Answer:
D. The current in the battery and in each resistor is the same
Explanation:
In a series circuit, all the components of the circuit are connected in the same branch of the circuit - this means that the current flowing through each component is the same. Therefore, the current in the battery is equal to the current flowing through each resistor.
The total resistance of a series of n resistors is given by the sum of the individual resistances:
[tex]R=R_1+R_2+...+R_n[/tex]
On the contrary, when the components are connected in parallel to the battery, then each of them has the same voltage of the battery, but not the same current.
describe two different types of paths a raindrop falling in the mountains might take to reach the ocean
First surface runoff then ground water...
What is linear speed called when something moves in a circle
Answer: Tangential Velocity
The tangential velocity [tex]V[/tex] is defined as the angular velocity [tex]\omega[/tex] by the radius [tex]r[/tex] of circular motion. As shown below:
[tex]V=\omega. r[/tex]
Its name is due to the fact that this linear velocity vector is always tangent to the trajectory and is the distance traveled by a body or object in a circular movement in a period of time.
The diagram shows a person holding a bow and arrow.
Which will most likely increase the kinetic energy in this system?
pulling farther back on the string
releasing the string
holding the arrow higher
decreasing the mass of the arrow
Answer:
releasing the string
Explanation:
In a bow-arrow system, the potential energy stored by pulling the string backwards gets converted to kinetic energy when the string is released. Thus, more the string is pulled backwards, more potential energy would be stored. When the string is released, the potential energy reduces and converts to kinetic energy. Therefore, by releasing the string, the kinetic energy increases.
option A. Pulling back further on the bowstring increases the kinetic energy in the system. This is due to the added work, translated into kinetic energy when the string is released, accelerating the arrow to a higher speed.
Explanation:The kinetic energy in this system will most likely increase by pulling farther back on the string. Kinetic energy is the energy of motion, and in this case, it's the energy that the arrow will have as it moves. When you pull back further on the bowstring, you are applying more work (force times distance) to the arrow. This additional work is transformed into kinetic energy when the string is released, causing the arrow to move at a higher speed, thus, the total kinetic energy of the arrow increases.
Learn more about Kinetic Energy here:https://brainly.com/question/26472013
#SPJ3
What is the correct formula for power? A. Power = work / time B. Power = work * time C. Power = force * distance D. Power = work * distance
Answer:
A. Power = Work / Time
Explanation:
Power is the amount of work done over time, or rather the rate of work, which is given by the unit of watts (W). Since work is defined by Force * Displacement, we can also say Power = Force * Displacement / Time.
Answer:
A. P=W÷t
Explanation:
List four costs (negative aspects) of using fossil fuels in thermal power stations.
Final answer:
Using fossil fuels in thermal power stations has negative effects on the environment, causing pollution, greenhouse gas emissions, and resource depletion.
Explanation:
Using fossil fuels in thermal power stations has several negative aspects:
Environmental Toll: The extraction of fossil fuels can cause environmental damage, such as oil spills and contamination of water sources.
Air and Water Pollution: Burning fossil fuels releases harmful emissions like sulfur dioxide, nitrogen oxide, and mercury, leading to acid rain and smog.
Climate Change: Fossil fuel combustion results in the release of carbon dioxide, a greenhouse gas that contributes to global warming.
Resource Depletion and Cost: As fossil fuel reserves become harder to extract, their prices increase, leading to higher energy costs and potential resource conflicts.
What does each item used in the experiment represent in the actual greenhouse effect on Earth? For instance, the light used in the experiment represents the Sun. What does the bottom of the box, air in the box, and plastic wrap each represent in the greenhouse effect?
The light represents the sunlight.
The bottom of the box represents the surface of the Earth.
The air in the box represents the atmosphere.
The plastic wrap represents the part of the atmosphere where the Greenhouse gases are and influence the temperature.
So we have a box, air in it, plastic wrap, and directed light on it. The bottom of the box represents the surface of the Earth. The light that is directed towards it gets partially through the plastic wrap, reaching the bottom of the box and warming it up. As it warms up, the bottom of the box starts to radiate heat and returns it upwards through the air that represents the atmosphere. Then that heat reaches the plastic wrap, but it is not able to move through it, thus the air starts to warm up more and more, giving us a nice simplified example of how this process works.
What happens to the acceleration when the velocity is zero
It's easy to fall into the temptation to say that when the velocity is zero, then the acceleration is also zero. But wait! To answer this question we need to bring out the concept of instantaneous velocity. This type of velocity stands for a specific moment, a specific instant of time, that is, [tex]t=1, \ t=2, \ t=3, \ t=3.2 \ t=4.5[/tex]. If so, then acceleration may not be zero when velocity is zero. For example, suppose you throw an object upward, when it is at the top of the travel the instantaneous velocity is zero because it changes from positive to negative value and there is a moment when it must be zero, but yet there is a constant acceleration by the Earth's gravity at that moment. Even though the velocity at that stationary moment is zero, it doesn't imply the acceleration must be zero, so it has a value and in this case is [tex]-9.8m/s^{2}[/tex]
Help with vectors?
Find both the x and y components of the vector below.
Answer:
10 m and 17.3 m
Explanation:
We can notice that the vector B represents the hypothenuse of a right triangle, in which the x-component of the vector is the side opposite to the [tex]30^{\circ}[/tex] angle, while the y-component of the vector corresponds to the side adjacent to the [tex]30^{\circ}[/tex] angle. This means that we can find the two components of the vector by using the sine and cosine function as follows:
[tex]B_x = B sin 30^{\circ} = (20 m) sin 30^{\circ}=10 m[/tex]
[tex]B_y = B cos 30^{\circ} = (20 m) cos 30^{\circ}=17.3 m[/tex]
A light goes on immediately when you flip a switch because.
A. conductors allow electrons to travel extremely quickly from the power source to the light
B. tightly bound electrons are already present in the conductors that make up the circuit
C. loosely bound electrons are already present in the wire conductors that make up the circuit
The light turns on immediately due to loosely bound electrons in the conductors that quickly propagate the electrical signal nearly at the speed of light, causing an instantaneous chain reaction and creating a current. The correct option is: C. loosely bound electrons are already present in the wire conductors that make up the circuit.
A light goes on immediately when you flip a switch because loosely bound electrons are already present in the wire conductors that make up the circuit. These electrons move through the circuit quickly, initiating a nearly instantaneous chain reaction that allows the current to flow and the light to turn on almost immediately.
This movement is much quicker than the drift velocity of the electrons, which is the average speed at which they move through the conductor. Instead, the signal that causes the electrons to start moving travels at a fraction of the speed of light, which is why we perceive the light turning on without noticeable delay.
Which phrase does not describe a mineral?
A. Specific chemical consumption B. Organic solid C. Crystal structure D. Naturally occurring
The answer is A) specific chemical consumption
A should be the answer
How many protons are in a single nucleus of 5626fe?
26 protons are in single nucleus of 5626fe
Which of the following happens when the rate of forward motion of a glacier is slower than the rate of ablation? A. The glacier remains stationary B. The glacier sheds an iceberg C. The glacier advances D. The glacier retreats
The glacier retreats when the rate of forward motion of a glacier is slower than the rate of ablation
Answer: D
Explanation:
The Glacial ice moves with respect to the gravity, glacial ice always flows downwards in response to gravitational force and the front line of the glacier is either calving or melting into water which is also referred as shedding icebergs.
When the rate of flow of the glacier is quicker than the rate of melting or ablation, the advancing end of the glacier moves forward. Whereas, the rate of forward motion of the glacier is about the same as the rate of defrosting, the glacier edge doesn't intend to move at all, and if the rate of glacier's flow lacks behind the rate of defrosting, then it retreats (moves backward).
Answer:
Explanation:
The glacier retreats
Electricity is distributed from electrical substations to neighborhoods at 15,000 V. This is a 60 Hz oscillating (AC) voltage. Neighborhood transformers, seen on utility poles, step this voltage down to the 120 V that is delivered to your house. a. How many turns does the primary coil on the transformer have if the secondary coil has 100 turns? b. No energy is lost in an ideal transformer, so the output power P out from the secondary coil equals the input power Pin to the primary coil. Suppose a neighborhood transformer delivers 250 A at 120 V. What is the current in the 15,000 V line from the substation?
a. 12,500 turns
The transformer equation states that
[tex]\frac{N_p}{V_p}=\frac{N_s}{V_s}[/tex]
where
Np is the number of turns in the primary coil
Ns is the number of turns in the secondary coil
Vp is the voltage in the primary coil
Vs is the voltage in the secondary coil
For the transformer in the problem,
Vp = 15,000 V
Vs = 120 V
Ns = 100
So we can find Np by rearranging the equation:
[tex]N_p = V_p \frac{N_s}{V_s}=(15,000 V)\frac{100}{120 V}=12,500[/tex]
b. 2 A
For an ideal transformer, the output power is equal to the input power:
[tex]P_i = P_o\\V_p I_p = V_s I_s[/tex]
where
[tex]V_p = 15,000 V[/tex] is the voltage in the primary coil
[tex]I_p[/tex] is the current in the primary coil
[tex]V_s = 120 V[/tex] is the voltage in the secondary coil
[tex]I_s = 250 A[/tex] is the current in the secondary coil
Solvign the formula for Ip, we find:
[tex]I_p = \frac{V_s I_s}{V_p}=\frac{(120 V)(250 A)}{15,000 V}=2 A[/tex]
The primary coil of the transformer has 12500 turns, and the current in the 15,000 V line from the electrical substation is 2 A.
Explanation:The number of turns in the primary coil of the transformer can be found using the transformer equation, which states that the ratio of the secondary voltage to the primary voltage equals the ratio of the number of loops in the secondary coil to the number of loops in the primary coil.
Therefore, if the secondary coil has 100 turns, and the voltages are 15000 V (primary) and 120 V (secondary), we can set up the equation (15000 V / 120 V) = (x turns / 100 turns), where x is the number of turns in the primary coil. Solving for x gives us x = 12500 turns.
The power input to the primary coil equals the power output from the secondary coil, since no energy is lost in an ideal transformer. Power (P) equals voltage (V) times current (I), so Pin = Pout, or (15,000 V * Iin) = (120 V * 250 A). Solving for Iin, the current in the 15,000 V line from the substation, gives us Iin = 2 A.
Learn more about Transformer here:https://brainly.com/question/11709244
#SPJ3
what is shown in the diagram?
an electromagnet
a generator
a motor
a turbine
The machine shown in the diagram is generator.
What is generator?To produce electricity, a generator needs the input in the form of mechanical energy.
The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.
M.E = KE +PE
In order to produce electricity, a generator uses the mechanical energy as the input. It gives the electrical energy as output to light up homes, hotels or industries.
Thus, generator is shown in diagram.
Learn more about mechanical energy.
https://brainly.com/question/13552918
#SPJ2
The National Grid supplied a house with 18,000,000 J of energy in 1 hour. What was the average current supplied to the house during that hour?
I got 0.0126, but it feels wrong.
The law of reflection is quite useful for mirrors and other flat, shiny surfaces. (this sort of reflection is called specular reflection). however, you've likely been told that when you look at something, you are seeing light reflected from the object that you are looking at. this is reflection of a different sort: diffuse reflection. in this problem, you will see how diffuse reflection actually arises from the same law of reflection that you are accustomed to for reflections from mirrors.
Specular reflection is a mirror-like reflection where light reflects at specific angles, occurring on smooth surfaces and obeying the law of reflection. Diffuse reflection is when light scatters in many directions after hitting a rough surface, allowing us to see objects from different angles. Both types of reflection are explained by the same fundamental law of reflection.
Diffuse vs. Specular Reflection
When light reflects off a surface, the nature of the reflection is determined by the surface's texture. Specular reflection occurs when light strikes a smooth surface, like a mirror, causing light rays to reflect at specific angles maintaining the image's appearance. This type of reflection follows the law of reflection, where the angle of incidence is equal to the angle of reflection. Conversely, diffuse reflection happens when light hits a rough surface, such as paper or clothing. Here, the variance in surface angles causes light to scatter in multiple directions, which enables us to see the object from various perspectives without a distinct reflection of the light source.
Figures referenced in the provided text illustrate these concepts by comparing the predictable reflection from a mirror (specular) with the scattered light from a rough surface (diffuse). This scattering effect of diffuse reflection is what allows us to view nonluminous objects from any angle. It's important to understand that both types of reflections are governed by the law of reflection; it's the surface texture that dictates whether the light is reflected in a singular direction or scattered.
A mass moves back and forth in simple harmonic motion with amplitude A and period T.(a) In terms of A, through what distance does the mass move in the time T? ?A(b) Through what distance does it move in the time 5.00T? ?A(c) In terms of T, how long does it take for the mass to move through a total distance of 2A? ?T(d) How long does it take for the mass to move through a total distance of 7A? ?T(e) If the objects undergoes simple harmonic motion with a period T. In the time 5T/2 the object moves through a total distance of 16D. In terms of D, what is the object's amplitude of motion? ?D
(a) 4A
In a simple harmonic motion:
- The amplitude (A) is the maximum displacement of the system, measured with respect to the equilibrium position
- The period (T) is the time needed for one complete oscillation, so for instance is the time the system needs to go from position x=+A back to x=+A again
Therefore, we have that in one time period (1T) the distance covered is 4A. In fact, during one period (1T), the system:
- Goes from x=+A to x=0 (equilibrium position) --> distance covered: A
- Goes from x=0 to x=-A --> distance covered: A
- Goes from x=-A to x=0 (equilibrium position) --> distance covered: A
- Goes from x=0 to x=+A --> distance covered: A
So, in total, 4A.
(b) 20A
Since the system moves through a distance of 4A in a time interval of 1T, we can set a proportion to see what is the distance covered in the time 5.00 T:
[tex]1 T : 4 A = 5T : d[/tex]
Solving for d, we find
[tex]d=\frac{(4A)(5T)}{1 T}=20A[/tex]
So, the distance covered in the time 5.00 T is 20 A.
(c) 0.5 T
Since the system moves through a distance of 4A in a time interval of 1T, we can set a proportion to see the time t that the system needs to move through a total distance of 2A:
[tex]1 T : 4 A = t : 2A[/tex]
Solving for t, we find
[tex]t=\frac{(2A)(1T)}{4 A}=0.5 T[/tex]
So, the time needed for the system to move through a total distance of 2A is 0.5T (half period).
(d) 7/4 T
As before, since the system moves through a distance of 4A in a time interval of 1T, we can set a proportion to see the time t that the system needs to move through a total distance of 7A:
[tex]1 T : 4 A = t : 7A[/tex]
Solving for t, we find
[tex]t=\frac{(7A)(1T)}{4 A}=\frac{7}{4}T[/tex]
So, the time needed for the system to move through a total distance of 2A is 7/4 T
(e) 8/5 D
In a time of [tex]\frac{5}{2}T[/tex], the distance covered is 16D.
We also now that the distance covered in 1T is 4A.
So we can find the distance covered in a time of [tex]\frac{5}{2}T[/tex] in terms of A:
[tex]1T:4A = \frac{5}{2}T:d\\d=\frac{(4A)(\frac{5}{2}T)}{1T}=10A[/tex]
And we know that this distance must correspond to 16D, so we can find a relationship between A and D:
[tex]10A=16D\\A=\frac{16}{10}D=\frac{8}{5}D[/tex]
Why is the efficiency of a machine always less than 100 percent? The work input is too small. It cannot have an IMA greater than 1. Some work input is lost to friction. The work output is too great.
Answer:
Some work input is lost to friction
Explanation:
The efficiency of a machine is defined as:
[tex]\eta = \frac{W_{out}}{W_{in}}[/tex] (1)
where
[tex]W_{out}[/tex] is the work output
[tex]W_{in}[/tex] is the work input
Due to the law of conservation of energy, the work output can never be larger than the work input (because energy cannot be created). Moreover, in real machines part of the work input is lost due to the presence of frictions: as a result, part of the energy in input is converted into thermal energy or other forms of energy, and so the work output is smaller than the work input, and so the ratio (1) becomes less than 1, and so the efficiency is less than 100%.
Answer:
Some work input is lost to friction
Matthew throws a ball straight up into the air. It rises for a period of time and then begins to drop. At which points in the ball's journey will gravity be the greatest force acting on the ball?
the time it begins to drop
Gravity is a force that acts on the ball throughout its entire journey. However, the point at which gravity is the greatest force acting on the ball is at the highest point of its trajectory.
The gravity of the ballThis is the point where the ball momentarily stops before changing direction and starts to fall back down.
When the ball reaches its highest point, its vertical velocity becomes zero, and for an instant, it is motionless before it starts to fall due to the force of gravity. At this point, gravity is the only force acting on the ball, and it is pulling it downward with the maximum force, trying to bring it back to the ground.
Read more on gravity here https://brainly.com/question/9934704
#SPJ2
A pilot flies in a straight path for 1 hour and 30 min. she then makes a course correction, heading 10 degrees to the right of her original course, and flies 2 hours in the new direction. if she maintains a constant speed of 685 miles per hour, how far is she from her starting position?
Answer:
The answer is 2,388.56
Explanation:
A pilot flies in a straight path for 1 hour and 30 min. she then makes a course correction, heading 10 degrees to the right of her original course, and flies 2 hours in the new direction. if she maintains a constant speed of 685 miles per hour. and she will be 1486.65 miles far from the starting position.
To find the distance from the starting position of the pilot after the course correction:
Calculate the distance traveled in the new direction using trigonometry.Then, use the Pythagorean Theorem to find the total distance from the starting point.The pilot is approximately 1486.65 miles from her starting position.
You’re driving your car towards an intersection. A Porsche is stopped at the red light. You’re traveling at 36 km/h (10 m/s). As you are 15 m from the light, the light turns green, and the Porsche accelerates from rest at 3 m/s2. You continue at constant speed. a. How far from the stop line do you pass the Porsche? At what time, measured from when the light turned green, do you pass the Porsche? b. As the Porsche keeps accelerating, it eventually catches up to you again. How far from the stop line does it pass you? At what time, measured from when the light turned green, does it pass you? c. If a Boston police officer happens to get you and the Porsche on a radar gun at the instant the Porsche passes you, will either of you be pulled over for speeding? Assume the speed limit is 50 km/h.
To find the distances and times at which the two cars pass each other, we can use equations of motion. The car passes the Porsche at 20 meters and 2 seconds after the light turns green. The Porsche passes the car at 60 meters and 5 seconds after the light turns green.
Explanation:To solve this problem, we will use equations of motion to find the distances and times at which the two cars pass each other. Given that the Porsche starts from rest and accelerates at 3 m/s², we can use the equation x = xo + vot + ½at² to find the distance it travels before the other car reaches it. Similarly, for the other car which is traveling at a constant speed of 10 m/s, we can use the equation x = Ut. By solving these equations simultaneously, we can find the distances and times at which the two cars pass each other.
a. The distance at which you pass the Porsche can be found by setting the distances traveled by both cars equal to each other: 10t = 15 + 0.5(3)(t²). By solving this equation, we find that you pass the Porsche at a distance of 20 m from the stop line and at a time of 2 seconds after the light turns green.
b. To find the distance at which the Porsche passes you, we need to find the time at which the Porsche catches up to you. We can do this by setting the equation for the Porsche's distance equal to your distance: 15 + 0.5(3)(t²) = 10t. Solving this equation gives us a time of 5 seconds after the light turns green. Plugging this time into the equation for your distance, we find that the Porsche passes you at a distance of 60 meters from the stop line.
c. To determine if either of you will be pulled over for speeding, we need to compare your speeds to the speed limit of 50 km/h. Your speed is given as 36 km/h (10 m/s), which is less than the speed limit. The Porsche's speed can be found by taking the derivative of its distance equation with respect to time: v = at. Plugging in the time at which it passes you, we find that its speed is 30 m/s, which is also less than the speed limit. Therefore, neither of you will be pulled over for speeding.
Learn more about Motion here:https://brainly.com/question/35591666
#SPJ3
You pass the Porsche 16.65 meters beyond the stop line at 3.33 seconds, while the Porsche catches up 66.7 meters from the stop line at 6.67 seconds. Only the Porsche would be pulled over for speeding. The primary topic is the analysis of two moving vehicles using physics.
Part (a): When Do You Pass the Porsche?Your car's constant speed is [tex]36 km/h[/tex] or [tex]10 m/s[/tex] . The Porsche accelerates from rest at [tex]3 m/s^2[/tex].
Calculate the time it takes for the Porsche to reach your speed:
Using the equation: [tex]v = u + at[/tex],
where[tex]v = 10 m/s[/tex],[tex]u = 0[/tex], and[tex]a = 3 m/s^2[/tex], we get [tex]t = v/a = 10/3 \approx 3.33 seconds[/tex].
Now, find the distance the Porsche covers in this time with the equation: [tex]s = ut + 0.5at^2[/tex], where[tex]u = 0[/tex], [tex]a = 3 m/s^2[/tex] and [tex]t = 3.33 seconds[/tex],
thus [tex]s = 0.5 \times 3 \times 3.332 \approx 16.65 meters[/tex].
Your car covers [tex]3.33 \times 10 = 33.3 meters[/tex] in this same time.
Hence, you pass the Porsche [tex]33.3 - 16.65 = 16.65 meters[/tex] beyond the stop line.
Part (b): When Does the Porsche Pass You Again?To find when the Porsche catches up, consider the distance equations for both vehicles:
Your distance: [tex]d_{you}(t) = 10t[/tex].
Porsche’s distance: dporsche(t) = 0.5 * 3 * t2.
Set the distances equal to solve for [tex]t: 10t = 1.5t2[/tex], leading to [tex]t = 0[/tex] or [tex]t = 10/1.5 = 6.67 seconds[/tex].
The Porsche catches up [tex]0.5 \times 3 \times 6.672 = 66.7[/tex]meters from the stop line.
Part (c): Speeding CheckDetermine both cars' speeds when the Porsche passes you again:
Your speed:[tex]10 m/s = 36 km/h[/tex], under the limit.
Porsche’s speed: [tex]v = u + at = 3 \times 6.67 = 20.01 m/s \approx 72 km/h[/tex], over the limit.
Thus, only the Porsche would be pulled over for speeding.
When the moon is between the earth and the sun what moon phase will this be
Answer: The new moon phase occurs when the Moon is directly between the Earth and Sun. A solar eclipse can only happen at new moon. A waxing crescent moon is when the Moon looks like crescent and the crescent increases ("waxes") in size from one day to the next. This phase is usually only seen in the west.
Answer: a new moon
Explanation:
when the moon is between the sun and the earth a new moon comes.
hope this helps btw this is correct
tudy the images about geologic time.
What is a noticeable difference between both eras?
The Paleozoic era, not the Mesozoic era, had the first dinosaurs.
The first mammals emerged in the Paleozoic era, not the Mesozoic era.
The Mesozoic era, not the Paleozoic era, had the first animals with shells.
The first flowering plants appeared in the Mesozoic era, not the Paleozoic era.
Answer:
The first flowering plants appeared in the Mesozoic era, not the Paleozoic era.
Explanation:
The Mesozoic era was an era where numerous organisms started to develop in very unique and more advanced ways, both the animals and the plants. In the last period of the Mesozoic, the Cretaceous, the first flowering plants started to appear on the scene. This was revolutionary trait of the plants, and soon these plants started to occupy more and more space and became one of the dominant organisms on the planet. Other important evolution that took place in this period are the appearance of the dinosaurs and the mammals, both becoming the dominant animals on the planet, first the dinosaurs, after that the mammals.
Answer:
Use the drop-down menus to match each description to the geologic era it describes.
The first birds and flowering plants appeared during this era. This is also when the most well-known dinosaurs lived.
✔ Mesozoic
Mammals, including humans, emerged during this era.
✔ Cenozoic
At the beginning of this era, animals lived only in water. By the end, some early dinosaurs emerged.
✔ Paleozoic
Explanation
what type of circuit is illustrated?
series circuit
parallel circuit
open circuit
short circuit
Answer:
Parallel circuit
Explanation:
A parallel circuit is a closed circuit in which current flows and divide in two or more paths and recombining to complete the circuit, each load (light bulb) receives the fully voltage of the batteries in the circuit.
A system dissipates 12 J of heat into the surroundings; meanwhile, 28 J of work is done on the system. What is the change of the internal energy of the system?
Answer:
+16 J
Explanation:
We can solve the problem by using the 1st law of thermodynamics:
[tex]\Delta U = Q-W[/tex]
where
[tex]\Delta U[/tex] is the change of the internal energy of the system
Q is the heat (positive if supplied to the system, negative if dissipated by the system)
W is the work done (positive if done by the system, negative if done by the surroundings on the system)
In this case we have:
Q = -12 J is the heat dissipated by the system
W = -28 J is the work done ON the system
Substituting into the equation, we find the change in internal energy of the system:
[tex]\Delta U=-12 J-(-28 J)=+16 J[/tex]
A 59kg physics student jumps, off the back of her laser sailboat (42 kg) after she jumps the laser is found to be traveling at 1.5 m/s. What is the speed of the physics student?
In order to be able to calculate an answer, we must assume that the boat, with her on it, was motionless in the water until she jumped off of it.
I'll make that assumption, and then I'll go ahead and answer the question that I just invented:
-- Before she jumped off of the boat, she had no momentum and the boat had no momentum.
-- The SUM of (her momentum) + (the boat's momentum) was zero.
-- Momentum is conserved, so the SUM of (her momentum) + (the boat's momentum) has to still be zero after she jumps off of the boat.
-- Momentum = (mass) · (speed in some direction)
The boat's momentum after the jump = (42kg) · (1.5 m/s) that way ==>
The boat's momentum after the jump = 63 kg-m/s that way ==>
Her momentum after the jump has to be 63 kg-m/s this way <==
Her momentum = 63 kg-m/s = (59 kg) · (her speed this way <== )
Divide each side by (59 kg):
Her speed this way <== = (63 kg-m/s <==) / (59 kg)
Her speed = (63/59) · (m/s this way <== )
Her speed = 1.07 m/s opposite to the direction the boat is moving.
= = = = = = = = = =
A casual but striking observation:
Our 'student' is carrying 17 kg more mass than the boat she sails !
The mind boggles at the implied zaftigkeit.
To find the speed of the physics student, we can use the principle of conservation of momentum. By setting up an equation using the initial and final velocities of both the student and the sailboat, we can solve for the final velocity of the student. The answer is approximately 0.038 m/s.
Explanation:To solve this problem, we can use the principle of conservation of momentum. The initial momentum of the system, which includes the student and the laser sailboat, is equal to the final momentum of the system. The momentum of an object is calculated by multiplying its mass by its velocity. We know the mass and velocity of the laser sailboat after the student jumps off, so we can use that information to find the speed of the physics student.
We can set up the equation as follows:
(mass of student)(initial velocity of student) + (mass of sailboat)(initial velocity of sailboat) = (mass of student)(final velocity of student) + (mass of sailboat)(final velocity of sailboat)
Plugging in the given values, we have:
(59 kg)(0 m/s) + (42 kg)(0 m/s) = (59 kg)(final velocity of student) + (42 kg)(1.5 m/s)
Simplifying the equation, we find that the final velocity of the student is approximately 0.038 m/s.
Learn more about Conservation of momentum here:https://brainly.com/question/33316833
#SPJ3
A conductor carrying a conventional current in the positive-x direction is in a magnetic field whose vector points in the positive-y direction. A force on the conductor will be in the:
positive-z direction (out of the screen)
negative-z direction (into the screen)
negative-y direction
negative-x direction
Answer:
Positive Z direction (out of screen)
Explanation:
Magnetic force is given by [tex]F = il \wedge B[/tex]. A quick way to gauge the components is to put your left middle finger on the direction of the current, your index on the direction of the magnetic field, and the thumb gives you the answer you want.
Answer:
positive-z direction (out of the screen)
Explanation:
As we know that length vector of the current carrying conductor is always along the direction of conventional current
So here direction of length vector will be + X direction
magnetic field is along + Y direction
now we will have
[tex]\vec F = I(\vec L \times \vec B)[/tex]
now we will have
[tex]\vec F = ILB(\hat i \times \hat j)[/tex]
[tex]\vec F = ILB\hat k[/tex]
so magnetic force will be along +Z direction (out of the screen)
The solubility of most solids _______ as temperatures decreases.
Answer:
The solubility of most solids decrease as temperatures decreases.
Hope this helps :)
Have a great day !
5INGH
Explanation:
A puck moves 2.35 m/s in a -22° direction. A hockey stick pushes it for 0.215 s, changing its velocity to 6.42 m/s in a 50.0° direction. What was the direction of the acceleration?
The puck starts with velocity vector
[tex]\vec v_0=\left(2.35\dfrac{\rm m}{\rm s}\right)(\cos(-22^\circ)\,\vec\imath+\sin(-22^\circ)\,\vec\jmath)=(2.18\,\vec\imath-0.880\,\vec\jmath)\dfrac{\rm m}{\rm s}[/tex]
Its velocity at time [tex]t[/tex] is
[tex]\vec v=\vec v_0+\vec at[/tex]
Over the 0.215 s interval, the velocity changes to
[tex]\vec v=\left(6.42\dfrac{\rm m}{\rm s}\right)(\cos50.0^\circ\,\vec\imath+\sin50.0^\circ\,\vec\jmath)=(4.13\,\vec\imath+4.92\,\vec\jmath)\dfrac{\rm m}{\rm s}[/tex]
Then the acceleration must have been
[tex]\vec v=\vec v_0+(0.215\,\mathrm s)\vec a\implies\vec a=\dfrac{\vec v-\vec v_0}{0.215\,\rm s}=(9.06\,\vec\imath+27.0\,\vec\jmath)\dfrac{\rm m}{\mathrm s^2}[/tex]
which has a direction of about [tex]71.4^\circ[/tex].
The direction of the acceleration is determined by the direction of the change in velocity. This would be calculated by subtracting the initial velocity vector from the final velocity vector. However, the calculation would involve complex trigonometric functions.
Explanation:In order to find the direction of the acceleration, we need to calculate the direction of the change in velocity and that direction will be the direction of the acceleration.
To calculate the change in velocity, we subtract the initial velocity from the final velocity: (6.42 m/s, 50.0°) - (2.35 m/s, -22°). We then calculate the angle of this vector which represents the change in velocity, and hence the direction of acceleration.
However, this calculation is not straightforward because it involves vector operations and would require the use of trigonometric functions to solve. This is due to the fact that velocity is a vector, meaning it has both a magnitude and a direction. Consequently, this becomes a multi-step process involving trigonometry and physics.
Learn more about Direction of Acceleration here:https://brainly.com/question/33720661
#SPJ2
The nucleus contains protons and neutrons. Being positively charged, the protons repel each other. The nucleus should fly apart due to the repulsive force. Yet, the nuclei of most atoms are stable - explain. (5 points)
this is due to the existence of other forces called the strong nuclear forces that overcomes the repulsion forces between the protons and keeps the nucleons holding to each other also there is a type of energy that is called the nuclear binding energy and this energy also works on binding the components of the nucleus together
The atomic nucleus remains stable despite the repulsion between protons due to the strong nuclear force which is much stronger than the electromagnetic force and acts within a very short range in the nucleus. Further stability is ensured by the conversion of the mass defect into binding energy, and programming of specific numbers of protons and neutrons.
Explanation:The stability of an atomic nucleus despite the repulsion between positively charged protons is due to a force called the strong nuclear force. This force is significantly stronger than the electromagnetic force causing the repulsion, approximately 100 times stronger, and acts between nucleons (protons and neutrons) within a very short range in the nucleus. That's why protons do not just fly apart as we might expect due to their positive charges. Furthermore, a phenomenon called mass defect, according to Einstein's mass-energy equivalence equation, E = mc², also plays into the nuclear stability. The mass of a nucleus is less than the total mass of its individual protons and neutrons, the 'missing' mass has been converted into the binding energy that holds the nucleus together.
However, not all combinations of protons and neutrons result in a stable nucleus. There are patterns to the stability: nuclei with even numbers of protons or neutrons, or those with 'magic numbers' of nucleons, are especially likely to be stable. Also, it is observed that for higher masses, stable nuclei tend to have more neutrons than protons to reduce the Columb repulsion between protons.
Learn more about Nuclear Stability here:https://brainly.com/question/13751780
#SPJ6