Answer:
Option a=$6.37 is correct
The value of the variable is the solution of the given equation is a=$6.37
Step-by-step explanation:
Given equation is a+$5.92=$12.29
To find the value of the variable is the solution of the given equation :
a+$5.92=$12.29
Subracting the above equation by $12.29 on both sides we get
a+$5.92-$12.29=$12.29-$12.29 ( Subtraction property of equality)
a-$6.37=0
Now add $6.37 on both sides we get
a-$6.37+$6.37=0+$6.37 ( Addition property of equality)
a-0=$6.37
Therefore a=$6.37
Therefore option a=$6.37 is correct
Answer:
3rd answer is correct, $6.37
Step-by-step explanation:
Solve for x
6^7-x=36^2x-4
Answer:
x = 215.83654587...
Answer:
Exact Form:
x=279940/1297
Decimal Form:
x=215.83654587…
Mixed Number Form:
x=215[tex]\frac{1085}{1297}[/tex]
hope this helps:)
What does y=-3/2x+3 look like graphed
What is the area of the model in the problem?
Answer:
[tex]A=x^2+12x+27\ units^2[/tex]
Step-by-step explanation:
we know that
The area of the model is equal to the area of a rectangle
The area of a rectangle is equal to
[tex]A=LW[/tex]
we have
[tex]L=x+9\ units[/tex]
[tex]W=x+3\ units[/tex]
substitute
[tex]A=(x+9)(x+3)[/tex]
Apply distributive property
[tex]A=x^2+3x+9x+27[/tex]
Combine like terms
[tex]A=x^2+12x+27\ units^2[/tex]
Complete the square for each expression. Then factor the Trinomial
x^2+8x
The value of x is [tex]x=0[/tex] or [tex]x=-8[/tex]
Step-by-step explanation:
The expression is [tex]x^{2} +8x=0[/tex]
To complete the square, the equation is of the form [tex]ax^{2} +bx+c=0[/tex]
The constant term c can be determined using, [tex]c=\left(\frac{\frac{b}{a}}{2}\right)^{2}[/tex]
[tex]\begin{aligned}c &=\left(\frac{8}{2}\right)^{2} \\&=\left(\frac{8}{2}\right)^{2} \\c &=4^{2} \\c &=16\end{aligned}[/tex]
Rewriting the expression [tex]x^{2} +8x=0[/tex] and factoring the trinomial, we have,
[tex]\begin{array}{r}{x^{2}+8 x+16=16} \\{(x+4)^{2}=16}\end{array}[/tex]
Taking square root on both sides, we get,
[tex]\begin{aligned}&x+4=\sqrt{16}\\&x+4=\pm 4\end{aligned}[/tex]
Either,
[tex]\begin{array}{r}{x+4=4} \\{x=0}\end{array}[/tex] or [tex]\begin{array}{r}{x+4=-4} \\{x=-8}\end{array}[/tex]
Thus, the value of x is [tex]x=0[/tex] or [tex]x=-8[/tex]
Do you hypotenuse of a triangle is 1 foot more than twice the length of the shorter leg the longer leg is 7 feet longer than the shorter leg find the dimensions of the triangle
Answer:
Shorter leg: 8 units
Longer leg: 15 units
Hypotenuse: 17 units
Step-by-step explanation:
We are given [tex]h=1+2s[/tex] where [tex]h[/tex] is the hypotenuse and [tex]s[/tex] is the length of the shorter leg.
We got this equation from reading that the "hypotenuse of a triangle is 1 foot more than twice the length of the shorter leg". I replaced the "hypotenuse of a triangle" with [tex]h[/tex], "is" with [tex]=[/tex], "1 foot more than" with [tex]1+[/tex] and finally "twice the length of the shorter leg" with [tex]2s[/tex].
We also have "longer leg is 7 feet longer than the shorter leg".
I'm going to replace "longer leg" with [tex]L[/tex].
I'm going to replace "is" with [tex]=[/tex].
I'm going to replace "7 feet longer than the shorter leg" with [tex]7+s[/tex].
So we have the equation [tex]L=7+s[/tex].
So we have a right triangle since something there is a side being referred to as the hypotenuse. We can use Pythagorean Theorem to find a relation between all these sides.
So by Pythagorean Theorem, we have: [tex]s^2+L^2=h^2[/tex].
Let's make some substitutions from above:
[tex]s^2+(7+s)^2=(1+2s)^2[/tex]
Let's expand the powers using:
[tex](a+b)^2=a^2+2ab+b^2[/tex]
Applying this now:
[tex]s^2+(49+2(7)s+s^2)=(1+2(1)(2s)+(2s)^2)[/tex]
[tex]s^2+49+14s+s^2=1+4s+4s^2[/tex]
Combine like terms on right hand side:
[tex]2s^2+49+14s=1+4s+4s^2[/tex]
Subtract everything on left hand side to get 0 on that side:
[tex]0=(1-49)+(4s-14s)+(4s^2-2s^2)[/tex]
Simplify:
[tex]0=(-48)+(-10s)+(2s^2)[/tex]
Reorder into standard form for a quadratic:
[tex]0=2s^2-10s-48[/tex]
Every term is even and therefore divisible by 2. I will divide both sides by 2:
[tex]0=s^2-5s-24[/tex]
I'm going to see if this is factoroable.
We need to see if we can come up with two numbers that multiply -24 and add up to be -5.
Those numbers are -8 and 3.
So the factored form is:
[tex]0=(s-8)(s+3)[/tex]
This implies that either [tex]s-8=0[/tex] os [tex]s+3=0[/tex].
The first equation can be solved by adding 8 on both sides: [tex]s=8[/tex].
The second equation can be solved by subtracting 3 on both sides: [tex]s=-3[/tex].
The only solution that makes sense for [tex]s[/tex] is 8 since it can't the shorter length cannot be a negative number.
[tex]s=8[/tex]
[tex]L=7+s=7+8=15[/tex]
[tex]h=1+2s=1+2(8)=1+16=17[/tex]
So the dimensions of the right triangle are:
Shorter leg: 8 units
Longer leg: 15 units
Hypotenuse: 17 units
evaluate 4x exponent 2+ 2x-1 for x=9
The value of given expression is 341
Solution:
Given that we have to find the value of given expression
Given expression is:
[tex]4x^2 + 2x - 1[/tex]
Given value is x = 9
Substitute x = 9 in given expression
[tex]\rightarrow 4(9)^2+2(9) - 1[/tex]
Solve the above expression
[tex]\rightarrow 4 \times (9 \times 9) + 18 -1\\\\\rightarrow 4 \times 81 + 17\\\\\text{Multiply the terms 4 and 81 }\\\\\rightarrow 324 + 17\\\\\text{Add the numbers }\\\\\rightarrow 341[/tex]
Thus the value of given expression is 341
A rectangular piece of metal is 25 in longer than it is wide. Squares with sides 5 in long are cut from the four corners and the flaps are folded upward to form an open box. If the volume of the box is 930 incubed/ in^3, what were the original dimensions of the piece of metal?
Answer:
The original length was 41 inches and the original width was 16 inches
Step-by-step explanation:
Let
x ----> the original length of the piece of metal
y ----> the original width of the piece of metal
we know that
When squares with sides 5 in long are cut from the four corners and the flaps are folded upward to form an open box
The dimensions of the box are
[tex]L=(x-10)\ in\\W=(y-10)\ in\\H=5\ in[/tex]
The volume of the box is equal to
[tex]V=(x-10)(y-10)5[/tex]
[tex]V=930\ in^3[/tex]
so
[tex]930=(x-10)(y-10)5[/tex]
simplify
[tex]186=(x-10)(y-10)[/tex] -----> equation A
Remember that
The piece of metal is 25 in longer than it is wide
so
[tex]x=y+25[/tex] ----> equation B
substitute equation B in equation A
[tex]186=(y+25-10)(y-10)[/tex]
solve for y
[tex]186=(y+15)(y-10)\\186=y^2-10y+15y-150\\y^2+5y-336=0[/tex]
Solve the quadratic equation by graphing
using a graphing tool
The solution is y=16
see the attached figure
Find the value of x
[tex]x=16+25=41[/tex]
therefore
The original length was 41 inches and the original width was 16 inches
Final answer:
calculate the length as x + 25, and solve the volume equation to find the dimensions as 30 inches by 55 inches.
Explanation:
The original dimensions of the piece of metal can be calculated as follows:
Let x be the width of the metal.
Then, the length would be x + 25.
After cutting out the squares and folding, the volume of the box would be (x-10)(x-10)(30) = 930.
Solving this equation, we get x = 30, so the original dimensions were 30 inches by 55 inches.
Lily was building towers with her Legos. The first tower that she built had only one LEGO. The second tower had 4 LEGO’s. The towers she built after that had 9 and then 16 LEGO’s. How many LEGO’s would Lily’s 100th tower have?
Here is the pattern of Lily's towers in the form of x, y:
1, 1
2, 4
3, 9
4, 16
The equation x^2 fits for this problem, so 100^2 would mean it would take 10,000 LEGOS to build the 100th tower.
543,000,000,000,000 in Scientific notation
Answer:
5.43×10^14 or
[tex]5 .43 \times 10^{14} [/tex]
Step-by-step explanation:
Scientific notation, the number must always be less than 10, in this case 5.43. The exponent represents how much times I moved the decimal point to the left.
If m∠1 = m∠2, then m∠1 is:
The statement m∠1 = m∠2 within a geometric context implies that the angles are congruent. If these angles are part of a triangle, the triangle is likely isosceles, which aligns with the theorem that equal angles in a triangle indicate equal opposite sides.
Explanation:If m∠1 = m∠2, this equation suggests we are dealing with congruent angles, potentially within a geometric context. In the realm of geometry, congruency implies that both angles have the same measure. Thus, if these are angles within a triangle, according to the given theorem, the triangle is isosceles.
According to the property that the sum of angles in a triangle is equal to two right angles or 180 degrees (THEOREM 20), we can understand that in an isosceles triangle, the angles opposite to the equal sides are also equal. This would mean that if m∠1 equals m∠2, these could be the angles opposite the two equal sides in an isosceles triangle.
Furthermore, when interpreting equations such as m₁v₁ = 1 / 012₂ cos 0₂, we are likely dealing with more advanced mathematical or physical concepts, such as vectors or trigonometry. Yet, these equations do not apply directly to the statement m∠1 = m∠2 unless more context is provided about the relationship between these angles and the variables in those equations.
Hollister boys shirts for 26 dollars and sells them for 37 dollars. What is the % of change? Round to the nearest whole %.
HELP ASAP I NEED A ANSWER FAST!!!!
The percent of change is 42 %
Solution:
Given that, Hollister boys shirts for 26 dollars and sells them for 37 dollars
We have to find the percent of change
The percent change is given by formula:
[tex]Percent\ Change = \frac{\text{final value - initial value}}{\text{Initial value}} \times 100[/tex]
Here given that,
Initial value = 26 dollars
Final value = 37 dollars
Substituting the values we get,
[tex]Percent\ Change = \frac{37-26}{26} \times 100\\\\Percent\ Change = \frac{11}{26} \times 100\\\\Percent\ Change =0.423 \times 100\\\\Percent\ Change =42.3 \approx 42[/tex]
Thus percent of change is 42 %
Two functions are represented below. Which function has a domain that contains the domain of the other function as a
subset?
f(x) = -log(x-2)-3
The function
has a domain that contains the domain as a subset of the function
The domain of g(x) contains the domain of f(x) as a subset.
Explanation:
The given functions are f(x) = -log(x-2)-3 and g(x) = log(x-2). To determine which function has its domain contained within the domain of the other, we need to compare the two domains. The domain of f(x) consists of all real numbers greater than 2, while the domain of g(x) also consists of all real numbers greater than 2. Therefore, the domain of g(x) contains the domain of f(x) as a subset.
Learn more about Function Domains here:https://brainly.com/question/28599653
#SPJ12
It takes 20 people 24 days to build a barn. In how many days will the barn be build if they had 32 people working?
For this case we must propose a rule of three:
20 people ----------------> 24 days
32 people ----------------> x
Where the variable "x" represents the number of days it takes 32 people to build the barn.
[tex]x = \frac {32 * 24} {20}\\x = \frac {768} {20}\\x = 38.4[/tex]
Thus, it takes 32 people approximately 39 days to build the barn.
Answer:
It takes 32 people about 39 days to build the barn.
To find how many days it will take 32 people to build the barn, calculate the total man-hours (20 × 24 = 480 man-hours) and divide that by the number of workers (480 \/ 32 = 15). Thus, it takes 32 people 15 days to build the barn.
The student's question involves solving a problem by understanding the concept of work rate and man-hours. To find out how many days it would take for 32 people to build a barn if it takes 20 people 24 days, we first need to calculate the total man-hours required to build the barn. The total man-hours is the product of the number of workers and the number of days they work, which in this case is 20 people × 24 days = 480 man-hours.
Once we have the total number of man-hours, we can then calculate how many days it will take for 32 people to complete the same amount of work. This is done by dividing the total man-hours by the number of workers, resulting in 480 man-hours / 32 people = 15 days.
Therefore, it will take 32 people 15 days to build the barn.
how to find the perimeter of A(−5,−1),B(−1,−1),C(−1,−4),D(−5,−4)
Answer:
The perimeter of ABCD will be 14 units.
Step-by-step explanation:
Points A(-5,-1) and B(-1,-1) lies on the same line which is parallel to the x-axis.
So, length of line segment AB will be |- 5 - (- 1)| = 4 units.
Points B(-1,-1) and C(-1,-4) lies on the line which is parallel to the y-axis.
So, length of line segment BC will be |- 4 - (- 1)| = 3 units.
Points C(-1,-4) and D(-5,-4) lies on the same line which is parallel to the x-axis.
So, length of line segment CD will be |- 5 - (- 1)| = 4 units.
Points D(-5,-4) and A(-5,-1) lies on the line which is parallel to the y-axis.
So, length of line segment DA will be |- 4 - (- 1)| = 3 units.
Therefore, the perimeter of ABCD will be (4 + 3 + 4 + 3) = 14 units. (Answer)
What are the different ways of solving simultaneous equations?
Answer:
Solving Systems of Equations (Simultaneous Equations) If you have two different equations with the same two unknowns in each, you can solve for both unknowns. There are three common methods for solving: addition/subtraction, substitution, and graphing.
Step-by-step explanation:
find (g•f)(x) when f(x)=sqrt x+3 and g(x)=x^2+2/x
To find (g * f)(x), compute f(x) and substitute it into g(x), resulting in g(f(x)) = (√{x}+3)² + 2/√(x+3). Expand and simplify as needed.
To find (g * f)(x) for the given functions f(x)=√{x}+3 and g(x)=x²+2/x, we first need to compute f(x) and then substitute the result into function g.
First, we compute f(x):
f(x)=√x+3
Now, we substitute f(x) into g(x):
g(f(x)) = (√x+3)² + 2/√(x+3)
Step-by-step calculation:
Square f(x) to get (√x+3)².Expand the squared term to x + 6√x + 9.Substitute this into g(x):
Select the correct answer and then click Done.
Let g(x) = 2x and h(x) = x2 + 4
Evaluate (h•g)(-3).
@ 40
© 26
© 16
@ 32
Which of the statements below is true for the following set of numbers?
30, 25, 50, 75, 75, 60
Answer:
The range and mid-range are equal
Step-by-step explanation:
the range is 75-25=50
the mid-range is (75+25)/2 = 100/2 = 50
50 = 50
An expression is a way of writing a statement with more than two variables or numbers with operations such as addition, subtraction, multiplication, and division.
30, 25, 50, 75, 75, 60
The range is the difference between the highest value and the lowest values in the given set of numbers.
Midrange = Range ÷ 2
Option A is the correct answer.
The range of the set of numbers is 50
The midrange of the set of numbers is 25
What is an expression?An expression is a way of writing a statement with more than two variables or numbers with operations such as addition, subtraction, multiplication, and division.
Example: 2 + 3x + 4y = 7 is an expression.
We have,
30, 25, 50, 75, 75, 60
The range is the difference between the highest value and the lowest values in the given set of numbers.
Now,
The lowest value is 25
The highest value is 75
Range = 75 - 25 = 50
Midrange = 50/2 = 25
Thus,
The range of the set of numbers is 50
The midrange of the set of numbers is 25
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ5
Solve the below system of equations using the linear combination method. Show all your work, explaining each step in solving the system using the linear combination method.
2x + 3y = 1
y = -2x - 9
The solution to given system of equations is x = -7 and y = 5
Solution:
Given that, we have to solve the system of equations by linear combination method
Given system of equations are:
2x + 3y = 1 ---------- eqn 1
y = -2x - 9 ----------- eqn 2
We can use substitution method to solve the system of equations
Substitute eqn 2 in eqn 1
2x + 3(-2x - 9) = 1
Add the terms inside the bracket with constant outside the bracket
2x -6x - 27 = 1
Combine the like terms
-4x = 1 + 27
-4x = 28
Divide both sides of equation by -4
x = -7Substitute x = -7 in eqn 2
y = -2(-7) - 9
Simplify the above equation
y = 14 - 9
y = 5Thus solution to given system of equations is x = -7 and y = 5
Select the correct answer from the drop-down menu.
Find the missing term.
The quotient of -8x2y3 ÷ xy is same as the product of 4xy and .
Missing term = –2xy
Solution:
Let us first find the quotient of [tex]-8x^2y^3 \div xy[/tex].
[tex]-8x^2y^3 \div xy=\frac{-8x^2y^3 }{xy}[/tex]
[tex]=\frac{-8\times x\times x\times y\times y\times y}{xy}[/tex]
Taking common term xy outside in the numerator.
[tex]=\frac{xy(-8\times x\times y\times y)}{xy}[/tex]
Both xy in the numerator and denominator are cancelled.
[tex]=-8xy^2[/tex]
Thus, the quotient of [tex]-8x^2y^3 \div xy[/tex] is [tex]-8xy^2[/tex].
Given the quotient of [tex]-8x^2y^3 \div xy[/tex] is same as the product of 4xy and ____.
[tex]-8xy^2=4xy[/tex] × missing term
Divide both sides by 4xy, we get
⇒ missing term = [tex]\frac{-8xy^2}{4xy}[/tex]
Cancel the common terms in both numerator and denominator.
⇒ missing term = –2xy
Hence the missing term of the product is –2xy.
4 math problem
1. y=-6x-14
-x-3y=-9
2. -5x+2y=-11
5x-3y=14
3. x+10y=-16
x-6y=16
4. -12x-y=15
6x-2y=-30
please help
Answer:
Step-by-step explanation:
1)y=-6x-14 ---------(i)
-x-3y=-9 ---------- (ii)
Substitution method:
Substitute y value in equ (i)
-x -3*(-6x-14) = -9
-x - 3*-6x -3*(-14)= -9
-x + 18x + 42 = -9
17x = -9 -42
17x = -51
x = -51/17
x = -3
Substitute x value in equation (i)
y = -6*-3 -14
y =18-14
y = 4
Step-by-step explanation:
I'm using substitute in the first and something I don't know the name of in the rest.
Elizabeth has already jarred 1 liter of jam and will jar an additional 2 liters of jam every day. How many days
did Elizabeth spend making jam if she jarred 9 liters of jam? Write and solve an equation to find the answer.
Number of days Elizabeth spend making jam if she jarred 9 liters of jam is 4 days
Solution:
Given that, Elizabeth has already jarred 1 liter of jam
She will jar an additional 2 liters of jam every day
To find: Number of days Elizabeth spend making jam if she jarred 9 liters of jam
Let "x" be the number of days Elizabeth spend making jam
Then, by given information, we frame a equation as,
9 liters of jam = 1 liter of jam + 2 liters of jam( "x" days )
[tex]9 = 1 + 2x\\\\9 - 1 = 2x\\\\2x = 8\\\\x = 4[/tex]
Thus she spend 4 days in making jam
Jason has 43 stamps. Some
are worth 15 cents and some
are worth 20 cents. If their total
value is $7.50, how many of
each kind does he have?
Jason has a total of 43 stamps, and we have two different stamps involved.
x = 15 cents
y = 20 cents
We will need to set up two equations and then use substitution:
43 = x + y (represents total stamps)
7.50 = 0.15x + 0.20y (represents total value)
To use substitution, we'll use the first equation and get either x or y on its own. In this case I will choose to get y on its own:
43 - x = x - x + y (subtract x to get y alone)
43 - x = y
Now we will use this in the second equation and simplify:
7.50 = 0.15x + 0.20(43 - x)
7.50 = 0.15x + 8.6 - 0.20x
7.50 = 8.6 - 0.05x
-1.1 = -0.05x (divide by -1.1 to get x alone)
22 = x
Now that we know Jason has 22 of the stamps that are worth 15 cents, we need to find y by plugging x, 22, into the first equation:
43 = 22 + y
21 = y
Jason has 22 stamps that are worth 15 cents and 21 stamps that are worth 20 cents.
2y-1/5-2+7y/15>2/3
a. y>-9
b. y<-9
c. y> 0
d. y> 0 or y< -9
Final answer:
To solve the inequality, simplify the expression and isolate the variable y. The solution is y > 43/37, so the correct answer is option (c).
Explanation:
To solve the inequality 2y - 1/5 - 2 + 7y/15 > 2/3, we can simplify and isolate the variable y. Combining like terms, we have 2y + 7y/15 - 1/5 - 2 > 2/3. Multiplying all terms by 15, we get 30y + 7y - 3 - 30 > 10. Simplifying further, we have 37y - 33 > 10. Adding 33 to both sides, we have 37y > 43. Finally, dividing both sides by 37, we find that y > 43/37.
So the correct answer is option (c), y > 43/37.
Here’s another one thank u all for helping me. I really appreciate it!
please help !! find m<1
Answer: m<1 is 62°
Step-by-step explanation:
Alright, lets get started.
The two angles are given as 56° and 62°.
We know the sum of the angles of a triangle is 180°
So,
[tex]x+56+62=180[/tex]
[tex]x+118=180[/tex]
Subtracting 118 in both sides
[tex]x+118-118=180-118[/tex]
[tex]x=62[/tex]
Hence the desired angle 1 is 62° ........... Answer
Hope it will help :)
Answer:
B. 62°
Step-by-step explanation:
Hope this helps
Translate the following phrase into an algebraic expression using the variable m. Do not simplify.
The cost of renting a car for one day and driving m miles if the rate is $22 per day plus 20 cents per mile
Answer:
Step-by-step explanation:
Let the total cost for renting a car a day be X
: X = $22 + 20m cent
alisia goes to the gym every 3 days Luis goes to the gym every 4 days they both are at on the 12th day what is the next day they will both be at the gym
Alisia and Luis are both at the gym every 12 days. After the 12th day, the next day they will both be at the gym is the 24th day.
Explanation:In this math problem, we figure out when Alisia and Luis will both be at the gym at the same time again. Alisia goes every 3 days, and Luis goes every 4 days. The days when they're both at the gym are multiples of the least common multiple (LCM) of 3 and 4. The LCM of 3 and 4 is 12, so they're both at the gym every 12 days.
They both are at the gym on the 12th day. To find out when they'll be there together next, we simply add 12 to the current day: 12 + 12 = 24. So, the next day they will both be at the gym is the 24th day.
Learn more about Least Common Multiple here:https://brainly.com/question/34291727
#SPJ2
If ABCD is a parallelogram, mZA = x° and mZD = (2x - 3)º, find the
value of 'x'.
Answer:
x = 61
Step-by-step explanation:
Angles A and D are consecutive interior angles of a parallelogram.
Consecutive interior angles of a parallelogram are supplementary.
m<A + m<D = 180
x + 2x - 3 = 180
3x - 3 = 180
3x = 183
x = 61
(35 points) A student flips the coin and spins the spinner shown. Which correctly shows the probability the coin lands on heads and the spinner lands on blue?
1/8
3/8
3/4
5/4
Answer:
Step-by-step explanation:
P(heads) = 1/2
P(blue) = 1/4
P (heads and blue) = 1/2 * 1/4 = 1/8