You collect a random sample of 28 adult golfers and record two scores for each: one taken before the subject receives professional coaching and one taken after. What test statistic should you use in a significance test for the difference between the before-coaching scores and the after-coaching scores?

Answers

Answer 1

Answer:

Paired  t test

Step-by-step explanation:

Given that you collect a random sample of 28 adult golfers and record two scores for each: one taken before the subject receives professional coaching and one taken after.

Here subject of interest is to study whether the professional coaching really improves the scores.

For this two groups are taken from golfers and they were given chances to play and scores were recorded before and after coaching.  The same subject with two different scores recorded and the difference calculated.  Hence here the appropriate test is paired t test

Statistic should be t because population std devition is not known.

Hence paired t test for comparison of mean differences before and after should be done.


Related Questions

Use trigonometric identities and algebraic methods, as necessary, to solve the following trigonometric equation. Please identify all possible solutions by including all answers in [0,2Ï€) and indicating the remaining answers by using n to represent any integer. Round your answer to four decimal places, if necessary. If there is no solution, indicate "No Solution." cos2(5x)=sin2(5x)

Answers

Answer:

[tex]\large\boxed{x=\pm\dfrac{3\pi}{20}+\dfrac{2n\pi}{5}\ \vee\ x=\pm\dfrac{\pi}{20}+\dfrac{2n\pi}{5}}[/tex]

Step-by-step explanation:

[tex][tex]\cos^2(5x)=\sin^2(5x)\qquad\text{substitute}\ t=5x\\\\\cos^2t=\sin^2t\qquad\text{use}\ \sin^2\theta+\cos^2\theta=1\to\sin^2\theta=1-\cos^2\theta\\\\\cos^2t=1-\cos^2t\qquad\text{add}\ \cos^2t\ \text{to both sides}\\\\2\cos^2t=1\qquad\text{divide both sides by 2}\\\\\cos^2t=\dfrac{1}{2}\Rightarrow \cos t=\pm\sqrt{\dfrac{1}{2}}\\\\\cos t=\pm\dfrac{\sqrt2}{2}\\\\\cos t=-\dfrac{\sqrt2}{2}\Rightarrow t=\pm\dfrac{3\pi}{4}+2n\pi\\\\\cos t=\dfrac{\sqrt2}{2}\Rightarrow t=\pm\dfrac{\pi}{4}+2n\pi[/tex]

[tex]t=5x\\\\5x=\pm\dfrac{3\pi}{4}+2n\pi\ \vee\ 5x=\pm\dfrac{\pi}{4}+2n\pi\qquad\text{divide both sides by 5}\\\\x=\pm\dfrac{3\pi}{20}+\dfrac{2n\pi}{5}\ \vee\ x=\pm\dfrac{\pi}{20}+\dfrac{2n\pi}{5}[/tex]

The trigonometric equation 2cos^2(x) + 2 = 4 has solutions x = 0 and x = π in the interval [0, 2π). To include all possible solutions, we express them as x = 2nπ and x = π + 2nπ with n as any integer.

To solve the trigonometric equation 2cos^2(x) + 2 = 4, we start by simplifying the equation:

Subtract 2 from both sides to get 2cos^2(x) = 2.Divide both sides by 2 to get cos^2(x) = 1.Take the square root of both sides, considering both positive and negative roots, to get cos(x) = ±1.Find angles x in the interval [0, 2π) where the cosine is ±1. For cos(x) = 1, x = 0. For cos(x) = -1, x = π.

This equation has two solutions in the interval [0, 2π): x = 0 and x = π (which are 0 and 3.1416 when rounded to four decimal places). To express the infinite set of solutions that occur at every period of cos(x), we add 2nπ to each solution, where n is any integer, giving the final solutions as x = 2nπ and x = π + 2nπ.

the complete Question is given below:

Use trigonometric identities and algebraic methods, as necessary, to solve the following trigonometric equation. Please identify all possible solutions by including all answers in [0, 2π)

and indicating the remaining answers by using n to represent any integer. Round your answer to four decimal places, if necessary. If there is no solution, indicate "No Solution."

2cos^2 (x) + 2 = 4

Enter your answer in radians, as an exact answer when possible. Multiple answers should be separated by commas.

a 62 year old man owns a non-tax qualified variable annuity. if this indvidual makes a lump-sum withdrawal from the plan, this would:

Answers

Answer:

If the 62 year old man makes a lump-sum withdrawal from the plan or tax structure, his investments would start incurring ordinary income taxes without attracting any other form of penalties. However, it has to be noted that prior to withdrawal of the lump-sum, his investments would grow without incurring income taxes.

Solve the following equation. log Subscript 2 Baseline (3 x plus 7 )equals 5 The solution set is StartSet nothing EndSet . ​(Simplify your​ answer.)

Answers

Answer: [tex]x=\dfrac{25}{3}[/tex]

Step-by-step explanation:

The given equation : [tex]\log_2(3x+7)=5[/tex]

Using logarithmic property : [tex]\log_a N=M\to N=a^M[/tex]

The given equation will be equivalent to [tex](3x+7)=2^5[/tex]

[tex]\Rightarrow\ 3x+7=32[/tex]

Subtract 7 from both sides , we get

[tex]3x=25[/tex]

Divide both sides by 3 , we get

[tex]x=\dfrac{25}{3}[/tex]

Hence, the solution is [tex]x=\dfrac{25}{3}[/tex]

On the Richter Scale, the magnitude R of an earthquake of intensityI is
R = log10 I/Io
where lo is a reference intensity. At 7:23am on March 19, 2003, an earthquake measuring 3.0 on the Richter scale occurred near the town of Nephi. An earthquake of that magnitude is often felt, but rarely causes damage. By comparison, the earthquake that struck San Francisco in 1906 measured 8.25 on the Richter scale. It was ___________times as intensive as the Nephi earthquake.

Answers

Answer:

177,827.941

Step-by-step explanation:

The magnitude of an earthquake is given by:

[tex]R=log(\frac{l}{l_0})[/tex]

The intensity of the Nephi earthquake is:

[tex]3.0=log(\frac{l_N}{l_0})\\10^3 =\frac{l}{l_0} \\l_N=1,000*l_0[/tex]

The intensity of the San Francisco earthquake is

[tex]8.25=log(\frac{l_S}{l_0})\\10^{8.25} =\frac{l_S}{l_0} \\l_S=177,827,941*l_0[/tex]

The intensity ratio is:

[tex]r= \frac{l_S}{l_N}=\frac{177,827,941*l_0}{1,000*l_0}\\r= 177,827.941[/tex]

The San Francisco earthquake was 177,827.941 times as intensive as the Nephi earthquake.

Final answer:

When comparing the intensity of the San Francisco earthquake (magnitude 8.25) and the Nephi earthquake (magnitude 3.0) on the Richter Scale, we find that the San Francisco earthquake was approximately 177,827.94 times more intensive than the Nephi earthquake.

Explanation:

To compare the intensity of two earthquakes using the Richter Scale, we need to apply the formula:
R = log10 I/Io, where R is the Richter magnitude, I is the intensity of the earthquake, and Io is a reference intensity.

Now, we know that the Richter scale is a base-10 logarithmic scale. This means that each whole number increase on the scale represents a tenfold increase in measured amplitude and roughly 31.6 times more energy release.

The earthquakes in question have magnitudes of 3.0 and 8.25. So, the intensity of the San Francisco earthquake compared to the Nephi earthquake is 10^(8.25-3) = 10^5.25.

Therefore, the San Francisco earthquake was approximately 177,827.94 times more intensive as the Nephi earthquake.

Learn more about Richter Scale here:

https://brainly.com/question/33354205

#SPJ11

Assume a device manufacturer tests 100 devices. The first device fails at 100 hours. The last device fails at 200 hours. What is the device MTBF:a. 10,000 Hoursb. 15,000 hours c. 20,000 hours d. 100 hours

Answers

Answer:

a. 10,000 Hours

Step-by-step explanation:

MTBF (Mean Time Between Failures) can be calculated using the formula:

[tex]MTBF={(L-F)}*{n}[/tex] where

L is the time at which last device fails (200 hours) F is the time at which first device fails (100 hours) n is the number of devices tested (100)

[tex]{MTBF=(200-100)}*{100}=10000[/tex]

Final answer:

The MTBF for a set of devices tested by the manufacturer, with failures evenly distributed from 100 to 200 hours, is 15,000 hours, which is calculated using the sum of an arithmetic series formula.

Explanation:

The student is asking about the mean time between failures (MTBF) for a set of devices. MTBF is a basic measure of reliability for repairable items and represents the average time expected between failures. To calculate MTBF, you divide the total operational time by the number of failures. In this case, the device manufacturer tests 100 devices, with the first failing after 100 hours and the last after 200 hours, which suggests a linear distribution of failures over time.

Assuming a linear and even distribution of failures from 100 to 200 hours for the 100 devices, you would calculate the total operational time before each device failed and then divide by the number of devices. The calculation would be the sum of an arithmetic series:

MTBF = (100 hours + 101 hours + ... + 200 hours) / 100 devices

We can use the formula for the sum of an arithmetic series:

S = n/2 * (a1 + an)

Where:

n is the number of terms in the series (here, 100 devices),

a1 is the first term in the series (100 hours),

an is the last term in the series (200 hours),

Now apply the formula:

MTBF = 100/2 * (100 + 200)

MTBF = 50 * 300

MTBF = 15,000 hours

So, the answer is b. 15,000 hours.

The cash operating expenses of the regional phone companies during the first half of 1994 were distributed about a mean of $29.93 per access line per month, with a standard deviation of $2.65. Company A's operating expenses were $27.00 per access line per month. Assuming a normal distribution of operating expenses, estimate the percentage of regional phone companies whose operating expenses were closer to the mean than the operating expenses of Company A were to the mean. (Round your answer to two decimal places.)

Answers

Answer:

The percentage of regional phone companies whose operating expenses were closer to the mean than the operating expenses of Company A were to the mean is 73%.

Step-by-step explanation:

The Company A's operating expenses were $27.00. This is $2.93 less than the regional mean.

[tex]\Delta E=29.93-27.00=2.93[/tex]

The companies whose operating expenses are closer to the mean are the ones that have expenses $2.93 below or above the mean.

The fraction of companies that are closer to the mean is equal to the proability of having expenses between those two limits:

[tex]z_1=(M-\mu)/\sigma=-2.93/2.65=-1.105\\\\z_2=+1.105[/tex]

[tex]P(|z|\leq1.105)=P(z\leq 1.105)-P(z<-1.105)=0.86542-0.13458=0.73[/tex]

Final answer:

To find the percentage of companies with operating expenses closer to the mean than Company A, calculate the Z score for Company A. Then find the percentile, and double it to account for both sides of the normal distribution.

Explanation:

To find out the percentage of regional phone companies that had operating expenses closer to the mean than the ones of Company A, we need to calculate the Z-score for Company A. The

Z-score

is a measure of how many standard deviations an element is from the mean. In this particular case, you can calculate the Z score using the formula:

Z = (X - μ) / σ

, where X is the value from the dataset (in this case, Company A's operating expenses), μ is the mean of the dataset, and σ is the standard deviation of the dataset.

So using the data from the question:

Z = ($27.00 - $29.93) / $2.65 = -1.109. Next, recognize that finding the percentage closer to the mean is the same as finding the percentile of company A's Z-score. You can then use a standard normal distribution table or online Z-score calculator to find the percentile associated with a Z-score of -1.109. If it's a two-tailed test (as normally implied by the word 'closer' in statistical analysis), you can multiply the cumulative probability by 2, as it would be the probability on either side of the distribution.

This will give you a percentage that can be understood as the percentage of regional phone companies which had operating expenses closer to the mean than Company A's were to the mean.

Learn more about Z-score here:

https://brainly.com/question/15016913

#SPJ3

The brand manager for a brand of toothpaste must plan a campaign designed to increase brand recognition. He wants to first determine the percentage of adults who have heard of the brand. How many adults must he survey in order to be 80% confident that his estimate is within six percentage points of the true population​percentage?

Complete parts​ (a) through​ (c) below.

1) Assume that nothing is known about the percentage of adults who have heard of the brand.
a.n=_________​(Round up to the nearest​ integer.)

2) Assume that a recent survey suggests that about 85​% of adults have heard of the brand.

b.n=_________(Round up to the nearest​ integer.)

​3) Given that the required sample size is relatively​ small, could he simply survey the adults at the nearest​ college?

Answers

Answer:

1) n=114

2) n=59

3) On this case no, because if we survey just the adults of the nearest college that would be a convenience sample. And when we use "convenience sample" we have some problems associated to bias. This methodology it's not appropiate in order to have a good estimation of the parameter of interest. It's better use a random, cluster or stratified sampling.

Step-by-step explanation:

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

The population proportion have the following distribution

[tex]p \sim N(p,\sqrt{\frac{\hat p(1-\hat p)}{n}})[/tex]

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 80% of confidence, our significance level would be given by [tex]\alpha=1-0.80=0.2[/tex] and [tex]\alpha/2 =0.1[/tex]. And the critical value would be given by:

[tex]z_{\alpha/2}=-1.28, z_{1-\alpha/2}=1.28[/tex]

Part 1

The margin of error for the proportion interval is given by this formula:  

[tex] ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]    (a)  

And on this case we have that [tex]ME =\pm 0.06[/tex] or 6% points, and we are interested in order to find the value of n, if we solve n from equation (a) we got:  

[tex]n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2}[/tex]   (b)  

Since we don't have a prior estimate of [tex]\het p[/tex] we can use 0.5 as a good estimate, replacing into equation (b) the values from part a we got:

[tex]n=\frac{0.5(1-0.5)}{(\frac{0.06}{1.28})^2}=113.77[/tex]  

And rounded up we have that n=114

Part 2

On this case we have a prior estimate for the population proportion and is [tex]\hat p =0.85[/tex] so replacing the values into equation (b) we got:

[tex]n=\frac{0.85(1-0.85)}{(\frac{0.06}{1.28})^2}=58.027[/tex]

And rounded up we have that n=59

Part 3

On this case no, because if we survey just the adults of the nearest college that would be a convenience sample. And when we use "convenience sample" we have some problems associated to bias. This methodology it's not appropiate in order to have a good estimation of the parameter of interest. It's better use a random, cluster or stratified sampling.

Compare - 40% of A is equal to $300 and 30% of B is equal to $400

Answers

Answer:

B is greater than A.

Step-by-step explanation:

We have been given that 40% of A is equal to $300 and 30% of B is equal to $400. We are asked to compare both quantities.

Let us find A and B using our given information.

[tex]\frac{40}{100}*A=300[/tex]

[tex]0.40A=300[/tex]

[tex]\frac{0.40A}{0.40}=\frac{300}{0.40}[/tex]

[tex]A=750[/tex]

Similarly, we will find B.

[tex]\frac{30}{100}*B=400[/tex]

[tex]0.30*B=400[/tex]

[tex]\frac{0.30B}{0.30}=\frac{400}{0.30}[/tex]

[tex]B=1333.3333[/tex]

We know that smaller percent of big number is greater than bigger percent of a small number.

Therefore, B is greater than A.

Answer:

Step-by-step explanation:

40% Of A = 300

30% of B = 400

40a / 100 = 300, 40a = 3  divide both sides by 3 ,

then a = 13.33 approximately 13

30b = 400 = 400, 30b = 4 divide both sides by 30, then b =7.5

comparing both results where a = 13 , b = 7.5

a is greater than b with difference of 5.5

PLEASE HELP ME!!!

What transformations are represented by the following coordinate graphing? (geometry)

(a,b) --> (a,-b)

(a,b) --> (a, b+5)

(a,b) --> (b,-a)

Answers

Step-by-step explanation:

(a, b) → (a, -b)

This is a reflection across the x-axis.

(a, b) → (a, b+5)

This is a translation 5 units up.

(a, b) → (b, -a)

This is a rotation of 270° about the origin.

A numerical description of the outcome of an experiment is called a
a. descriptive statistic.
b. probability function.
c. variance.
d. random variable.

Answers

Answer: d. random variable.

Step-by-step explanation:

A random variable is a numerical description of outcomes of an experiment, it can be used to represent the possible values of a past experiment or yet-to-be-performed experiments. It is a variable whose values depends on outcome of a random occurrence. Random variables also allows the calculation of probability of an occurrence or result in a particular experiment.

Final answer:

The numerical description of the outcome of an experiment is best described as a random variable. It is not referred to as a descriptive statistic, a probability function, or variance.

Explanation:

In statistics, a numerical description of the outcome of an experiment is referred to as a random variable. The term random variable refers to a function that assigns a real number to each outcome of an experiment conducted according to a certain probability distribution. This term is central to probability theory and statistics, in which numerical results of random variables are analyzed to understand underlying processes or to make predictions.

On the other hand, descriptive statistics summarize and organize characteristics of a data set. A probability function is a mathematical function that provides the probabilities of occurrence of different possible outcomes. Variance is a measurement of spread between numbers in a data set.

Learn more about random variable here:

https://brainly.com/question/33194053

#SPJ6

A paint manufacturer made a modification to a paint to speed up its drying time. Independent simple random samples of 11 cans of type A (the original paint) and 9 cans of type B (the modified paint) were selected and applied to similar surfaces. The drying times, in hours, were recorded.
The summary statistics are as follows.
Type A Type B
x1 = 76.3 hrs x2 = 65.1 hrs
s1 = 4.5 hrs s2 = 5.1 hrs
n1 = 11 n2 = 9
The following 98% confidence interval was obtained for μ1 - μ2, the difference between the mean drying time for paint cans of type A and the mean drying time for paint cans of type B:
4.90 hrs < μ1 - μ2 < 17.50 hrs
What does the confidence interval suggest about the population means?

Answers

Answer:

We can conclude that the drying time in hours for type A is significantly higher than the drying time for type B. And the margin above it's between 4.90 and 17.5 hours at 2% of significance.

Step-by-step explanation:

Previous concepts  

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

[tex]\bar X_1 =76.3[/tex] represent the sample mean 1

[tex]\bar X_2 =65.1[/tex] represent the sample mean 2

n1=11 represent the sample 1 size  

n2=9 represent the sample 2 size  

[tex]s_1 =4.5[/tex] sample standard deviation for sample 1

[tex]s_2 =5.1[/tex] sample standard deviation for sample 2

[tex]\mu_1 -\mu_2[/tex] parameter of interest.

Confidence interval

The confidence interval for the difference of means is given by the following formula:  

[tex](\bar X_1 -\bar X_2) \pm t_{\alpha/2}\sqrt{\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2}}[/tex] (1)  

The point of estimate for [tex]\mu_1 -\mu_2[/tex] is just given by:

[tex]\bar X_1 -\bar X_2 =76.3-65.1=11.2[/tex]

In order to calculate the critical value [tex]t_{\alpha/2}[/tex] we need to find first the degrees of freedom, given by:  

[tex]df=n_1 +n_2 -1=11+9-2=18[/tex]  

Since the Confidence is 0.98 or 98%, the value of [tex]\alpha=0.02[/tex] and [tex]\alpha/2 =0.01[/tex], and we can use excel, a calculator or a tabel to find the critical value. The excel command would be: "=-T.INV(0.01,18)".And we see that [tex]t_{\alpha/2}=\pm 2.55[/tex]  

The standard error is given by the following formula:

[tex]SE=\sqrt{\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2}}[/tex]

And replacing we have:

[tex]SE=\sqrt{\frac{4.5^2}{11}+\frac{5.1^2}{9}}=2.175[/tex]

Confidence interval

Now we have everything in order to replace into formula (1):  

[tex]11.2-2.55\sqrt{\frac{4.5^2}{11}+\frac{5.1^2}{9}}=5.65[/tex]  

[tex]11.2+2.55\sqrt{\frac{4.5^2}{11}+\frac{5.1^2}{9}}=16.75[/tex]  

So on this case the 98% confidence interval would be given by [tex]5.65 \leq \mu_1 -\mu_2 \leq 16.75[/tex]  

But let's assume that the confidence interval given is true 4.90 hrs < μ1 - μ2 < 17.50 hrs

What does the confidence interval suggest about the population means?

We can conclude that the drying time in hours for type A is significantly higher than the drying time for type B. And the margin above it's between 4.90 and 17.5 hours at 2% of significance.

Some sources report that the weights of​ full-term newborn babies in a certain town have a mean of 7 pounds and a standard deviation of 1.2 pounds and are normally distributed.a. What is the probability that one newborn baby will have a weight within 1.2 pounds of the meanlong dashthat ​is, between 5.8 and 8.2 ​pounds, or within one standard deviation of the​ mean?b. What is the probability that the average of nine ​babies' weights will be within 1.2 pounds of the​ mean; will be between 5.8 and 8.2 ​pounds?c. Explain the difference between​ (a) and​ (b).

Answers

Answer:

a) [tex]P(5.8<X<8.2)=P(\frac{5.8-7}{1.2}<Z<\frac{8.2-7}{1.2})=P(-1<Z<1)=P(Z<1)-P(Z<-1)=0.841-0.159=0.683[/tex]

b) [tex]P(5.8<\bar X <8.2) = P(Z<3)-P(Z<-3)=0.999-0.0014=0.9973[/tex]

c) For part a we are just finding the probability that an individual baby would have a weight between 5.8 and 8.2. So we can't compare the result of part a with the result for part b.

For part b we are finding the probability that the mean of 9 babies (from random sampling) would be between 5.8 and 8.2, so on this case we have a distribution with a different deviation depending on the sample size. And for this reason we have different values

Step-by-step explanation:

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  The letter [tex]\phi(b)[/tex] is used to denote the cumulative area for a b quantile on the normal standard distribution, or in other words: [tex]\phi(b)=P(z<b)[/tex]

Let X the random variable that represent the weights of​ full-term newborn babies of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(7,1.2)[/tex]

a. What is the probability that one newborn baby will have a weight within 1.2 pounds of the meanlong dashthat ​is, between 5.8 and 8.2 ​pounds, or within one standard deviation of the​ mean?

We are interested on this probability

[tex]P(5.8<X<8.2)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]Z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(5.8<X<8.2)=P(\frac{5.8-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{8.2-\mu}{\sigma})[/tex]

And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.  

[tex]P(5.8<X<8.2)=P(\frac{5.8-7}{1.2}<Z<\frac{8.2-7}{1.2})=P(-1<Z<1)=P(Z<1)-P(Z<-1)=0.841-0.159=0.683[/tex]

b. What is the probability that the average of nine ​babies' weights will be within 1.2 pounds of the​ mean; will be between 5.8 and 8.2 ​pounds?

And let [tex]\bar X[/tex] represent the sample mean, the distribution for the sample mean is given by:

[tex]\bar X \sim N(\mu,\frac{\sigma}{\sqrt{n}})[/tex]

On this case  [tex]\bar X \sim N(7,\frac{1.2}{\sqrt{9}})[/tex]

The z score on this case is given by this formula:

[tex]z=\frac{\bar x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And if we replace the values that we have we got:

[tex]z_1=\frac{5.8-7}{\frac{1.2}{\sqrt{9}}}=-3[/tex]

[tex]z_2=\frac{8.2-7}{\frac{1.2}{\sqrt{9}}}=3[/tex]

For this case we can use a table or excel to find the probability required:

[tex]P(5.8<\bar X <8.2) = P(Z<3)-P(Z<-3)=0.999-0.0014=0.9973[/tex]

c. Explain the difference between​ (a) and​ (b).

For part a we are just finding the probability that an individual baby would have a weight between 5.8 and 8.2. So we can't compare the result of part a with the result for part b.

For part b we are finding the probability that the mean of 9 babies (from random sampling) would be between 5.8 and 8.2, so on this case we have a distribution with a different deviation depending on the sample size. And for this reason we have different values

PLEASE PLEASE HELP ​

Answers

Answer:68.3 degrees

Step-by-step explanation:

The diagram of the triangle ABC is shown in the attached photo. We would determine the length of side AB. It is equal to a. We would apply the cosine rule which is expressed as follows

c^2 = a^2 + b^2 - 2abCos C

Looking at the triangle,

b = 75 miles

a = 80 miles.

Angle ACB = 180 - 42 = 138 degrees. Therefore

c^2 = 80^2 + 75^2 - 2 × 80 × 75Cos 138

c^2 = 6400 + 5625 - 12000Cos 138

c^2 = 6400 + 5625 - 12000 × -0.7431

c^2 = 12025 + 8917.2

c = √20942.2 = 144.7

To determine A, we will apply sine rule

a/SinA = b/SinB = c/SinC. Therefore,

80/SinA = 144.7/Sin 138

80Sin 138 = 144.7 SinA

SinA = 53.528/144.7 = 0.3699

A = 21.7 degrees

Therefore, theta = 90 - 21.7

= 68.3 degees

Robin Inc. feared that the average company loss is running beyond $34,000. It initially conducted a hypothesis test on a sample extracted from its database. The hypothesis was formulated as H0: average company loss ≤ $34,000 H1: average company loss > $34,000. The test resulted in favor of Robin Inc.'s loss not exceeding $34,000. Detailed study of company accounts later revealed that the average company loss had run up to $37,896. Which of the following errors were made during the hypothesis test? Select one: a) Type III error b) Type II error c) Type I error d) Type IV error

Answers

Answer

b. Type II error

Step-by-step explanation:

The hypothesis was formulated as  

the solution can be seen in the attached document

 

What are the possible rational zeros of f(x) = x4 − 4x3 + 9x2 + 5x + 14?

Answers

Answer:

±1, ±2, ±7, ±14

Step-by-step explanation:

There is a strong correlation between the temperature and the number of skinned knees on playgrounds. Does this tell us that warm weather causes children to​ trip? Choose the correct answer below. A. Yes. In warm​ weather, more children will go outside and play. B. No. Warm weather will cause less children to trip and suffer skinned knees. C. No. In warm​ weather, more children will go outside and play. D. Yes. Warm weather will cause more children to trip and suffer skinned knees.

Answers

Answer:

C. No. In warm weather, more children will go outside and play

Step-by-step explanation:

The correct answer is option C: No. In warm weather, more children will go outside and play.

Correlation means that two variables are related, but it does not necessarily mean that one causes the other. In this case, there is a strong correlation between temperature and the number of skinned knees on playgrounds, but it does not tell us that warm weather causes children to trip.

Option A is incorrect because warm weather does not directly cause children to go outside and play. It may be a factor, but it is not the sole reason. Option B is incorrect because warm weather does not cause fewer children to trip and suffer skinned knees. In fact, the correlation suggests that more children are likely to be outside playing in warm weather, which could potentially increase the number of skinned knees. Option D is incorrect because warm weather does not directly cause more children to trip and suffer skinned knees.

The correlation suggests that the increase in skinned knees is likely due to more children being outside and playing, rather than the warm weather itself. To summarize, the strong correlation between temperature and the number of skinned knees on playgrounds indicates that in warm weather, more children will go outside and play. However, it does not tell us that warm weather causes children to trip.

To know more about temperature here

https://brainly.com/question/27944554

#SPJ2

The mean consumption of bottled water by a person in the United States is 28.5 gallons per year. You believe that a person consume more than 28.5 gallons in bottled water per year. A random sample of 100 people in the United States has a mean bottled water consumption of 27.8 gallons per year with a standard deviation of 4.1 gallons. At α = 0.10 significance level can you reject the claim?

Answers

Answer:

[tex]t=\frac{27.8-28.5}{\frac{4.1}{\sqrt{100}}}=-1.707[/tex]    

[tex]p_v =P(t_{99}<-1.707)=0.0455[/tex]

If we compare the p value with a significance level for example [tex]\alpha=0.1[/tex] we see that [tex]p_v<\alpha[/tex] so we can conclude that we reject the null hypothesis, so there is not enough evidence to conclude that the mean for the consumption is less than 28.5 gallons at 0.1 of significance, so we can reject the claim that person consume more than 28.5 gallons.

Step-by-step explanation:

Data given and notation    

[tex]\bar X=27.8[/tex] represent the mean for the account balances of a credit company

[tex]s=4.1[/tex] represent the population standard deviation for the sample    

[tex]n=1000[/tex] sample size    

[tex]\mu_o =28.5[/tex] represent the value that we want to test  

[tex]\alpha=0.1[/tex] represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)    

[tex]p_v[/tex] represent the p value for the test (variable of interest)

State the null and alternative hypotheses.    

We need to conduct a hypothesis in order to determine if the mean for the person consume is more than 28.5 gallons, the system of hypothesis would be:    

Null hypothesis:[tex]\mu \geq 28.5[/tex]    

Alternative hypothesis:[tex]\mu < 28.5[/tex]    

We don't know the population deviation, so for this case we can use the t test to compare the actual mean to the reference value, and the statistic is given by:    

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)    

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".

Calculate the statistic    

We can replace in formula (1) the info given like this:    

[tex]t=\frac{27.8-28.5}{\frac{4.1}{\sqrt{100}}}=-1.707[/tex]    

Calculate the P-value    

First we need to calculate the degrees of freedom given by:

[tex]df=n-1=100-1=99[/tex]

Since is a one-side lower test the p value would be:    

[tex]p_v =P(t_{99}<-1.707)=0.0455[/tex]

In Excel we can use the following formula to find the p value "=T.DIST(-1.707,99)"  

Conclusion    

If we compare the p value with a significance level for example [tex]\alpha=0.1[/tex] we see that [tex]p_v<\alpha[/tex] so we can conclude that we reject the null hypothesis, so there is not enough evidence to conclude that the mean for the consumption is less than 28.5 gallons at 0.1 of significance, so we can reject the claim that person consume more than 28.5 gallons.

......Help Please......

Answers

Answer:

Step-by-step explanation:

the sign here means division

7 divided by the number in the box equals to 8

simply meaning 7 multiplied by 8 will give the number

7 x 8 = 56  

Let A = (0, 0), B = (8, 1), C = (5, −5), P = (0, 3), Q = (7, 7), and R = (1, 10). Prove that angles ABC and P QR have the same size.

Answers

Answer:

To prove

∠ABC = ∠PQR

Using euclidean distance, Length of each side can be found as

[tex]AB=\sqrt{65} ,BC=\sqrt{45} ,CA=\sqrt{50} \\PQ=\sqrt{65} ,QR=\sqrt{45} ,RP=\sqrt{50}[/tex]

As can be seen

AB ≅ PQ

BC ≅ QR

CA ≅ RP

As all the sides of ΔABC are equal and congruent to ΔPQR, this Proves that measure of all angles inside both triangles must be equal.

The probability density function f(x) of a random variable X that has a uniform distribution between a and b is:
-(b + a)/2
-(a − b)/2
-1/b − 1/a
-None of these choices.

Answers

The probability density function (pdf) is;

f(x)=[tex]\frac{1}{b - a}[/tex] for a ≤ x ≤ b.

while the mean is given as [tex]\frac{a + b}{2}[/tex]

And the standard deviation given as [tex]\sqrt{\frac{(b - a)^{2} }{12} }[/tex]

Answer: -None of these choices.

PDF = 1/(b-a)

Step-by-step explanation:

The probability density function f(x) of a random variable X that has a uniform distribution between a and b is given by:

PDF = 1/(b-a) for X€[a,b]

otherwise zero.

A continuous random variable may assume:
-any value in an interval or collection of intervals
-only integer values in an interval or collection of intervals
-only fractional values in an interval or collection of intervals
-only the positive integer values in an interval

Answers

Answer:

-any value in an interval or collection of intervals

Step-by-step explanation:

Discrete random variables are only integers in the interval.

Continuous random variables are all the values(integers, fractional, negative, positive) in an interval, or a collection of intervals.

The correct answer is:

-any value in an interval or collection of intervals

Final answer:

A continuous random variable can assume any value in an interval or collection of intervals. Unlike discrete random variables, which can only take integer values, continuous variables can take a range of values, like measurements such as height.

Explanation:

A continuous random variable is a type of variable in statistics that can assume any value within an interval or collection of intervals. This is different from a discrete random variable which can only take on a finite or countable number of values (often integer values).

For example, if we measure the height of a person, it could be any value within the feasible range, say between 0 meter and 3 meters. This is a continuous variable because there are infinite possibilities between 0 and 3, including measurements like 1.73 meters or 2.45 meters etc. It's not limited to integer values (like 1 m, 2 m, etc.), nor only fractional values, nor just positive integers within an interval.

Learn more about Continuous Random Variable here:

https://brainly.com/question/32867130

#SPJ6

Conduct a test at the a=0.05 level of significance by determining (a) null and alternative hypothesis, (b) the test statistic, (c) the P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p1 > p2. The sample data are x1=117 n1=249 x2=141 n2=312

Answers

Answer:

Since p > alpha, we accept H0, there is no evidence to prove that p1 is greater than p2

Step-by-step explanation:

Set up hypotheses as

[tex]H_0: p1 = p2\\H_a: p1>p2[/tex]

(Right tailed t test)

Alpha = 0.05

Sample               I                II                Total

X                        117             141              248

N                        249           312            561

p                        0.4700     0.4519        0.4420

p difference = 0.0181    

Std dev = [tex]\sqrt{p(1-p)(\frac{1}{n_1} +\frac{1}{n_2} )}[/tex]

=0.0427

z statistic = 0.424

p value = 0.33724

Since p > alpha, we accept H0, there is no evidence to prove that p1 is greater than p2

Final answer:

To test whether p1 is greater than p2 using hypothesis testing, one needs to state the null and alternative hypotheses, calculate the test statistic and p-value, and then decide whether to reject or accept the null hypothesis based on the level of significance and the p-value. Calculating the test statistic and p-value requires specific formulas and is not provided here.

Explanation:

Conducting a Hypothesis Test for Two Population Proportions

A student would like assistance in conducting a hypothesis test for two population proportions. The steps to perform such a test include:

State the null and alternative hypotheses: The null hypothesis (H0) is that there is no difference between the two population proportions (p1 - p2 = 0), while the alternative hypothesis (Ha) posits that there is a difference (p1 > p2).

The random variable (P') represents the difference between the two sample proportions.

Calculate the test statistic: Using the provided sample sizes and successful outcomes, the test statistic is calculated using a formula based on the Z-distribution.

Calculate the p-value: The p-value is determined from the test statistic, indicating the probability of observing such a result if the null hypothesis were true.

At the 5 percent level of significance, compare the p-value to the alpha value of 0.05 to make a decision. If the p-value is less than alpha, reject the null hypothesis.

The Type I error would occur if the null hypothesis is incorrectly rejected when it is actually true.

The Type II error would occur if the null hypothesis is not rejected when it is actually false.

The test statistic and p-value cannot be calculated from the information provided without the appropriate formulas or statistical tools.

Decision Making and Errors

If the alpha level is greater than the p-value, the null hypothesis should be rejected, indicating there is evidence to suggest p1 is greater than p2.

Failure to reject the null hypothesis when it is false constitutes a Type II error.

This question is to show that we can `recode' and model a situation that depends on nitely many past states as a homogeneous Markov chain. Suppose we model the daily weather as a Markov chain. The weather has just two states: cloudy and sunny. Suppose that if it is sunny today and was sunny yesterday then it will be sunny tomorrow with probability 0:6; if sunny today but cloudy yesterday then it will be sunny tomorrow with probability 0:5; if cloudy today but sunny yesterday then it will be sunny tomorrow with probability 0:4; if it was cloudy for the last two days then it will be sunny tomorrow with probability 0:2. Calculate the expected fraction of cloudy days.

Answers

Answer:

F=y+z=4/6.25

Step-by-step explanation:

First, we have to consider that in the problem model we have only two possible states: sunny and cloudy. Now, according to the information given in the statement, we also have the behavior of the last two days. In any case, we can have four possible transitional states:

Today-Yesterday(S=Sunny, C=cloudy)

1) ST and SY (Sunny today and sunny yesterday)

2) ST and CY.

3) CT and SY.

4) CT and CY.

Now, according to the statement, the probabilities given for the four states can be expressed by the following matrix:

[tex]\left[\begin{array}{cccc}0.6&0&(1-0.6)&0\\0.5&0&(1-0.5)&0\\0&0.4&0&(1-0.4)\\0&0.2&0&(1-0.2)\end{array}\right][/tex]

Now, making w, x, y, z as the transition probabilities for the four states mentioned, we then have that:

x=0.6w+0.5x

w=1.25x (1)

x=0.4y+0.2z (2)

y=0.4w+0.5x

y= 0.4(1.25x)+0.5x=x

y=x (3)

replacing 3 in 2:

y=0.4y+0.2x

x=3y (4)

And as w+x+y+z= 1 (no more possible combinations):

w+x+y+z=1 (5)

So, replacing the expressions obtained previously in equation 5, we have finally that:

1.25x+x+x+3x=1

x=1/6.25=y

z=3x=3/6.25

So, the fraction of sunny days is given by:

F=y+z=4/6.25

Compute Δy and dy for the given values of x and dx = Δx. (Round your answers to three decimal places.) y = x , x = 1, Δx = 1 Δy = dy =

Answers

Answer:

Δy = 1

dy = 1

Step-by-step explanation:

Data provided in the question:

dx = Δx

y = x

x = 1,

Δx = 1

Now,

we know,

Δy = f( x + Δx ) - f(x)

also, we have

y = f(x) = x

thus,

f( x + Δx ) =  x + Δx

Therefore,

Δy = ( x + Δx ) - x

on substituting the respective values, we get

Δy = ( 1 + 1 ) - 1

or

Δy = 1

and,

dy = f'(x) = [tex]\frac{d(x)}{dx}[/tex]

or

dy = 1

A researcher wishes to determine the average number of vehicles are registered to a typical Houston residence. In order to do this, he sends a survey to 250 randomly selected residences asking for them to indicate the number of registered and return the survey. Identify the population.

Answers

Answer: Houston residences

Step-by-step explanation:

A population is the group of members comes under the same criteria by the researcher's point of view.

Here , The objective of the researcher is to determine the average number of vehicles are registered to a typical Houston residence.

Clearly , the population is this situation is "Houston residences" having vehicles.

Note : 250 randomly selected residences are defining the sample of the entire population of Houston residences which is a subset of population.

Hence, the correct answer is Houston residences.

simplify (3/4 + 4/5i)-(1/2 - 3/10i)

Answers

For this case we must simplify the following expression:

[tex](\frac {3} {4} + \frac {4} {5} i) - (\frac {1} {2} - \frac {3} {10} i) =[/tex]

By law of multiplication signs we have to:

[tex]- * + = -\\- * - = +\\\frac {3} {4} + \frac {4} {5} i- \frac {1} {2} + \frac {3} {10} i =[/tex]

We add similar terms:

[tex]\frac {3} {4} - \frac {1} {2} + \frac {4} {5} i + \frac {3} {10} i =\\\frac {3 * 2-4 * 1} {4 * 2} + \frac {4 * 10 + 5 * 3} {10 * 5} i =\\\frac {2} {8} + \frac {55} {50} i =[/tex]

We simplify:

[tex]\frac{1}{4}+\frac{11}{10}i[/tex]

Answer:

[tex]\frac{1}{4}+\frac{11}{10}i[/tex]

If two events are mutually exclusive, what is the probability that one or the other occurs?

Answers

Mutually Exclusive Events
Another word that means mutually exclusive is disjoint. If two events are disjoint, then the probability of them both occurring at the same time is 0. If two events are mutually exclusive, then the probability of either occurring is the sum of the probabilities of each occurring.
Final answer:

In probability, if two events are mutually exclusive (cannot occur at the same time), the probability of either event occurring is calculated by adding the probabilities of each event separately.

Explanation:

The concept being referred to in your question is related to probability within the study of mathematics. When two events are mutually exclusive, it means they cannot occur at the same time. For example, when rolling a die, the events of throwing a '6' and a '3' are mutually exclusive; you cannot throw both on a single toss.

In reference to your question, the probability that one event or the other occurs, given that they are mutually exclusive, is calculated by adding the probabilities of each individual event. So if the probability of Event A is P(A) and the probability of Event B is P(B), then the probability that either A or B will occur (P(A U B)) equals P(A) + P(B).

Learn more about Probability of Mutually Exclusive Events here:

https://brainly.com/question/35878450

#SPJ6

Listed are 32 ages for Academy Award winning best actors in order from smallest to largest. (Round your answers to the nearest whole number.) 18; 18; 21; 22; 25; 26; 27; 29; 30; 31; 31; 33; 36; 37; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77 (a) Find the percentile of 31. th percentile

Answers

Answer:

Step-by-step explanation:

The ages for Academy Award winning best actors in order from smallest to largest are

18; 18; 21; 22; 25; 26; 27; 29; 30; 31; 31; 33; 36; 37; 37; 41; 42; 47; 52; 55; 57; 58; 62; 64; 67; 69; 71; 72; 73; 74; 76; 77

The total number of terms, n is 32

31℅ of 32 = 31/100 × 32 = 0.31 × 32 = 9.92. It is approximately 10

Counting from left to right, the 10th term is 31. This means that the 31st percentile is 31

Clare is using little wooden cubes with edge length 1/2 inch to build a larger cube that has edge length 4 inches. How many little cubes does she need? explain your reasoning​

Answers

Final answer:

To form a larger 4-inch cube, Clare will need 512 wooden cubes with an edge length of 1/2 inch. We find this by dividing the volume of the large cube (64 cubic inches) by the volume of the small one (1/8 cubic inch).

Explanation:

Clare is building a larger cube with an edge length of 4 inches, consisting of smaller wooden cubes each with an edge length of 1/2 inch. To solve this problem, we need to find out how many smaller cubes make up the volume of the larger cube. The volume of a cube is found by multiplying the length of an edge by itself three times, or cube the edge length.

So first, we calculate the volume of the large cube which is 4in * 4in * 4in = 64 cubic inches.

Next, we calculate the volume of a small cube which is (1/2in) * (1/2in) * (1/2in) = 1/8 cubic inch.

Finally, we divide the volume of the large cube by the volume of the small cube to find out how many small cubes are needed. Thus, 64 cubic inches / 1/8 cubic inch = 512. So, Clare will need 512 small wooden cubes to construct her larger cube.

Learn more about Volume of Cubes here:

https://brainly.com/question/23526372

#SPJ12

Final answer:

To find the number of little cubes needed, divide the volume of the larger cube by the volume of each little cube.

Explanation:

To find the number of little cubes Clare needs to build a larger cube with an edge length of 4 inches, we need to

determine the volume of the larger cube and divide it by the volume of each little cube.

The volume of the larger cube is calculated by multiplying the length of one side by itself three times (4 x 4 x 4 = 64 cubic inches).

The volume of each little cube is calculated by multiplying the length of one side by itself three times (1/2 x 1/2 x 1/2 = 1/8 cubic inches).

To find the number of little cubes needed, we divide the volume of the larger cube by the volume of each little cube (64 / (1/8) = 512 little cubes).

Learn more about Calculating volume of cubes here:

https://brainly.com/question/26761255

#SPJ2

Your mathematics instructor claims that, over the years, 88% of his students have said that math is their favorite subject. In this year's class, however, only 21 out of 32 students named math as their favorite class. The instructor decides to construct a confidence interval for the true population proportion based on the sample value. What's the correct value for the standard error of pˆ in this case?

Answers

Answer:  0.084

Step-by-step explanation:

Formula to find standard error of [tex]\hat{p}[/tex] for finding confidence interval for p:

[tex]SE=\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

, where [tex]\hat{p}[/tex] = sample proportion and n= sample size.

Let p be the population proportion of students named math as their favorite class.

As per given , we have

n= 32

[tex]\hat{p}=\dfrac{21}{32}=0.65625[/tex]

Substitute these values in the formula, we get

[tex]SE=\sqrt{\dfrac{0.65625(1-0.65625)}{32}}\\\\=\sqrt{0.00705}\\\\=0.0839642781187\approx0.084[/tex]

∴ The correct value for the standard error of [tex]\hat{p}[/tex] in this case = 0.084

Final answer:

The standard error of pˆ in this case is 0.0417.

Explanation:

The correct value for the standard error of pˆ in this case is 0.0417.

To calculate the standard error of pˆ, you can use the formula: SE = √((pˆ * q) / n), where pˆ is the sample proportion, q is 1 - pˆ (the proportion of non-favorites), and n is the sample size.

In this case, pˆ = 21/32 = 0.6563, q = 1 - 0.6563 = 0.3437, and n = 32. Plugging these values into the formula gives SE = √((0.6563 * 0.3437) / 32) = 0.0417.

Other Questions
The cost c in of a monthly phone contract is made up of the fixed line rental l in and the price p in of the calls made. Enter a formula for the cost and enter the cost if the line rental is 35 and the price of calls made is 12 Which one of the following statements is true regarding a partner's personal liability for partnership assets? a.In a general partnership, all partners are liable for entity debts. b.LLC members can never be liable for entity debts. c.In a limited liability partnership, a partner might be subject to liability for other partners' malpractice. d.In a limited partnership, all partners have limited liability for partnership debts. e.None of these statements are true. Abby bought two slices of pizza and two bottles of water for $7.25 Cameron bought four slices of pizza and one bottle of water for $8.25 what is the solutionm 6.Sue goes to the bakery and purchases cupcakes and cookies for a picnic. She needs to serve 36 people. Cupcakes cost $2.50 each, cookies cost $1.00 each. She spends $54.00. How many cupcakes did she purchase? From a general fitness point of view, working near a_____-repetition threshold seems to improve overall performance most effectively. HELP QUICKPLEASEElections and VotingOne of the most important rights of American citizens is the franchisethe right to vote. Originally under the Constitution, only white male citizens over the age of twenty-one were eligible to vote. This shameful injustice has been corrected and voting rights have been extended several times over the course of our history. Today, citizens over the age of eighteen cannot be denied the right to vote, regardless of race, religion, sex, disability, or sexual orientation. However, in every state except North Dakota, citizens must register to vote, and laws regarding the registration process vary by state.The path to full voting rights for all American citizens was long and often challenging. . . . The Fifteenth Amendment is specifically dedicated to protecting the right of all citizens to vote, regardless of their race.For practical purposes, this was not the end of the voting rights struggle for African Americans. . . .Women were denied the right to vote until 1920, when the Nineteenth Amendment was passed. Prior to that, women had only been able to vote in select states.Federal elections occur every two years, on the first Tuesday after the first Monday in November. Every member of the House of Representatives and about one-third of the Senate is up for reelection in any given election year. A presidential election is held every fourth year.Federal elections are administered by state and local governments, although the specifics of how elections are conducted differ between the states. The Constitution and laws of the United States grant the states wide latitude in how they administer elections.Source: "Elections & Voting," The White House: Public Domain, 2014How would you cite information from this article in an informational text of your own? The Olmec civilizationA)had poor architectural skills.B)left behind mysterious stone sculptures.C)were the most advanced pre-Columbian civilization.D)was not able to trade because of its geographic isolation. Analyze the long-term benefits of participating in regular physical activity. Organize your thoughts into a detailed 3-paragraph essay, explaining the long-term benefits of participating in regular physical activity, compared to the long-term consequences of no regular physical activity. f(x) = x2 + 3x + 4. Is it quadratic, linear, or neither A bag of rare spice that weighs pounds will be split equally among people. How much spice will each person get? Consider an asset that has a beta of 1.25. If the risk free rate is 3.25 and the mrket risk premium is 5.5% caculate the expected return on the asset. While studying in Hawaii, Josh learned that Hawaiian royalty would intermarry to keep a "pure bloodline." Although Josh does not agree with this practice, he practiced cultural relativism by not sharing his personal feelings with his host family.True / False. The synergistic action of muscle groups to produce movement around a joint is known as a _____. Can some one help me with this one? (Its Spanish) English Homework ! please help me..... At the start of the month, Jodie had sold 885 copies of her new book. At the end of the month, she had sold 1,364 copies of her book. If each book profits $13.97, approximately how much did the book profit in the entire month? A scientist was studying the effects of oil contamination on ocean seaweed. He believed that oil runoff from storm drains would keep seaweed from growing normally. He had two large aquarium tanks of equal size. He kept the amount of dissolved oxygen and the water temperature the same in each tank. He added some motor oil to one tank but not to the other. He then measured the growth of seaweed plants in each tank. In the tank with no oil, the average growth was 2.57cm/day. The average growth of the seaweed in the tank with oil was 2.37cm/day. Based on this experiment, answer the following questions:What was the question that the scientist started with?What was his hypothesis?Identify the independent variable.Identify the dependent variable.Identify the control(s).What did the data show In the large kingdoms that followed the break-up of Alexander's empire, ____(A) cities were given some autonomy in local affairs. (B) semi-divine monarchs ruled with the aid of large bureaucracies.(C) Greeks served as officials and military leaders.(D) both semi-divine monarchs ruled with the aid of large bureaucracies and Greeks served as officials and military leaders.(E) All these answers are correct. You are evaluating two different silicon wafer milling machines. The Techron I costs $245,000, has a three-year life, and has pretax operating costs of $63,000 per year. The Techron II costs $420,000, has a five-year life, and has pretax operating costs of $35,000 per year. For both milling machines, use straight-line depreciation to zero over the projects life and assume a salvage value of $40,000. If your tax rate is 22 percent and your discount rate is 10 percent, compute the EAC for both machines. (A negative answer should be indicated by a minus sign. Do not round intermediate calculations and round your answers to 2 decimal places, e.g., 32.16.) Listed below are annual data for various years. The data are weights (metric tons) of imported lemons and car crash fatality rates per 100,000 population. Construct a scatterplot, find the value of the linear correlation coefficient r, and find theP-value using =0.05. Is there sufficient evidence to conclude that there is a linear correlation between lemon imports and crash fatality rates? Do the results suggest that imported lemons cause car fatalities?Lemon_Imports_(x) Crash_Fatality_Rate_(y)230 15.8264 15.6359 15.5482 15.3531 14.91. What are the null and alternative hypotheses?2. Construct a scatterplot.3. The linear correlation coefficient r is4. The test statistic t is5. The P-value isBecause the P-value is ____ than the significance level 0.05, there ____ sufficient evidence to support the claim that there is a linear correlation between lemon imports and crash fatality rates for a significance level of =0.05.Do the results suggest that imported lemons cause carfatalities?A. The results suggest that an increase in imported lemons causes car fatality rates to remain the same.B. The results do not suggest any cause-effect relationship between the two variables.C. The results suggest that imported lemons cause car fatalities.D. The results suggest that an increase in imported lemons causes in an increase in car fatality rates. Steam Workshop Downloader