Answer:
800 months
Step-by-step explanation:
The formula for interest is:
(Capital * saving account * time) / 100
So:
(10000 * 0.06 * x) / (100) = 4800
We clear x:
(10000 * 0.06 * x) = (100) * 4800
x = 480,000 / (10000 * 0.06)
x = 800 months (66.67 years)
To determine the duration for which the deposited $10,000 at 6% interest grew to a total of $14,800 ($10,000 principal + $4,800 interest), the formula for compound interest can be re-arranged to solve for the time variable. You'll use the amount of money accumulated, the principal amount, the annual interest rate, and the assumption that the interest is compounded annually. Plug these values into the formula to calculate the number of years.
Explanation:You deposited $10,000 into a savings account at 6% interest. To determine how long it took for you to earn $4,800 in interest, we can use the formula for compound interest, which is A = P(1 + r/n)^(nt), where:
A is the amount of money accumulated after n years, including interest.P is the principal amount (the initial amount of money).r is the annual interest rate (decimal).n is the number of times that interest is compounded per year.t is the time the money is invested for, in years.In this case, we can rearrange the formula to solve for t, because you want to find out how many years it took for your investment to turn into A = $10,000 + $4,800 = $14,800. Assuming the interest is compounded annually (n = 1), the formula becomes:
t = ln(A/P) / n * ln(1 + r/n)
Plugging in the numbers gives us:
t = ln($14,800 / $10,000) / ln(1 + 0.06)
By calculating this, you can get the number of years you had the money in the savings account.
A chef wants to make sure he uses all the eggs he bought he had 8 cartons with 36 eggs in each carton he uses 2/5 for Fridays breakfast and 3/8 of the remaining on Saturdays breakfast how many eggs did the chef use?
Answer:
Step-by-step explanation:
The Chef bought he had 8 cartons with 36 eggs in each carton. This means that the total number of eggs that the Chef bought is
36 × 8 = 288 eggs
He uses 2/5 for Fridays breakfast. This means that the number of eggs that he used on Friday is
2/5 × 8= 16/5 cartons
The remaining number of cartons would be
8 - 16/5 = 24/5 cartons
He used 3/8 of the remaining for Saturdays breakfast. This means that the number of eggs that he used on Saturday is
3/8 × 24/5 = 9/5 cartons
Total number of cartons that he used is
16/5 + 9/5 = 25/5 = 5 cartons
Since one carton contains 36 eggs, then the total number of eggs that the Chef used is
5 × 36 = 180 eggs
There are 950 students at Hanover High School. The ratio of the number of freshmen to all students is 3:10. The ratio of the number of sophomores to all students is 1:2. What is the ratio of the number of freshmen to sophomores?
Hi there! Since the ratios of students at Hanover High School are in different scales, we need to scale them up! First, let's take the ratio 1:2. This can be scaled up to 5:10. Now, combine the two ratios to find the ratio of freshmen to sophomores. 3:10 + 5:10 = 8:10. The remaining number is 2, since 8 + 2 = 10, so the ratio of freshmen to sophomores is 2:10!
Hope this was helpful!
In the first 2 hours after Meadow's self-service laundry opens, m large washing machines and n small washing machines are in continual use. Including the time for filling and emptying the washing machines, each load of laundry takes 30 minutes in a large washing machine and 20 minutes in a small washing machine. What is the total number of loads of laundry done at Meadow's self-service laundry during this 2-hour period?
Answer:
Nt=10 (m=4,n=6)
Step-by-step explanation:
we have that m = amount of time used by the large washing machine to wash a load of clothes and n = amount of time used by the small washing machine to wash a load of clothes, so
[tex]m=\frac{Tt}{Tpm}=\frac{2h}{\frac{1h}{2}}=4\\n=\frac{Tt}{Tpn}=\frac{2h}{\frac{1h}{3}}=6[/tex]
Nt=m+n=10
where Tt = time frame, Tpm= m' time frame, Tpn = n' time frame and Nt = total number of charges
Answer: Total laundry done in 2hours=110
Step-by-step explanation:
Let m be large washing machines
Let n be small washing machines
Load of laundry for large machine=30mins
Load of laundry in small machine=20 mins
2 hours laundry =2×60=120mins
For m in 2hrs=120/30=4
For n in 2hrs=120/20=6
m loads in 2hrs=4m
n loads in 2hrs=6n
1st statement:n=3m
Substituting
4m+6(3)=x
4m+18m=x
X=22m
Value of m cannot be determined because statement 1 is insufficient
From the 2nd statement: 2m+3n=55
Multiply both sides by2
4m+6n=110
Find the product of all constants t such that the quadratic x^2 tx - 9 can be factored in the form (x a)(x b), where a and b are integers.
Answer:
product of the constants P will be
P = 12
Step-by-step explanation:
the quadratic equation
F= x² + t*x - 9
has as solution
a and b= [-t ± √( t² - 4*1*(-9)) ] /2]
then
a - b = -t/2
a= b - t/2
since b is an integer , then t/2 should be an integer , then t=2*n , where n is any integer
also
a and b= [-t ± √( t² - 4*1*(-9)) ] /2] = [-2*n ± √(4*n²+36 )] /2 = -n ± n √ (1+9/ n²]
since n are integers , then √ (1+9/ n²] should be and integer and therefore
9/ n² should be an integer. Then the possible values of n are
n=1 and n=3
therefore the possible values of t are
t₁=2*1 = 2
t₂=2*3 = 6
the product of the constants P will be
P=t₁*t₂ = 12
Answer:
729
Step-by-step explanation:
Find an equation of the line that (a) has y-intercept of 7 and (b) is parallel to the line -5x-6y=1
Write your answer in the form y=mx+b
Answer:
The answer to your question is 5x + 6y - 42 = 0
Step-by-step explanation:
Data
y-intercept = 7
parallel to -5x - 6y = 1
Process
1.- Find the slope
- 6y = 5x + 1
y = -5/6 x - 1/6
As the lines are parallels, the slope is the same in both lines
m = -5/6
2.- Find the equation of the new line
If the line has a y-intercept of 7, it means that the point is (0, 7)
y - y1 = m(x - x1)
Substitution
y - 7 = -5/6 (x - 0)
Simplification
y - 7 = -5/6x
Equal to zero
5/6x + y - 7 = 0
Multiply by 6
5x + 6y - 42 = 0 This is the equation of the line
Answer:
6y = -5x + 42
Step-by-step explanation:
-5x - 6y = 1
-6y = 5x + 1---------------------(i)
y = -5x/6 - 1/6
comparing the equation above with y = mx + c, we have;
m = -5/6
for condition of parallelism
the gradient of the new line = -5/6
Using the formula
y = mx + c
y = -5x/6 + 7
6y = -5x + 42
The reaction time of a driver to visual stimulus is normally distributed with a mean of 0.4 seconds and a standard deviation of 0.05 seconds.(a) What is the probability that a reaction requires more than 0.5 second? (b) What is the probability that a reaction requires between 0.4 and 0.5 second? (c) What is the reaction time that is exceeded 90% of the time?
Answer:
a) [tex]P(X>0.5)=P(\frac{X-\mu}{\sigma}>\frac{0.5-\mu}{\sigma})=P(Z>\frac{0.5-0.4}{0.05})=P(z>2)[/tex]
[tex]P(z>2)=1-P(z<2)[/tex]
[tex]P(Z>2) = 1-P(Z<2)= 1- 0.97725=0.02275[/tex]
b)[tex]P(0.4<X<0.5)=P(\frac{0.4-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{0.5-\mu}{\sigma})=P(\frac{0.4-0.4}{0.05}<Z<\frac{0.5-0.4}{0.05})=P(0<z<2)[/tex]
[tex]P(0<z<2)=P(z<2)-P(z<0)[/tex]
[tex]P(0<z<2)=P(z<2)-P(z<0)=0.97725-0.5=0.47725[/tex]
c) [tex]a=0.4 +1.28*0.05=0.464[/tex]
So the value of height that separates the bottom 90% of data from the top 10% is 0.464.
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the reaction time of a driver to visual stimulus of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(0.4,0.05)[/tex]
Where [tex]\mu=0.4[/tex] and [tex]\sigma=0.05[/tex]
We are interested on this probability
[tex]P(X>0.5)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X>0.5)=P(\frac{X-\mu}{\sigma}>\frac{0.5-\mu}{\sigma})=P(Z>\frac{0.5-0.4}{0.05})=P(z>2)[/tex]
And we can find this probability using the complement rule:
[tex]P(z>2)=1-P(z<2)[/tex]
And using the normal standard table or excel we have this:
[tex]P(Z>2) = 1-P(Z<2)= 1- 0.97725=0.02275[/tex]
Part b
[tex]P(0.4<X<0.5)=P(\frac{0.4-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{0.5-\mu}{\sigma})=P(\frac{0.4-0.4}{0.05}<Z<\frac{0.5-0.4}{0.05})=P(0<z<2)[/tex]
And we can find this probability on this way:
[tex]P(0<z<2)=P(z<2)-P(z<0)[/tex]
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
[tex]P(0<z<2)=P(z<2)-P(z<0)=0.97725-0.5=0.47725[/tex]
Part c
For this part we want to find a value a, such that we satisfy this condition:
[tex]P(X>a)=0.10[/tex] (a)
[tex]P(X<a)=0.90[/tex] (b)
Both conditions are equivalent on this case. We can use the z score again in order to find the value a.
As we can see on the figure attached the z value that satisfy the condition with 0.90 of the area on the left and 0.10 of the area on the right it's z=1.28. On this case P(Z<1.28)=0.90 and P(z>1.28)=0.1
If we use condition (b) from previous we have this:
[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.9[/tex]
[tex]P(z<\frac{a-\mu}{\sigma})=0.9[/tex]
But we know which value of z satisfy the previous equation so then we can do this:
[tex]z=1.28=\frac{a-0.4}{0.05}[/tex]
And if we solve for a we got
[tex]a=0.4 +1.28*0.05=0.464[/tex]
So the value of height that separates the bottom 90% of data from the top 10% is 0.464.
Answer:
a) 0.0228
b) 0.4772
c) 0.336
Step-by-step explanation:
Mean(μ) = 0.4 seconds
Standard deviation (σ) = 0.05 seconds
From normal distribution,
Z= (x - μ) / σ
a) P(x > 0.5)
Let x be the random variable for the required seconds
When x= 0.5
Z = (0.5 - 0.4)/0.05
Z = 2
From the normal distribution table, 2= 0.4772
φ(Z) = 0.4772
Recall that when Z is positive,
P(x >a) = 0.5 - φ(Z)
P(x > 0.5) = 0.5 - 0.4772
= 0.0228
b) For x = 0.4
Z= (x - μ) / σ
= (0.4 - 0.4) / 0.05
= 0
For x= 0.5
Z= (x - μ) / σ
= (0.5 - 0.4) / 0.05
= 2
From the table, P(0.4 < x < 0.5) = P(0 < Z < 2)
So we have
P(Z < 2) - P(Z<0)
From the table, 2 = 0.4772 and 0 = 0
We then have
0.4772 - 0
= 0.4772
c) we are looking for x such that 90% of the values lie above it or 10% of the value lie below it.
From the table , 10% probability gives a z value of -1.28
x = μ + Zσ
x = 0.4 + (-1.28*0.05)
x = 0.4 - (1.28*0.05)
= 0.336
Plz help, Worth 40 pts, Will mark Branliest...
Answer:
$6.83
Step-by-step explanation:
To start off, we would want to graph the points.
Once we have our graph, we see our correlation is positive, meaning that every year past 1950, the price of 1 movie ticket increases.
Our next step would to figure out the linear regression, or to guess a best line of fit. Once we do so, we should see where the movie tickets should approxametly rise to.
We then use the best line of fit to estimate the price in 2015, or when x = 65 (65 years after 1950).
The answer closest to the estimate would be 6.83. Attached image is the graph on Desmos.
Sickle-cell disease is caused by a recessive allele. Roughly one out of every 500 African Americans (0.2%) is afflicted with sickle-cell disease. Use the Hardy-Weinberg equation to calculate the percentage of African Americans who are carriers of the sickle-cell allele. Hint: 0.002 = q2. Show your work.
Answer:
heterozygous (Aa) are 0.085 = or 8.54%
Step-by-step explanation:
The heterozygous individuals are carriers of the sickle cell trait. They have a genotype of Aa and are represented by the 2pq term
in the H-W equilibrium equations.
According to the question 0.2% of the population is affected with sickle cell anemia, thus q^2
= 0.2% = 0.002 in decimal. So, q =
sqr(q^2)
or sqr(0.002) =
0.04472
and p + q = 1, thus p = 1 – q = 1 – 0.04472 = 0.96
Thus, A allele has a frequency of 0.96 and the a allele has a frequency of 0.04472. Therefore, the
percentage of the population that is heterozygous (Aa) and are carriers is = 2pq = 2× 0.04472× 0.96 =0.085 = or 8.54%
The vector product of vectors A and B has magnitude 12.0 m² and is in the +z-direction. Vector A has magnitude 8.0 m and is in the −x-direction. Vector B has no x-component.
Part A: What is the magnitude of vector B?
Part B: What is the direction angle θ of vector B measured from the +y-direction to the +z-direction?
Final answer:
The magnitude of vector B is 1. There is no valid direction angle theta for vector B.
Explanation:
Part A:
The magnitude of vector B can be found using the formula for the magnitude of the vector product:
|A x B| = |A||B|sin(theta)
Given |A x B| = 12, |A| = 8, and |B| = ?
Using the formula above, we can solve for |B|:
12 = 8 * |B| * sin(theta)
sin(theta) = 12 / (8 * |B|) = 1.5 / |B|
Sine of any angle lies between -1 and 1, therefore 1.5 / |B| should lie in this range
|-1| <= 1.5 / |B| <= |1|
1 <= 1.5 / |B| <= 1
1.5 <= |B| <= 1
The magnitude of vector B is 1.
Part B:
The direction angle theta can be found using the formula:
cos(theta) = Bz / |B|
Given Bz = |B| and sin(theta) = 1.5 / |B|
1.5 / |B| = sqrt(1 - sin^2(theta)) = sqrt(1 - 1) = sqrt(0) = 0
This implies that sin(theta) = 1.5 / |B| = 0, which is not possible
Hence, there is no valid direction angle theta for vector B.
Final answer:
The magnitude of vector B is 1.5 m. The direction angle θ of vector B measured from the +y-direction to the +z-direction is 90°.
Explanation:
Part A: To find the magnitude of vector B, we need to use the relationship between the magnitude of the vector product A x B and the magnitudes of vectors A and B. According to the given information, the magnitude of the vector product A x B is 12.0 m². Since the vector product is in the +z-direction, we can conclude that the magnitudes of vectors A and B multiplied by the sine of the angle between them equals 12.0 m².
Let's use this information to find the magnitude of vector B:
|A x B| = |A||B|sin(θ)
12.0 m² = 8.0 m * |B| * sin(90°)
|B| = 12.0 m² / (8.0 m * sin(90°))
|B| = 12.0 m² / 8.0 m = 1.5 m
Therefore, the magnitude of vector B is 1.5 m.
Part B: To find the direction angle θ of vector B measured from the +y-direction to the +z-direction, we can use the relationship between the components of vectors A and B and the direction angle θ:
tan(θ) = By / Bz
Substituting the given information into the equation:
tan(θ) = 0 / Bz
Since vector B has no x-component, we know that Bx = 0. Therefore, we only need to find the value of Bz to determine the direction angle θ.
Recall that |B| = 1.5 m. Using the Pythagorean theorem, we can find the value of Bz:
|B|² = Bx² + By² + Bz²
(1.5 m)² = (0)² + (0)² + Bz²
Bz² = (1.5 m)²
Bz = 1.5 m
Since Bz > 0, we know that the direction angle θ is in the positive range. In this case, the direction angle θ is 90° measured from the +y-direction to the +z-direction.
Colin is painting figurines. He spends 20 mins painting each figurine. After painting for 60 mins he still has 9 left to paint. What is the function's formula
The required function is: [tex]f(t) = -0.05t+12[/tex]
Step-by-step explanation:
We have to write a function for the remaining figurines Colin has to paint.
Here
f is the function that represents number of figurines remaining
t represents time in minutes as the unit of measurement is minutes
f will be a function of t
It is mentioned in the problem that after working for 60 minutes, he has 9 figurines left to paint.
This means that
f(60) = 9
It is also given that he takes 20 minutes to paint one figurine which means in 60 minutes he will have painted 3 figurines
So at start total figurines that needed to be painted will be:
9+3 = 12
Which means that
f(0) = 12
By using these two points we can find the slope of the function
[tex]m = \frac{Change\ in\ figurines}{Change\ in\ time}\\m = \frac{9-12}{60-0}\\m = \frac{-3}{60}\\m = -0.05[/tex]
The function will be:
[tex]f(t) = mt+b[/tex]
Putting the value of slope
[tex]f(t) = -0.05t+b[/tex]
b is the initial value of figurines so
[tex]f(t) = -0.05t+12[/tex]
Keywords: Functions, slope
Learn more about functions at:
brainly.com/question/10879401brainly.com/question/10940255#LearnwithBrainly
Please help!
Find the solutions of each equation on the interval [0,2pi).
(SHOW WORK)
Picture below.
Answer:
x = 0
Step-by-step explanation:
The argument x+3π/2 shifts the sine function 3π/2 to the left, making it equivalent to -cos(x). Then the equation becomes ...
-2cos(x) = -2
cos(x) = 1
On the interval [0, 2π), cos(x) is only 1 at x=0.
Use the position function s(t) = −16t² + 400, which gives the height (in feet) of an object that has fallen for t seconds from a height of 400 feet. The velocity at time t = a seconds is given by [tex]\underset{(t \rightarrow a)}{lim} \frac{s(a) - s(t)}{a-t}[/tex]. A construction worker drops a full paint can from a height of 500 feet. When will the paint can hit the ground? At what velocity will the paint can impact the ground?
Answer:
160m/s
Step-by-step explanation:
The object can hit the ground when t = a; meaning that s(a) = s(t) = 0
So, 0 = -16a² + 400
16a² = 400
a² = 25
a = √25
a = 5 (positive 5 only because that's the only physical solution)
The instantaneous velocity is
v(a) = lim(t->a) [s(t) - s(a)]/[t-a)
Where s(t) = -16t² + 400
and s(a) = -16a² + 400
v(a) = Lim(t->a) [-16t² + 400 + 16a² - 400]/(t-a)
v(a) = Lim(t->a) (-16t² + 16a²)/(t-a)
v(a) = lim (t->a) -16(t² - a²)(t-a)
v(a) = -16lim t->a (t²-a²)(t-a)
v(a) = -16lim t->a (t-a)(t+a)/(t-a)
v(a) = -16lim t->a (t+a)
But a = t
So, we have
v(a) = -16lim t->a 2a
v(a) = -32lim t->a (a)
v(a) = -32 * 5
v(a) = -160
Velocity = 160m/s
Using movement concepts, it is found that:
The object hits the ground after 5.59 seconds.The object hits the ground at a velocity of -178.88 feet per second.----------------------------------
The height of the object after t seconds, dropped from a height of 500 feet, is given by:
[tex]h(t) = -16t^2 + 500[/tex]
----------------------------------
It hits the ground when [tex]h(t) = 0[/tex], thus:
[tex]h(t) = 0[/tex]
[tex]-16t^2 + 500 = 0[/tex]
[tex]16t^2 = 500[/tex]
[tex]t^2 = \frac{500}{16}[/tex]
[tex]t = \sqrt{\frac{500}{16}}[/tex]
[tex]t = 5.59[/tex]
The object hits the ground after 5.59 seconds.
----------------------------------
The velocity is the derivative of the position, thus:
[tex]v(t) = h^{\prime}(t) = -32t[/tex]
The velocity when it impacts the ground is v(5.59), thus:
[tex]v(5.59) = -32(5.59) = -178.88[/tex]
The object hits the ground at a velocity of -178.88 feet per second.
A similar problem is given at https://brainly.com/question/14516604
The line y = 5x/3 + b goes through the point (7, –1). What is the value of b?
(A) 3
(B) –5/3
(C) –7/5
(D) 16/3
(E) –38/3
Answer:
[tex]y=\frac{5}{3} x-\frac{38}{3}[/tex]
the value of b is -38/3
Step-by-step explanation:
[tex]y=\frac{5}{3} x+b[/tex] goes through the point (7,-1)
we need to find out b for the given equation using (7,-1)
Plug in 7 for x and -1 for y
[tex]y=\frac{5}{3} x+b[/tex]
[tex]-1=\frac{5}{3} (7)+b[/tex]
[tex]-1=\frac{35}{3}+b[/tex]
subtract 35/3 from both sides
[tex]-1 -\frac{35}{3} =b[/tex]
[tex]\frac{-38}{3} =b[/tex]
Replace it in the original equation
[tex]y=\frac{5}{3} x-\frac{38}{3}[/tex]
A line is a set of all points that:
A line is a set of all points that : C. are the same distance from two points.
Step-by-step explanation:
A line is defined as a set of all points that are the same distance from two given points. For a line to form, you must connect points, thus its correct to say a line is formed when you draw a locus of a given point.
Learn More
Definition of a line:https://brainly.com/question/1592203
Keywords: line, set , points
#LearnwithBrainly
In a psychology class, 32 students have a mean score of 93.2 on a test. Then 16 more students take the test and their mean score is 63.4.What is the mean score of all of these students together? Round to one decimal place.mean of the scores of all the students =
The mean score of all the students together, after calculating the combined total score and dividing by the total number of students, is 83.1.
Explanation:The subject of this question is the computation of the mean score of all students. The first step is to find the total score of both sets of students. For the first group, the total score is the mean score multiplied by the number of students, which is 93.2 * 32 = 2974.4. For the second group, total score is 63.4 * 16 = 1014.4. The combined total score is 2974.4 + 1014.4 = 3988.8. Since there are 32 + 16 = 48 students in total, the mean score of all students is calculated by dividing the combined score by the total number of students. So, the mean score of all the students together is 3988.8 / 48 = 83.1 (rounded to one decimal place).
Learn more about mean score here:
https://brainly.com/question/35641359
#SPJ3
solve the equation, justify each step with an algebraic property.
-4+-17+x.
–21 + x
Explanation:
Step 1: Given expression: –4 + (–17) + x
Step 2: In the algebraic property, positive × negative = negative
So, –4 + (–17) + x = –4 – 17 + x
Step 3: Add two negative numbers, the result will be sum with minus sign
–4 – 17 + x = –21 + x
Hence, –21 + x is the required equation.
There are 360 students in front of the school waiting for buses to transport them to a museum each bus can transport no more than 42 students what is the minimum number of buses needed to transport all of the students to the museum
Answer:
the answer is a
Step-by-step explanation:
Which of the following is a reflection of y = |x|
The graph of y=|x| would look like graph A
The reflected graph (mirrored image) would be graph D
Write an expression for the rate of change of the height of the dough with respect to the radius of the dough in terms of height h and radius r.
Answer:
[tex]h'=\frac{dh}{dr}=-\frac{2}{r^3\pi}[/tex]
Step-by-step explanation:
Assuming the dough is of cylindrical shape and that the volume must stay the same the equation for the volume of the cylinder is the following:
[tex]V=r^2\pi h[/tex]
where V is the volume, r the radius and h the height of the cylinder. If you get h to the left hand side you get the following equation:
[tex]h=\frac{V}{r^2\pi}[/tex]
To find the rate of change of the height you need to derive the above equation with respect to r:
[tex]h'=-\frac{2}{r^3\pi}[/tex]
Rate of change is simply how much a quantity changes, over another.
The expression for the rate of change of the dough in terms of height h and radius r is [tex]\mathbf{h' = \frac{-2}{\pi r^3}}[/tex]
From the complete question, we have:
[tex]\mathbf{V = \pi r^2h}[/tex]
Next, we make h the subject
[tex]\mathbf{h = \frac{V}{\pi r^2}}[/tex]
Rewrite as:
[tex]\mathbf{h = \frac{V}{\pi}r^{-2}}[/tex]
Differentiate with respect to r
[tex]\mathbf{h' = -2\times \frac{V}{\pi}r^{-2-1}}[/tex]
[tex]\mathbf{h' = -2\times \frac{V}{\pi}r^{-3}}[/tex]
Rewrite as:
[tex]\mathbf{h' = \frac{-2V}{\pi r^3}}[/tex]
Remove V, to leave the answer in terms of r and h
[tex]\mathbf{h' = \frac{-2}{\pi r^3}}[/tex]
Hence, the expression for the rate of change of the dough in terms of height h and radius r is [tex]\mathbf{h' = \frac{-2}{\pi r^3}}[/tex]
Read more about rates of change at:
https://brainly.com/question/12786410
The problems about the Exeter spring and the Canadian plains contain relationships that are called direct variations. In your own words, describe what it means for one quantity to vary directly with another. Which of the following describe direct variations? (a) The gallons of water in a tub and the number of minutes since the tap was opened. (b) The height of a ball and the number of seconds since it was thrown. (c) The length of a side of a square and the perimeter of the square. (d) The length of a side of a square and the area of the square.
Answer:
(a) The gallons of water in a tub and the number of minutes since the tap was opened.
(c) The length of a side of a square and the perimeter of the square.
(d) The length of a side of a square and the area of the square.
Step-by-step explanation:
Direct variation:
When one quantity increases with the another quantity , they are said to be in direct proportion.An increase in one quantity leads to a proportional increase in another quantity, then, the quantity is said to vary directly with another.Mathematically, it can be expressed as:[tex]\text{If y varies directly with x}\\y = kx\\\text{where k is a proportionality constant.}[/tex]
(a) The gallons of water in a tub and the number of minutes since the tap was opened.
As the minutes for which the tap is opened increases, there is an increase in the amount of water in tub.
Thus, there is a direct variation between the gallons of water in a tub and the number of minutes since the tap was opened.
(b) The height of a ball and the number of seconds since it was thrown.
As the time increases after the ball was thrown, its height increases. But after some time the height decreases and becomes zero.
Thus, this not an example of direct variation.
(c) The length of a side of a square and the perimeter of the square.
As the side of square increases the perimeter increases.
Thus, there is a direct variation between length of a side of a square and the perimeter of the square.
(d) The length of a side of a square and the area of the square.
As the side of square increases the area increases.
Thus, there is a direct variation between length of a side of a square and the area of the square.
$36\%$ of the beans in Pythagoras's soup are lentils, and $33\frac13\%$ of those lentils are green. If Pythagoras removes all the green lentils from his soup, then $x\%$ of the original beans remains. What is $x$?
Question is not proper, Proper question is given below;
36% of the beans in Pythagoras's soup are lentils, and 33 1/3% of those lentils are green.
If Pythagoras removes all green lentils from his soup, then x% of the original beans remain. What is x?
Answer:
88% of the original beans remains [tex](x)[/tex] after removing green lentils.
Step-by-step explanation:
Given:
Let the Original beans be 'n'.
Now given:
36% of the beans in Pythagoras's soup are lentils.
So we can say that;
Amount of lentils = [tex]\frac{36}{100}n=0.36n[/tex]
Also Given:
33 1/3% of those lentils are green
Amount of green lentils = [tex]33\frac{1}{3}\%\ \ Or \ \ \frac{100}{3}\%[/tex]
Amount of green lentils = [tex]\frac{100}{3}\times 0.36n\times\frac{1}{100}= 0.12n[/tex]
Now we need find the percentage of original beans remain after removing green lentils.
Solution:
percentage of original beans remain ⇒ [tex]x\%[/tex]
To percentage of original beans remain after removing green lentils we will subtract Amount of green lentils from Original beans and then multiplied by 100.
framing in equation form we get;
[tex]x\%[/tex] = [tex](n-0.12n)\times 100=88n \ \ \ Or \ \ \ 88\%[/tex]
Hence 88% of the original beans remains [tex](x)[/tex] after removing green lentils.
Answer:
x = 88
Step-by-step explanation:
We know that 36% of the letters are vowels. Of these, one-third are Os
(Since 33 1/3% = 33 1/3 divided by 100 = 1/3.) One-third of 36% is 12%, so 12% of the total letters in Pythagoras' soup are Os. When these are removed from the soup, 100 - 12=88% of the original letters remain.
So, x = 88
Hope this helps!
Which of the following groups has terms that can be used interchangeably with the others?1. Percentage, Probability, and Proportion2. Critical Value, Probability, and Proportion3. Critical Value, Percentage, and Probability4. Critical Value, Percentage, and Proportion
Answer: 1) Percentage, Probability, Proportion
Step-by-step explanation:
In statistics,
▪Proportion means a fraction of the total.
▪Percentage means a number or a ratio, expressed as a fraction of 100. Here, the total is 100.
▪Probability which may look slightly different from the other two means a number between 0 and 1, showing the exact likelihood of an event happening. Which in context can mean, a number showing a fraction of an event happening out of the whole (0 to 1).
▪Critical value means a point in hypothesis testing on the test distribution that is compared to the test statistic to determine whether to reject the null hypothesis.
In the four definitions, the odd one out is Critical Value.
So the option without critical value in it is option 1) Percentage, Probability, Proportion since we can use the three interchangeable.
Answer:
1. Percentage, Probability, and Proportion
Step-by-step explanation:
Proportion means a portion of a whole e.g. 2/5
Percentage means a ratio of a number expressed as a fraction of 100 e.g 20/100
Probability- This means the likelihood of an event to occur e.g 1/2
All these three terms are usually expressed as a Fraction of a Number which makes them similar.
Which expressions are equivalent to this expression?
3y+3z
3(y+z) 3y+z 10y+2z+y+z 6+y+3z
Only option 1: 3y+3z is equivalent to given expression
Step-by-step explanation:
In order to find the equivalent expression to given expression, we have to simplify each of the options to compare with the given expression
Given expression is:
[tex]3y+3z[/tex]
Option 1:
[tex]3(y+z)\\= 3y+3z[/tex]
Option 2:
[tex]3y+z[/tex]
Option 3:
[tex]10y+2z+y+z\\= 10y+y+2z+z\\= 11y+3z[/tex]
Option 4:
[tex]6+y+3z[/tex]
Hence,
Only option 1: 3(y+z) is equivalent to given expression
Keywords: Polynomials, expressions
Learn more about polynomials at:
brainly.com/question/9231234brainly.com/question/9214411#LearnwithBrainly
A salesperson at an electronic store is given a choice of two different compensation plans. Plan A pays him a weekly salary of $250 plus a commission of $25 for each stereo sold. Plan B offers no salary but pays $50 commission on each stereo sold. How many stereos must the salesperson sell to make the same amount of money with both plans?
Answer:
10 stereos must the salesperson sell to make the same amount of money with both plans.
Step-by-step explanation:
Let the Number of stereo sold = x
According to Plan A
250 + 25X
According to Plan B
50X
According to given condition
250 + 25X = 50X
250 = 50X - 25X
250 = 25X
X = 250/25
X= 10
Using drt what is the Answer to this question a car in a bus set out at 2 PM find the same point headed in the same direction. The average speed of the car is 30 mph slower than twice the speed of the bus. In two hours the car is 20 miles ahead of the bus. Find the rate of the car
Answer: the rate of the car is 50mph
Step-by-step explanation:
Let x represent the average speed of the bus.
Let y represent the distance travelled by the bus.
The average speed of the car is 30 mph slower than twice the speed of the bus. This means that the average speed of the car would be
2x - 30
Distance = speed × time
Time = distance/speed
Therefore, In 2 hours time,
2 = y/x
2x = y
In two hours the car is 20 miles ahead of the bus. Therefore
2 = (y + 20)/(2x - 30)
2(2x - 30) = y + 20
4x - 60 = y + 20 - - - - - - - - -1
Substituting y = 2x into equation 1, it becomes
4x - 60 = 2x + 20
4x - 2x = 20 + 60
2x = 80
x = 80/2 = 40
The speed of the car would be
2x - 30 = 2 × 40 - 30
= 80 - 30 = 50 mph
Arianna solved a fraction division problem using the rule "multiply by the reciprocal." Her work is shown below. Two-thirds divided by StartFraction 4 Over 5 EndFraction. Two-thirds times StartFraction 4 Over 5 EndFraction = StartFraction 8 Over 15 EndFraction Which is the most accurate description of Arianna's work? Arianna solved the problem correctly. Arianna multiplied the dividend by the divisor instead of finding the reciprocal. Arianna multiplied the denominators instead of finding a common denominator. Arianna multiplied with the reciprocal of the dividend instead of the reciprocal of the divisor.
Answer:
Arianna multiplied the dividend by the divisor instead of finding the reciprocal.
Step-by-step explanation:
The fraction division problem Arianna solved is [tex]\frac{2}{3}\div \frac{4}{5}[/tex]
Adrianna's next step is [tex]\frac{2}{3}\times \frac{4}{5}[/tex]
We are supposed to choose from the options the most accurate description of Arianna's work.
The mistake Arianna committed is that, she did not reciprocate the [tex]\frac{4}{5}[/tex] before multiplying.
Therefore the correct answer is:
Arianna multiplied the dividend by the divisor instead of finding the reciprocal.
Two rockets are lauched at the same time, but from different heights. The height y in feet of one rocket after t seconds is given by y = -16t² + 150t + 5. The height of the other rocket is given by y = -16t² + 160t. After how many second are the rockets at the same height?
Answer:
0.5 seconds
Step-by-step explanation:
Two rockets are launched at the same time, but from different heights.
[tex]y = -16t^2+ 150t + 5[/tex]
[tex]y = -16t^2 + 160t[/tex]
when the heights are same then y are equal. So equation both equations and solve for t
[tex]-16t^2+ 150t + 5= -16t^2+ 160t[/tex]
Add -16t^2 on both sides
[tex]+ 150t + 5=160t[/tex]
Subtract 150 t from both sides
[tex]5=10t[/tex]
Divide 10 on both sides
t=0.5 seconds
Identify the type of sampling used (random, systematic, convenience, stratified, or cluster sampling) in the situation described below.
A
manman
is selected by a marketing company to participate in a paid focus group. The company says that the
manman
was selected because
hehe
waswas
randomlyrandomly
chosenchosen
fromfrom
allall
adults.adults.
nothing
nothing
nothing
nothing
Answer: Random sampling
Step-by-step explanation:
A random sampling technique is the basic sampling technique in which the researcher randomly choose individuals from the whole population . This sampling method provides equal opportunity to each and every individual in the population to get selected for the sample.In the given situation , the population of interest is "all adults"
Since the man got selected randomly from entire population of adults by the marketing company, it means the type of sampling method was used is random sampling technique.
Hence, the correct answer is "random"
NEED help will give brainliest
What is the slope of the line that contains the points (-1 , 8) and (5, -4)?
A -1/2
B -2
C 1/2
D 2
Answer:
B ) -2
Step-by-step explanation:
slope of given points
slope [tex]m= \frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
The given points are
[tex]m = \frac{-4-8}{5-(-1)}[/tex]
[tex]m=\frac{-12}{6}[/tex]
[tex]m=-2[/tex]
final answer :-
slope of the line is m=-2
An insurance company claims that in the entire population of homeowners, the mean annual loss from fire is --$250 and the standard deviation of the loss is ơ-$1000. The distribution of losses is strongly right-skewed: many policies have $0 loss, but a few have large losses. An auditor examines a random sample of 10,000 of the company's policies. If the company's clairm is correct, what's the probability that the average loss from fire in the sample is no greater than $275?
Answer:
the probability that the average loss from fire in the sample is no greater than $275 is 0.9938
Step-by-step explanation:
given information:
mean, μ = $250
std deviation, σ = $1000
random sample, n = 10000
x = $275
P([tex]x[/tex] ∠_ 275) = P(z < (z ∠ (x - μ)/(σ/√n))
= P (z ∠ (275 - 250)/(1000/√10000)
= P(z ∠ 2.5)
= 0.9938
The probability that the average loss from fire in the sample is no greater than $275 is 99.38%.
Given to us,mean, μ = $250 standard deviation, σ = $1000 random sample, n = 10000 Average loss, x ≤ $275To findthe probability that the average loss from fire in the sample is no greater than $275,
[tex]P(z\leq x)=P[z< \dfrac{(x-\mu )}{(\dfrac{\sigma}{\sqrt n})}][/tex]
[tex]P(z\leq 275)=P[z< \dfrac{(275-250 )}{(\dfrac{1000}{ \sqrt {10000}})}][/tex]
[tex]P(z\leq 275)=P[z< \dfrac{(25 )}{(10)}][/tex]
[tex]P(z\leq 275)=P[z< {(2.5)}][/tex]
[tex]P(z\leq 275)=0.9938[/tex]
P(x ≤ $275) = 99.38%
Hence, the probability that the average loss from fire in the sample is not greater than $275 is 99.38%.
Learn more about Probability:
https://brainly.com/question/795909