W = 80.2\ J\ and\ d =25.0\ m[/tex] in work done formula.
[tex]80.2 = F\times 25[/tex]
[tex]F=\frac{80.2}{25}[/tex]
F = 3.20 N
Therefore, force acting on the car F = 3.20 N
Which statement about dormant volcanoes must be true?
AThey can never erupt again. incorrect answer
BThey have not erupted for a very long time. incorrect answer
CThey will erupt within the next 12 months. incorrect answer
DThey were formerly stratovolcanoes.
Answer:
They have not erupted for a long time
Explanation:
They have not erupted for a long time is correct because dormant volcanoes are volcanoes that are active and have erupted once in the last 10,000 years. Because they are active, they will erupt again in the future.
Can somebody please help me with sig figs for this question
Answer: 760 cW/microgram
2 significant figures
Explanation: solution attached:
Answer:
760 [tex]\frac{cW}{micrograms}[/tex]
Explanation:
You have to know that:
1 gigawatt (GW)=100000000000 centiwatt (cW) 1 kilogram (kg) = 1000000000 micrograms (μg)The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three. Remember that proportionality is a constant relationship or ratio between different magnitudes.
If the relationship between the magnitudes is direct, that is, when one magnitude increases, so does the other (or when one magnitude decreases, so does the other) , the direct rule of three must be applied. To solve a direct rule of three, the following formula must be followed:
a ⇒ b
c ⇒ x
So:
[tex]x=\frac{c*b}{a}[/tex]
In this case, you have [tex]\frac{760 GW}{1 kg}[/tex]
In this case, the rule of three is applied as follows: if 1 gigawatt [GW] = 100000000000 centiwatt [cW], 7.600 GW how many cW are they?
[tex]\frac{7.600 GW}{kg} *\frac{100000000000 cW}{1 GW} *\frac{1 kg}{1000000000 micrograms}=760 \frac{cW}{micrograms}[/tex]
What is the gravitational force exerted on an object called?
Answer:
mass
Explanation:
The gravitational force exerted on an object is called its weight. Weight can change based on the strength of the gravitational pull where the object is located. The weight is calculated by multiplying the object's mass by the gravitational acceleration.
Explanation:The gravitational force exerted on an object is referred to as the object's Weight. This should not be confused with Mass, which is a measure of the amount of matter in an object and remains constant regardless of an object's location. Weight, however, can change depending on the gravitational pull of the surroundings. For instance, an object would weigh less on the moon than on Earth due to the moon's weaker gravitational pull.
Calculating the weight of an object is done by multiplying the mass of the object by the gravitational acceleration (approximately 9.8 m/s^2 on Earth). The typical unit of weight in the International System of Units (SI) is the Newton (N).
Learn more about Weight here:https://brainly.com/question/31409659
#SPJ6
What is formed from nuclear decay?
A) A bond between two atoms
B) A radioactive particle
C) A new neutron
D) A solution of two or more elements
Answer
B
Explanation:
i took that same test i'm pretty sure it's B
Nuclear decay forms new B) A radioactive particle
What is nuclear decay?Nuclear decay occurs when the nucleus of an atom is unstable and emits energy in the form of radiation. As a result, the nucleus changes into the nucleus of one or more other elements. The daughter nuclei have a lower mass and are more stable than the parent nucleus.
There are many types of nuclear decay:-
Alpha decay
beta decay
gamma decay
Learn more about nuclear decay here:-https://brainly.com/question/11117468
#SPJ2
Look at the data table and graph for the 50-coil electromagnet. With the 1.5 V battery, the electromagnet picked up an average of 13 paper clips, while the 25-coil electromagnet picked up an average of 6 paper clips.a.What is the ratio of the number of turns of the 50-turn electromagnet to the number of turns of the 25-coil electromagnet? b.What is the approximate ratio of the number of paper clips pickedup by the 50-coil electromagnet?
1) The ratio between the number of turns of the two electromagnets is 2
2) The ratio between the number of paper clips picked up is 2.2
Explanation:
1)
An electromagnet is a device consisting of a coil of wire wrapped around an iron core. Such a device is able to create a magnetic field, and in this problem this is used to attract and pick up the paper clips.
In this problem, we have two electromagnets:
- The first one has 50 turns
- The second one has 25 turns
Therefoore, the ratio of the number of turns of the 50-turn electromagnet to the number of turns of the 25-coil electromagnet is:
[tex]\frac{N_1}{N_2}=\frac{50}{25}=2[/tex]
2)
The strength of the magnetic field produced by an electromagnet is directly proportional to the number of turns in the coil wrapped on the electromagnet:
[tex]B\propto N[/tex]
This means that the electromagnet with more turns will produce a stronger magnetic field, and therefore it will be able to pickup more paper clips.
In this problem, in fact:
- The electromagnet with 50 turns can pick up 13 paper clips
- The electromagnet with 25 turns picks up 6 paper clips
Therefore, the ratio of the number of paper clips picked up is:
[tex]\frac{p_1}{p_2}=\frac{13}{6}=2.2[/tex]
And we see that this ratio is approximately equal to the ratio of the number of turns, which is 2.
Learn more about magnetic fields:
brainly.com/question/3874443
brainly.com/question/4240735
#LearnwithBrainly
1) When you take a turn to the left in a car, you feel "thrown" to the right. Explain, using the
language of Newton's first law, how it is incorrect to say a force is responsible for this feeling.
Finish up by explaining what's actually going on.
2) Newton's third law states that for each force acting on a body (action), there is a force of
equal magnitude and opposite direction (reaction) acting on whatever generates the force on the
body. What is the reaction force to your weight?
Explanation:
1) Newton's first law of motion states: "an object in motion stays in motion, and an object at rest stays at rest, until acted upon by an unbalanced force."
When you're riding in a car, your body is moving forward. When the car turns left, your inertia keeps you moving forward. This means the car moves left from underneath you, which makes it feel like you're moving to the right, even though there's no net force pushing you.
2) When you're standing on the ground, the Earth's gravity pulls on you with a force equal to your weight. You push back on the Earth with an equal and opposite force called "normal force".
Which processes cause rocks to be exposed
at Earth's surface? SC.7..6.2
Answer:
weathering
Explanation:
A 900kg car moving at 60m/s has approximately 320,000J of kinetic energy. Estimate it's new kinetic energy,if it is moving at 30m/s.
Answer:4.0*10^5 joules
Explanation:
A simple pendulum has a period of 3.45 second, when the length of the pendulum is shortened by 1.0m, the period is 2.81 second calculate, the original length of the pendulum, the value of accelerations due to gravity
Answer:
Original length = 2.97 m
Explanation:
Let the original length of the pendulum be 'L' m
Given:
Acceleration due to gravity (g) = 9.8 m/s²
Original time period of the pendulum (T) = 3.45 s
Now, the length is shortened by 1.0 m. So, the new length is 1 m less than the original length.
New length of the pendulum is, [tex]L_1=L-1[/tex]
New time period of the pendulum is, [tex]T_1=2.81\ s[/tex]
We know that, the time period of a simple pendulum of length 'L' is given as:
[tex]T=2\pi\sqrt{\frac{L}{g}}[/tex]-------------- (1)
So, for the new length, the time period is given as:
[tex]T_1=2\pi\sqrt{\frac{L_1}{g}}[/tex]------------ (2)
Squaring both the equations and then dividing them, we get:
[tex]\dfrac{T^2}{T_1^2}=\dfrac{(2\pi)^2\frac{L}{g}}{(2\pi)^2\frac{L_1}{g}}\\\\\\\dfrac{T^2}{T_1^2}=\dfrac{L}{L_1}\\\\\\L=\dfrac{T^2}{T_1^2}\times L_1[/tex]
Now, plug in the given values and calculate 'L'. This gives,
[tex]L=\frac{3.45^2}{2.81^2}\times (L-1)\\\\L=1.507L-1.507\\\\L-1.507L=-1.507\\\\-0.507L=-1.507\\\\L=\frac{-1.507}{-0.507}=2.97\ m[/tex]
Therefore, the original length of the simple pendulum is 2.97 m
The period of a simple pendulum can be calculated with the formula T = 2π√(L/g). When the length of the pendulum is shortened by 1.0m, the period becomes 2.81 seconds. By solving a system of equations related to the period and the length of the pendulum, we can get the original length and the acceleration.
Explanation:The subject matter relates to physics, specifically kinematics, and the topic is the period of a simple pendulum. The formula to calculate the period of a simple pendulum is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. We know that when the length of the pendulum was shortened by 1.0m, its period became 2.81 seconds. We can plug these values into our formula and solve for the original length (L).
To find the original length, we first let L0 be the original length and L1 be the shortened length. Therefore, L1 = L0 - 1m. Now we have two equations, T0 = 2π√(L0/g) and T1 = 2π√(L1/g). Plug in the known values and solve the system of equations, you can get the original length and the acceleration. Note, that the typical value for acceleration due to gravity on Earth is g = 9.8 m/s².
Learn more about Simple Pendulum here:https://brainly.com/question/35140817
#SPJ11
If the mass of an object is 44 kilograms and its velocity is 10 meters per second east, how much Kinetic Energy does it have?
Answer: 2200J
Explanation:
M = 44kg
V = 10m/s
K.E =?
K.E = 1/2MV2 = 1/2 x 44 x (10)^2
K.E = 22 x 100
K.E = 2200J
a 150 kg roller coaster is released from rest at the top of a 50 m hill. how fast will it be going if the second hill is 10 m high?
Final answer:
To find the final speed of the roller coaster at the second hill, we can use the conservation of energy equation. Substituting the given values into the equation, we find that the final speed of the roller coaster at the bottom of the first hill is approximately 14.14 m/s. Assuming negligible friction, this will be the speed of the roller coaster at the top of the second hill.
Explanation:
To find the final speed of the roller coaster at the second hill, we can use conservation of energy. At the top of the first hill, the roller coaster has gravitational potential energy which is converted into kinetic energy at the bottom of the first hill.
Using the conservation of energy equation: mgh = (1/2)mv², where m is the mass of the roller coaster, g is the acceleration due to gravity, h is the height of the hill, and v is the final velocity, we can solve for v. Plugging in the values, we have (150 kg)(9.8 m/s²)(50 m) = (1/2)(150 kg)v².
Solving this equation, we find that the final speed of the roller coaster at the bottom of the first hill is approximately 14.14 m/s. Since the work done by frictional forces is negligible, we can assume that the roller coaster will maintain this speed as it goes up the second hill.