Write the following phrase as an expression.
half of n

Answers

Answer 1

Translating the half to symbols would be 1/2. Therefore, your answer is 1/2(n)

Hope this helps!

Answer 2

Answer:

1/2n

Step-by-step explanation:

half of n

of means multiply

1/2 * n

n/2


Related Questions

Which is a perfect square?

Answers

Answer:

36

Step-by-step explanation:

The only number that is a perfect square is 36

6*6 = 36

Answer:

6

Step-by-step explanation:

[tex]\sqrt{a}=b\iff b^2=a\ for\ a\geq0\ and\ b\geq0\\\\\\\sqrt5-not\ rational\\\\\sqrt8-not\ rational\\\\\sqrt{36}=6-rational\qquad(\sqrt{36}=6\ because\ 6^2=36)\\\\\sqrt{44}-not\ rational[/tex]

Can you help me with this question? I'll reward *30 points

I just need help with this one question so that I could solve the others. Thanks!
* Edit: I originally set up the question to reward 30 points, but for some reason I can only reward 15. If you don't get 30, then I'm sorry. I'm still kind of new to this site

Answers

Answer:

you would first have a straight, increasing line with a small slope. (walking slowly and consistently)

then you have a flat, straight line (not moving as you pet the kitten)

then you have a big, increasing slope (running fast)

then it's straight line again(distance doesnt change at friend's house)

and then a decreasing line with pretty big slope all the way to the x axis(running home)

Find the slope of the line that passes through the points (0, -3) and (-4,1).

Answers

The formula for slope is [tex]\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]

In this case:

[tex]y_{2} = 1\\ y_{1} }= -3\\x_{2} = -4\\x_{1} = 0[/tex]

so...

[tex]\frac{1 - (-3)}{-4 - 0}[/tex]

[tex]\frac{4}{-4}[/tex]

-1 <<<The slope

Hope this helped!

~Just a girl in love with Shawn Mendes

Answer:

m = -1

Step-by-step explanation:

The slope is also called the gradient, m.

m=(y2-y1)/(x2-x1)

x1 = 0

y1 = 3

x2 = -4

y2 = 1

we therefore substitute for the values in the formula

m = (1-⁻3)/(⁻4-0)

m = -1

If the following ordered pairs are equal find x and y
a) (7x+3y,2x+3y)and(24,0)​

Answers

nothing can further be done with this?

Final answer:

The solution to the system of equations given by the ordered pairs (7x+3y,2x+3y) and (24, 0) is x= -4.8 and y=3.2.

Explanation:

To solve for x and y, you need to equate each component of the ordered pairs and solve the resulting equations. In this case, you have:

7x + 3y = 24 2x + 3y = 0

Solving the second equation for x: x = -1.5y

Substitute x into the first equation: 7(-1.5y) + 3y = 24, which becomes -10.5y + 3y = 24, then -7.5y = 24

Solving for y, you get: y = -24 / -7.5 which equals y = 3.2.

Substituting y into the second equation 2x + 3(3.2) = 0, we get 2x = -9.6, so x = -9.6 / 2, so x = -4.8.

So, the values of x and y are -4.8 and 3.2 respectively.

Learn more about Solving Systems of Equations here:

https://brainly.com/question/29050831

#SPJ3

which percent is equal to 2.5?

A. 2.5%

B. 25%

C. 250%

D. 2.500%

Answers

The answer is 2.5×100%=250%

Answer:

The answer is C.250%

Step-by-step explanation:

Got it right on the quiz

Alexis put $2000 in savings account. After 4 years, she had $2543 in the account. What rate of interest did she earn?

Answers

Answer:

A

Step-by-step explanation:

Hihi. So, this is a nice application of interest rates as well as properties of exponentials/logarithms. As you know, the basic equation for interest rates is A= Pe^(rt) where A is your final amount, P is your initial, r is your rate of interest, and t is the time the money was accumulating interest. After cleaning up, you get in a situation due to you having e still lying around. Luckily, if you take the natural log of e, all you have left behind is the previous exponent. Thus, you can take the natural log of both sides, divide by 4, and then simplify to see that your final interest rate is ~6%

Answer:

A. 6%

Step-by-step explanation:

Since, the given amount formula is,

[tex]A=Pe^{rt}[/tex]

Where, P is the initial amount,

r is the periodic rate of interest,

t is the number of periods,

Here, P = $ 2000,

t = 4 years,

A = $ 2543,

By substituting the values,

[tex]2543=2000e^{4r}[/tex]

[tex]1.2715=e^{4r}[/tex]

Taking ln on both sides,

[tex]ln(1.2715)=4r[/tex]

[tex]\implies r = 0.06004932647\approx 0.06 = 6\%[/tex]

Hence, the rate of interest is 6 %.

Option 'A' is correct.

10. Which of the following expressions is
equivalent to 6(5 + 3x)?
A30 + 3x
B 11 + 9x
C 30 + 18
D11 + 3x

Answers

Answer: 30+18x C is correct

Step-by-step explanation: You distribute the 6 to both of the values in the parenthesis.

Answer:

C 30 + 18x

Step-by-step explanation:

6(5 + 3x)

Distribute the 6 to both terms inside the parentheses

6*5 +6*3x

30 +18x

The popping-times of the kernels in a certain brand of microwave popcorn are
normally distributed with a mean of 150 seconds and a standard deviation of
10 seconds
The first kemel pops 127 seconds after the microwave oven is started, What
is the z:score of this kernel? Round your answer to two decimal places.

Answers

Answer:

The z-score for this kernel is -2.3

Step-by-step explanation:

* Lets revise how to find the z-score

- The rule the z-score is z = (x - μ)/σ , where

# x is the score

# μ is the mean

# σ is the standard deviation

* Lets solve the problem

- The popping-times of the kernels in a certain brand of microwave

  popcorn are  normally distributed

- The mean is 150 seconds

- The standard deviation is 10 seconds

- The first kernel pops is 127 seconds

- We want to find the z-score for this kernel

∵ z-score = (x - μ)/σ

∵ x = 127

∵ μ = 150

∵ σ = 10

∴ z-score = (127 - 150)/10 = -23/10 = -2.3

* The z-score for this kernel is -2.3

Answer:

-2.3

Step-by-step explanation:

How many terms of the sequence 6, -12, 24, -48, ... will have a sum
-2046?​

Answers

Answer:

Step-by-step explanation:

this the gemetric  sequence  because : -12/6 =24/-12=-48/24=-2 (common rat)

the sum is : S=  u1 ×(d^n - 1)(d-1)

d = -2     u1  = 6     S= -2046

6((-2)^n -1) /(-2 -1) = -2046

(-2)^n -1  =1023

(-2)^n = 1024      but 1024 = 2^10 = (-2)^10

so : (-2)^n = (-2)^10

n=10  conclusion : 10 terms

The number of terms of the sequence is 10.

What is geometric sequence?

A geometric sequence exists a sequence of numbers where each term after the first term exists found by multiplying the earlier one by a fixed non-zero number, named the common ratio.

The terms of the sequence 6, -12, 24, -48, ...

Sum = -2046

Geometric sequence:

-12/6 = 24/-12 = -48/24 = -2

Sum of terms:

[tex]$S = u_{1} *(d^n - 1)(d-1)[/tex]

Let, d = -2, [tex]u_{1} = 6[/tex] and S = -2046

[tex]6((-2)^n -1) /(-2 -1) = -2046[/tex]

[tex](-2)^n -1 =1023[/tex]

[tex](-2)^n = 1024[/tex]

But the number of terms = 10

[tex]1024 = 2^{10} = (-2)^{10}[/tex]

so,[tex](-2)^{n} = (-2)^{10}[/tex]

Therefore, the correct answer is 10.

To learn more about geometric sequence

https://brainly.com/question/1729067

#SPJ2

Factories 24x^2-41x+12

Answers

Answer:

[tex]\displaystyle 24x^{2} - 41x + 12 = 24\left(x - \frac{3}{8}\right) \cdot \left(x - \frac{4}{3}\right) = (8x-3)\cdot (3x - 4)[/tex].

Step-by-step explanation:

Apply the quadratic formula to find all factors. For a quadratic equation in the form

[tex]a\cdot x^{2} + b\cdot x + c = 0[/tex],

where [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex] are constants, the two roots will be

[tex]\displaystyle x_1 = \frac{-b + \sqrt{b^{2} - 4\cdot a \cdot c}}{2a}[/tex], and

[tex]\displaystyle x_2 = \frac{-b - \sqrt{b^{2} - 4\cdot a \cdot c}}{2a}[/tex].

For this quadratic polynomial,

[tex]a = 24[/tex],[tex]b = -41[/tex], and[tex]c = 12[/tex].

Apply the quadratic formula to find any [tex]x[/tex] value or values that will set this polynomial to zero:

[tex]\displaystyle x_1 = \frac{-(-41) + \sqrt{(-41)^{2} - 4\times 24 \times 12}}{2\times 24} = \frac{3}{8}[/tex].

[tex]\displaystyle x_2 = \frac{-(-41) - \sqrt{(-41)^{2} - 4\times 24 \times 12}}{2\times 24} = \frac{4}{3}[/tex].

Apply the factor theorem to find the two factors of this polynomial:

[tex]\displaystyle \left(x - \frac{3}{8}\right)[/tex] for the root [tex]\displaystyle x = \frac{3}{8}[/tex], and[tex]\displaystyle \left(x - \frac{4}{3}\right)[/tex] for the root [tex]\displaystyle x = \frac{4}{3}[/tex].

Keep in mind that simply multiplying the two factors will not reproduce the original polynomial. Doing so assumes that the leading coefficient of [tex]x[/tex] in the original polynomial is one, which isn't the case for this question.

Multiply the product of the two factors by the leading coefficient of [tex]x[/tex] in the original polynomial.

[tex]\displaystyle 24\left(x - \frac{3}{8}\right) \cdot \left(x - \frac{4}{3}\right) = (8x-3)\cdot (3x - 4)[/tex].

Expand to make sure that the factored form is equivalent to the original polynomial:

[tex](8x-3)\cdot (3x - 4)\\ = (8\times 3)x^{2} + ((-3)\times 3 + (-4)\times 8)\cdot x + ((-3)\times (-4))\\ = 24x^{2} - 41x + 12[/tex].

Find f(–2) for the function f(x) = 3x2 – 2x + 7. −13 −1 1 23

Answers

Answer:

f(-2) = 23

Step-by-step explanation:

[tex]f(x)=3x^2-2x+7\\\\f(-2)\to\text{put x = -2 to the equation of a function:}\\\\f(-2)=3(-2)^2-2(-2)+7=3(4)+4+7=12+4+7=23[/tex]

Answer:

The correct option is 4. The value of f(-2) is 23.

Step-by-step explanation:

The given function is

[tex]f(x)=3x^2-2x+7[/tex]

We have to find the value of f(-2). It means we need to find the value of function f(x) at x=-2.

Substitute x=-2 in the given function to find the value of f(-2).

[tex]f(-2)=3(-2)^2-2(-2)+7[/tex]

On simplification we get

[tex]f(-2)=3(4)-(-4)+7[/tex]

[tex]f(-2)=12+4+7[/tex]

[tex]f(-2)=23[/tex]

The value of f(-2) is 23. Therefore the correct option is 4.

There are 6 cans of soup in a kitchen cabinet:2 chicken noodle ,3 tomato ,and 1 vegetable.

Suppose you use a can of chicken noodle from the original 6 cans.then your father adds 2 cans of vegetable soup and 1 can of tomato soup to those left in the kitchen cabinet.what is the probability that you will choose tomato soup now?

Answers

Answer: 4/8 or 1/2

Step-by-step explanation:

See attached photo. - my answer got deleted lol

Answer:

4/8 or 1/2

Step-by-step explanation:

got it right on preworks

Terry sold 30 cans of paint at a total cost of $425. A can of paint holding one quart cost $10 each. A can of paint holding one gallon cost $15 each. The equations and graph below can be used to determine the number of cans of paint Terry sold, where x represents the number of quarts of paint, and y represents the number of gallons of paint.

Number of cans: x + y = 30
Total cost of cans: 10x + 15y = 425

A. 42 quarts, 28 gallons

B. 25 quarts, 5 gallons

C. 5 quarts, 25 gallons

D. 15 quarts, 15 gallons

Answers

Step-by-step explanation:

from the graph above, the intersect of both lines would give the answer...

C. 5 quarts, 25 gallons

You can substitute the values in both equations to verify the answer

The volume of a cone is 3x cubic units and its height is x units.
Which expression represents the radius of the cone's base, in units?
3x
6x
37182
9xx

Answers

Step-by-step explanation:

Volume of a cone is [tex]\pi r^{2} .height[/tex]/3 so [tex](3x)^{3}[/tex] is equal to

[tex]\pi r^{2} .x[/tex]/3 .  Also  [tex](3x)^{3}[/tex] = [tex]27x^{3}[/tex]

[tex]27x^{3}[/tex] = [tex]\pi r^{2} .x[/tex]/3. Pi equals to 3 so pi and the 3 in the denominator will simplfy each other. lets simplfy the "x" so [tex]r^{2}  = 27x^{2}[/tex] so the radius is 9x.

The expression that represents the radius of the cone's base is →

{r} = 3/√π.

What is volume?

Volume is a collection of two - dimensional points enclosed by a single dimensional line. Mathematically, we can write Volume as -

V = ∫∫∫ F(x, y, z) dx dy dz

Given is that the volume of a cone is {3x} cubic units and its height is {x} units.

The volume of a cone is -

V = 1/3 πr²h

We can write the volume as -

3x = 1/3 πr²x

3 = 1/3 πr²

πr² = 9

r² = 9/π

r = 3/√π

Therefore, the expression that represents the radius of the cone's base is → {r} = 3/√π.

To solve more questions on Prisms, visit the link-

https://brainly.com/question/22147194

#SPJ7

which point lies on the line described by the equation below y + 8 equals 4 x - 5​

Answers

The answer would be 5, - 8

Answer:5,-8

Step-by-step explanation:

The cube in the image has a volume of 1000 cubic feet the other solid has the same base and height as the cube but the length of each its slanted sides is 2 units longer than the height what is the volume of the tilted solid

Answers

Final answer:

The volume of the tilted solid is 1200 cubic feet.

Explanation:

The volume of the cube in the image is given as 1000 cubic feet. Let's call the height of the cube 'h'. The length and width of the cube are also 'h', so the volume of the cube is h x h x h = h³ = 1000. Solving for 'h', we find that h = 10 feet.

The tilted solid has the same base and height as the cube, but the length of each of its slanted sides is 2 units longer than the height. So the length of each slanted side is h + 2 = 10 + 2 = 12 feet.

To find the volume of the tilted solid, we can use the formula for the volume of a rectangular prism: volume = base area x height. The base area is h x h = h², and the height is 12 feet. Therefore, the volume of the tilted solid is h² x 12 = 10² x 12 = 1200 cubic feet.

Which system of linear inequalities is represented by the
graph?
y> 2x – 1 and y < 2x + 2
y > 2x + 2 and ys 2x-1
y < 2x + 2 and y? 2x-1
y< 2x + 1 and y>2x - 2

Answers

Answer:

y > 2x + 2 and y < 2x-1 .

Step-by-step explanation:

The line which the blue shaded area represent has y intercept 2 and slope [tex]\frac{2}{1} =2[/tex]

Hence equation of the line is y=2x+2.

To check the inequality for the shaded region we take any  point (-3,0) in the shaded region .Plugging the values in the given equation :

0 > 2(-3)+2  or 0 >-4.

The inequality equation represented by the blue shaded part is y > 2x+2.

The line for the red shaded region has y intercept -1 and slope 2.

Hence equation of the line is y= 2x-1 .

Taking a point (2,0) in the shaded part and substituting the values in the equation of line we have :

0< 2(2)-1 or 0< 3 .

Hence the inequality representing the red shaded region is y<2x-1 .

y > 2x + 2 and y < 2x - 1

The graph of y > 2x + 2 is a dashed line that intersects the axes at points (-1, 0) and (0, 2). The origin (0, 0) is not included in the blue shaded area.The graph of y < 2x - 1 is a dashed line that intersects the axes at points (¹/₂, 0) and (0, -1). The origin (0, 0) is not included in the red shaded area.Further explanation

In this problem, we will compose the system of linear inequalities is represented by the graph. Firstly, let us state each line on the graph in terms of the equation of the line.

A shortcut to form a linear equation through the intercepts of the axes at (0, a) and (b, 0) is [tex]\boxed{\boxed{ \ ax + by = ab \ }}[/tex].

Part-1: a dashed line that intersects the axes at points (0, 2) and (-1, 0).

Step-1: make a linear function  

(0, 2) → (0, a)(-1, 0) → (b, 0)

[tex]\boxed{ \ ax + by = ab \ } \rightarrow \boxed{ \ 2x + (-1)y = 2 \times (-1) \ }[/tex]

2x - y = -2

Add by 2 and y on both sides.

Hence, the equation of line is [tex]\boxed{y = 2x + 2 \ }[/tex]  

Step-2: make a linear inequality  

y = 2x + 2 is the boundary line and we draw a dashed line since the equality symbol is " > or < ".  Test the point (0, 0) as origin in y = 2x + 2, i.e., [tex]\boxed{0 = 2(0) + 2}[/tex] which is true if 0 < 2.  

Since the test point (0, 0) is not in the blue shaded area, which means the test results must be false (or 0 > 2), then linear inequality is arranged as follows:

[tex]\boxed{\boxed{ \ y > 2x + 2 \ }}[/tex]

Part-2: a dashed line that intersects the axes at points (¹/₂, 0) and (0, -1)..

Step-1: make a linear function  

(0, -1) → (0, a)(¹/₂, 0) → (b, 0)

[tex]\boxed{ \ ax + by = ab \ } \rightarrow \boxed{ \ (-1)x + \frac{1}{2}y = -1 \times \frac{1}{2} \ }[/tex]

[tex]\boxed{ \ -x + \frac{1}{2}y = -\frac{1}{2} \ }[/tex]

Multiply by 2 on both sides.

-2x + y = -1

Add by 2x on both sides.

Hence, the equation of line is [tex]\boxed{y = 2x - 1 \ }[/tex]  

Step-2: make a linear inequality  

y = 2x - 1 is the boundary line and we draw a dashed line since the equality symbol is " > or < ".  Test the point (0, 0) as origin in y = 2x - 1, i.e., [tex]\boxed{0 = 2(0) - 1}[/tex] which is true if 0 > -1.  

Since the test point (0, 0) is not in the red shaded area, which means the test results must be false (or 0 < -1), then linear inequality is arranged as follows:

[tex]\boxed{\boxed{ \ y < 2x - 1 \ }}[/tex]

Thus the system of linear inequalities is represented by the  graph is y > 2x + 2 and y < 2x - 1.

Learn moreWhich is the graph of 2x – 4y > 6? https://brainly.com/question/4408289Which is the graph of 2x + 3y > -3? https://brainly.com/question/10666671Which of the following is the correct graph of the solution to the inequality −8 greater than or equal to −5x + 2 > −38 https://brainly.com/question/1626676

Simplest form to write
(2×6)³/²

Answers

Answer: [tex]24\sqrt{3}[/tex]

Step-by-step explanation:

You need to remember that [tex]\sqrt[n]{a}[/tex] can be written in the following for:

[tex]a^{\frac{1}{n}}[/tex]

Knowing this and given the expression [tex](2*6)^{\frac{3}{2}}[/tex], you need to  multiply the numbers inside the parentheses:

 [tex](12)^{\frac{3}{2}}[/tex]

Rewrite it in this form:

[tex]=\sqrt{12^3}==\sqrt{1,728}[/tex]

Descompose 1,728 into its prime factors:

[tex]1,728=2*2*2*2*2*2*3*3*3=2^6*3^3[/tex]

Applying the Product of power property, which states that:

[tex](a^m)(a^n)=a^{(m+n)}[/tex]

You can say that:

 [tex]=\sqrt{1,728}=\sqrt{2^6*3^2*3}[/tex]

Simplifying, you get:

[tex]=2^3*3\sqrt{3}=24\sqrt{3}[/tex]

if you purchase a hundred items that cost $0.25 each how much would the item cost all together​

Answers

Cost of items = $0.25 × 100

= $25.00

Graph the linear equation. Find three
points that solve the equation, then plot
on the graph.
2x – 3y = -6

Answers

-3y = -2x -6

Y= 2/3x + 2


When x= 3
Y= 2/3(3) + 2
Y= 2+2 = 4

(3,4)


When x= 6
Y=2/3(6)+2
Y= 4+2 = 6

(6,6)


When x= 12
Y= 2/3(12) + 2
Y= 8+2=10

(12,10)

Answer:

3,4

6,6

9,8

Step-by-step explanation:

what is the length of the line segment with endpoints -3, -8 and 10,- 8

Answers

let's notice the y-coordinate is the same for both points, thus is a horizontal line.

Check the picture below.

Andrew is riding his bike. He biked a distance of 14 miles at a rate of 7 miles per hour. Using the distance formula, d = rt, solve for Andrew's time in minutes

Answers

d = rt ( d = distance, r = rate (speed) and t = time)

14  = 7t

Divide both sides by 7:

t = 14/7

t = 2 hours

1 hour = 60 minutes.

2 hours x 60 = 120 minutes total.

Based on the distance Andrew went and the rate at which he went, Andrew's time in minutes was 120 minutes.

The distance formula is:

Distance = Rate x Time

Andrew's time is therefore:

14 = 7 x Time

Time = 14 / 7

= 2 hours

In minutes this is:

= 2 x 60 minutes per hour

= 120 minutes

In conclusion, Andrew covered that distance in 120 minutes.

Find out more at https://brainly.com/question/18591848.

Find all numbers whose absolute value is 8.

Answers

Answer:8 ,-8

Step-by-step explanation:the absolute value of a number is how far it is from 0 so 8 and -8 are both 8 spots from 0. Hope this helps!

when p^2-4p is subtracted from p^2 + p-6 the result is

Answers

Answer:

5p-6 is your answer.

Step-by-step explanation:

p^2 + p - 6

-p^2 - 4p

leaves you with

p--4p-6, which equals p+4p-6,

so simplifying: 5p+6 is your answer.

Hope this helps!

Solve for x
-6x + 14<-28 AND
3x + 28 < 25

Answers

Answer:

Treat the lesser than sign as an equal sign. What you do to one side, you do to the other. Isolate the variable x. Do the opposite of PEMDAS.

PEMDAS = Parenthesis, Exponents ( & roots), Multiplication, Division, Addition, Subtraction.

Solve -6x + 14 < -28

First, subtract 14 from both sides:

-6x + 14 (-14) < -28 (-14)

-6x < -42

Next, divide -6 from both sides to isolate the variable x. Note that when you divide (or multiply) by a negative number, you must flip the greater than or less than sign.

(-6x)/-6 < (-42)/-6

x > (-42)/(-6)

x > 7

x > 7 is your answer.

Solve 3x + 28 < 25

First, subtract 28 from both sides.

3x + 28 (-28) < 25 (-28)

3x < -3

Isolate the variable x. Divide 3 from both sides. Note that because you aren't dividing by a negative number (rather a positive 3), you do not flip the sign.

(3x)/3 < (-3)/3

x < (-3)/(3)

x < -1

x < -1 is your answer.

~

To solve the given inequalities, we found that x > 7 and x < -1. Since no number satisfies both conditions simultaneously, there is no solution to this system of inequalities.

We are given two inequalities to solve for x:

-6x + 14 < -28

3x + 28 < 25

Solving the first inequality:

Subtract 14 from both sides:-6x + 14 - 14 < -28 - 14-6x < -42Divide both sides by -6 (remember to flip the inequality sign when dividing by a negative number):x > 7

Solving the second inequality:

Subtract 28 from both sides:3x + 28 - 28 < 25 - 283x < -3Divide both sides by 3:x < -1

Combining the two inequalities, we find:

x > 7 AND x < -1

Since there is no number that satisfies both conditions simultaneously, there is no solution to this system of inequalities.

Graph the system of equations. Then determine whether the system has no solution, one solution, or infinitely many solutions. If the system has one solution, name it.

y=-5x+1
y=-2x-2

Answers

Answer:

Second option: One solution. Independent.

Step-by-step explanation:

The equation of the line in Slope-Intercept form is:

[tex]y=mx+b[/tex]

Where "m" is the slope and "b" is the y-intercept.

Since the equations of the system have this form, we know that they are lines.

We can identify that the y-intercept of the first equation [tex]y=-5x+1[/tex] is:

[tex]b=1[/tex]

Now we need to find the x-intercept. Substitute [tex]y=0[/tex] and solve for "x":

[tex]0=-5x+1\\\\5x=1\\\\x=\frac{1}{5}=0.2[/tex]

Then, we can graph the first line which passess through the points (0,1) and (0.2,0). Observe the graph attached.

The y-intercept of the second equation [tex]y=-2x-2[/tex] is:

[tex]b=-2[/tex]

Now we need to find the x-intercept. Substitute [tex]y=0[/tex] and solve for "x":

[tex]0=-2x-2\\\\2x=-2\\\\x=\frac{-2}{2}=-1[/tex]

Then, we can graph the second line, which passess through the points (0,-2) and (-1,0).

You can observe in the graph that the lines intersect at the point (1,-4). Therefore, that point is the solution of the system of equations.

Since the lines intersect, then there is one solution that is true for both equations. It is independent

What are the real zeroes of x3 + 6 x2 – 9x - 54?
A. 1,2, 27
B. 3, -3, -6
c. -6,3, -6
D. 2,-1, 18
E. 3,3, -6

Answers

Answer:

Option B 3,-3,-6 is correct.

Step-by-step explanation:

We need to find real zeroes of [tex]x^3+6x^2-9x-54[/tex]

Solving

[tex]x^3+6x^2-9x-54\\=(x^3+6x^2)+(-9x-54)[/tex]

Taking x^2 common from first 2 terms and -9 from last two terms we get

[tex]=(x^3+6x^2)+(-9x-54)\\=x^2(x+6)-9(x+6)\\[/tex]

Taking (x+6) common

[tex](x+6)(x^2-9)\\[/tex]

x^2-9 can be solved using formula a^2-b^2 = (a+b)(a-b)

[tex]=(x+6)((x)^2-(3)^2)\\=(x+6)(x+3)(x-3)[/tex]

Putting it equal to zero,

[tex](x+6)(x+3)(x-3) =0\\x+6 =0, x+3=0\,\, and\,\, x-3=0\\x=-6, x=-3\,\, and\,\,  x=3[/tex]

So, Option B 3,-3,-6 is correct.

Answer:

B. 3,-3,-6

Step-by-step explanation:

Does any one have answers to Lesson 10: Linear Functions Unit 6 Test? ASAP!!! I NEED HELP IM SO BEHIND!!!!!!! 

Answers

Answer:

You cant find this type of stuff on the internet without some shady questions.If your doing linear functions which im guessing basic algebra where ur from gof to google and look up linear funcion calc. The one by symbolab and try that . If it doesent work or dosent look right try some other calcs.

which expression is equivalent to sqrt(2x^5/18)? Assume x greater than or equal to 0

Answers

For this case we must indicate an expression equivalent to:

[tex]\sqrt {\frac {2x ^ 5} {18}}[/tex]

We rewrite 18 as 2 * 9:

[tex]\sqrt {\frac {2x ^ 5} {2 * 9}} =[/tex]

We simplify common factors:

[tex]\sqrt {\frac {x ^ 5} {9}} =[/tex]

We rewrite:

[tex]x ^ 5 = x ^ 4 * x = (x ^ 2) ^ 2 * x\\9 = 3 ^ 2[/tex]

So, we have:

[tex]\sqrt {\frac {(x ^ 2) ^ 2 * x} {3 ^ 2}} =\\\sqrt {(\frac {x ^ 2} {3}) ^ 2 * x} =[/tex]

We get the terms of the radical "

[tex]\frac {x ^ 2} {3} \sqrt {x}[/tex]

Answer:

[tex]\frac {x ^ 2} {3} \sqrt {x}[/tex]

Answer:

The answer is A

Step-by-step explanation:

The other guy is correct I'm just making it easier to get the answer quickly.

which is equivalent to log2n=4​

Answers

The equivalent exponential form of the equation log2n=4 is 2⁴ = n, which simplifies to n = 16.

The equation log2n=4 can be rewritten using the definition of a logarithm. To convert from logarithmic to exponential form, we use the fact that a logarithm answers 'to power must the base be raised to produce the given number'. So, log2n = 4 is equivalent to 24 = n, because 2 is the base in this logarithm, and 4 is the power to which this base must be raised. Therefore, n is equal to 16, as 2 raised to the fourth power is 16 (24 = 16).

Other Questions
that is not considered a human rights violation committed by the hmer Rouge? 1:The Khmer Rouge forced residers of Cambodia to work in labor camps where they were tortured and starved. 2:The Khmer Rouge was responsible for genocide -killing more than two million people 3:The Khmer Rouge abolished government, religion, and private property in Cambodia. 4:The Khmer Rouge refused to follow a peace agreement established with the United Nations in 1991 The problem or opportunity that requires a business decision on the part of the decision maker is called a _____. management dilemma research problem challenge measurement approach return on business investment At the beginning of March, Janet opened a checking account with her first paycheck of $153.82. During the month, she withdrew $40 from the ATM, wrote a check for $54.12 to pay for her cell phone, deposited a check for $215.70, transferred $75.00 to her savings account, and had a debit of $130 for sports equipment. What is meant by "tone" in literature? A. the author's diction and bias revealed through word choice B. the personality a reader can sense behind the author's words C. the identification of who is telling the story in a narrative D. the attitude of the author, narrator, or speaker toward the subject or the reader Vanesa earns a base salary of $400.00 every week with an additional 5% commission on everything she sells. Vanessa sold $1650.00 worth of items last week.What was Vanessas total pay last week? Train A arrives at the station at 11:50 AM and leaves the station at 1:50 PM. How long does it stay in the station?Make a Selection:A. 1 hrB. 1 hr 25 minC. 2 hrsD. 10 hrs Plane H is shown.Which points are coplanar and noncollinear? Jamie believes that america's high rate of murder, poverty, and out-of-wedlock births is the result of u.s. values being weaker than european values. jamie supports the: 9 to the third power vertex of y= 2x^2+8 +1 When a ray of light strikes a mirror perpendicular, what law does it states Which best describes how parents affect the genotype of a child?A.the parents decide what to feed their childB.the parents choose whether to educate their childC.the parents allow their child to stay up lateD. the parents pass along genes to the child Alex completed 7 homework problems in class. The function p(m) relates thetime (in minutes) Alex spent on his homework at home to the total number ofproblems he completed. The input is the number of minutes worked. Theoutput is the number of problems completed.p(m)=m/4+7Which equation represents the inverse function m(p), which uses problemscompleted as the input and gives minutes worked as the output? If you have an average 90. Give two numbers other than 90 that would make the average 90 Kussmaul respirations are an indication that the body is Ray UW is the angle bisector of VUT. If mVUW = (4x + 6) and mWUT = (6x 10), what is the measure of WUT? In what way did education play a crucial role in the emergence of the middle class? In a ___, the government makes all the economic decisions.Next A man invests a certain amount of money at 2% interest and $800 more than that amount in another account at 4% interest. At the end of one year, he earned $92 in interest. How much money was invested in each account? $1,500 at 2%; $2,300 at 4% $1,400 at 2%; $2,200 at 4% $1,000 at 2%; $1,800 at 4% A substance added in The final stages to remove sulphur from coal is