Which statement best describes copper?
A. It has a low resistance and prevents charges from moving freely.
B It has a high resistance and allows charges to move freely.
C. It has a high resistance and prevents charges from moving freely.
D. It has a low resistance and allows charges to move freely

Answers

Answer 1

Answer:

D. It has a low resistance and allows charges to move freely.

Explanation:

The high conductivity of copper allow charges to move freely without the need of too much force. The conductivity decreases with increase in resistance. Low resistance also means less heating of the conductors. This property of copper makes it ideal for use in the manufacture of electric cables and conductors for various gadgets.

Answer 2

The correct description of copper is that it has a low resistance and allows charges to move freely, making it a good conductor of electricity.

The statement that best describes copper is D. It has a low resistance and allows charges to move freely. Copper is a good conductor of electricity due to the presence of conduction electrons, which are the outermost electrons that are only loosely bound to the nucleus.

This arrangement allows these electrons to move easily from one atom to another within the material, facilitating the flow of electric charge. Copper's relative low electrical resistance makes it ideal for use in electric wiring, contributing to minimal energy dissipation in electrical systems.


Related Questions

which statement best describes the big bang theory?
A.The universe began as a ball of energy and has been collapsing since its formation.

B.The universe began as a cloud of dust and gas and has been expanding since its formation.

C.The universe began at an outer boundary has been collapsing since its formation.

D.The universe began at a single point and has been expanding since its formation.

Answers

Answer:

the universe began at a single point and has been expanding since its formation

The statement best describes the big bang theory is the universe began at a single point and has been expanding since its formation. The correct option is D.

What is big bang?

The big bang is the theory which explains that how the universe began. It says that the universe began with just a single point. It went on expanding and stretched to grow as large as possible. It is still now expanding.

The big bang consist of fully dark matter, interstellar gases or dust. The big bang is increasing just because in universe there is abundant of hydrogen and helium.

The radiations come from the big bang.  These rays are also called as cosmic wave. This big bang is still on it way of expanding more.

Thus, the statement best describes the big bang theory is the universe began at a single point and has been expanding since its formation.

Learn more about big bang.

brainly.com/question/18297161

#SPJ2

A 1650-kg car is traveling at 38.0 m/s. how fast must a 91.0-kg bicycle and rider be traveling to have the same kinetic energy as the car?

Answers

Answer:

161.7 m/s

Explanation:

The kinetic energy of the car is given by

[tex]K=\frac{1}{2}mv^2[/tex]

where

m = 1650 kg is the mass of the car

v = 38.0 m/s is the speed

Substituting,

[tex]K=\frac{1}{2}(1650 kg)(38.0 m/s)^2=1.19\cdot 10^6 J[/tex]

The bycicle + rider has the same kinetic energy; moreover, their combined mass is

m = 91.0 kg

So, the speed of the bike should be

[tex]v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(1.19\cdot 10^6 J)}{91.0 kg}}=161.7 m/s[/tex]

Bicycle has a speed of 161.7 m/sec.

Given :

Mass of car = 1650 Kg

Speed = 38 m/sec

Mass of bicycle = 91 Kg

Bicycle and car travelling have same Kinetic Energy.

Solution :

Kinetic energy of the car is,

[tex]\rm KE = \dfrac{1}{2}mv^2[/tex]

[tex]\rm KE = \dfrac{1}{2}\times 1650 \times 38[/tex]

[tex]\rm KE_c_a_r = 1.19\times 10^6\; J[/tex]

Given that both have same kinetic energy. Therefore,

[tex]\rm KE_c_a_r = KE_b_i_c_y_c_l_e[/tex]

[tex]\rm 1.19\times10^6 = \dfrac{1}{2}\times91\times u^2[/tex]

[tex]\rm u = 161.7 \; m/sec[/tex]

Bicycle has a speed of 161.7 m/sec.

For more information, refer the link given below

https://brainly.com/question/15764612?referrer=searchResults

As more resistors are added in parallel across a constant voltage source, the power supplied by the source

a. decreases.
b. does not change.
c. increases.

Answers

As more resistors are added in parallel across a constant voltage source, there are more paths for current to take.  So more current dribbles out of the source, and the total current supplied by the source increases.

The power supplied by the battery is (voltage) x (current).  So if the voltage is constant and the current increases, the power being supplied must also increase.

choice-c

Energy transfer by convection is primarily restricted to

Answers

Answer: Fluids

Convective heat transfer occurs only in fluids, through the movement of groups of molecules that make up the medium.

Being this molecular movement, related to the properties of the fluid that change with temperature.

This means that convection occurs when the hottest parts of a fluid ascend to the coldest zones, generating a continuous circulation of the fluid (better known as convective current) transmitting heat to the cold zones by decreasing the density caused by the increase in temperature.

Final answer:

Convection, a method of energy transfer, is predominantly restricted to fluids (liquids and gases), as it depends on particle movement and density changes that cause a circulatory motion, facilitating heat transfer.

Explanation:

Energy transfer by convection is primarily restricted to fluids, which includes both liquids and gases. This is due to the fact that convection relies on the movement of particles within a substance. More specifically, convection occurs when warmer, less dense parts of a fluid rise, displacing cooler, denser parts which sink. This creates a circular motion of fluid, known as a convective current, and allows for heat to be distributed throughout the whole fluid.

Examples of convection include a boiling pot of water where the hot water at the bottom rises to the top, or the warmth you feel when standing near a radiator. The warm air around the radiator rises and circulates around the room, spreading heat.

Learn more about Convection here:

https://brainly.com/question/33283389

#SPJ6

The tendency of water molecules to stick together is referred to as

Answers

Answer:

cohesion

Explanation:

Essentially, cohesion and adhesion are the "stickiness" that water molecules have for each other and for other substances. You can see this in the picture of pine needles. The water drop is composed of water molecules that like to stick together, an example of the property of cohesion.

The tendency of water molecules to stick together with each other is known as cohesion.

What is the matter?

Anything which has mass to keep the same when comparing the hardness of the solid and occupies space is known as matter, mainly there are four states of matter solid liquid gases, and plasma.

These different states of matter have different characteristics according to which they vary their volume and shape.

Water belongs to the liquid state of matter which has many inherent properties, one of them is the cohesive nature of the water.

Cohesion is the property of the substance by which similar particles stick with each other while adhesion is the property by which molecules of different materials stick with each other.

The formation of the water droplets is one of the best examples to understand the cohesion property of the materials, while the sticking of mercury molecules on the surface of the glass demonstrates the adhesion property of materials.

Thus, the tendency of water molecules to stick together is referred to as cohesion.

Learn more about the matter here

brainly.com/question/9402776

#SPJ6

A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by, what is the total distance traveled by the red spot?a.) 4Ab.) 1/2 Ac.) 1/4 Ad.) Ae.) 2A

Answers

Since it's a transverse wave, a particle on the string moves left and right as the wave passes by, but the particle doesn't travel forward or backward at all.

So the little red dot moves 'A' to the left, then 'A' back to the center, then 'A' to the right, then 'A' back to the center again.

All together, the red dot moves a total distance of 4A . (choice 'a')

The total distance traveled by the red spot in one cycle is equal to 2A. Therefore, option (e) is correct.

What is a transverse wave?

Transverse waves are described as waves the displacement of the particle is perpendicular to the direction of propagation of the wave. Examples of transverse waves involve ripples on the surface of the water, secondary waves of an earthquake, waves on a string, human waves, ocean waves, and Electromagnetic waves.

A longitudinal wave can be defined as the displacement of the particle parallel to the direction of the propagation. Sound waves in the air, primary waves of an earthquake are longitudinal waves.

A transverse wave of the particle of the medium traveling around its mean position in a direction that is the opposite of the propagating direction. Transverse waves are produced only on the surface of liquids and solids.

Learn more about Transverse waves, here:

brainly.com/question/13863548

#SPJ5

Solstice that occurs in december in the southern hemisphere is called

Answers

Answer: Southern Summer Solstice

Explanation:

Solstices are astronomical events that occur twice a year (June and December), in which the Sun reaches its highest or lowest apparent height in the sky, and the duration of the day or night are the maximum of the year, respectively. This is because the Sun reaches the maximum north or south declination with respect to the terrestrial equator.  

In this case we will talk about the december solstice in the southern hemisphere, which occurs regularly around December 21st and marks the beginning of summer in this hemisphere and the beginning of winter in the northern hemisphere.  

During this season of the year the days are longer than the nights, and as we get closer to the South Pole, we will have more hours of sunlight.

Suppose a spacecraft orbits the moon in a very low, circular orbit, just a few hundred meters above the lunar surface.The moon has a diameter of 3500 km , and the free-fall acceleration at the surface is 1.60 m/s^2.How much time in minutes does it take for the spacecraft to complete one orbit?

Answers

Answer: 109.522 min

Explanation:

The acceleration due gravity (free-fall acceleration) [tex]g=[/tex] of a body is given by the following formula:

[tex]g=\frac{GM}{r^{2}}[/tex]   (1)

Where:

[tex]G=6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}[/tex] is the gravitational constant

[tex]M[/tex] the mass of the body (the moon in this case)

[tex]r[/tex] is the distance from the center of mass of the body to its surface. Assuming the moon is a sphere with a diameter [tex]d=3500km[/tex], its radius is [tex]r=\frac{d}{2}=1750km=1750(10)^{3}m [/tex]

If the value of [tex]g[/tex] is given: [tex]g=1.60m/s^{2}[/tex] we can find the mass of the moon with equation (1):

[tex]M=\frac{gr^{2}}{G}[/tex]   (2)

[tex]M=\frac{(1.60m/s^{2})(1750(10)^{3}m)^{2}}{6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}}[/tex]   (3)

[tex]M=7.34(10)^{22}kg[/tex]   (4)

Now, according to the 3rd Kepler's Law, there is a relation between the orbital period [tex]T[/tex] of a body (the spacecraft in this case) orbiting a greater body (the moon) in space with the size [tex]r[/tex] of its orbit.

[tex]T^{2}=\frac{4\pi^{2}}{GM}r^{3}[/tex]    (5)

Substituting the known values and the calculated mass of the moon in (6), we can find the period of the orbit of the spacecraft around the moon:

[tex]T=\sqrt{\frac{4\pi^{2}}{GM}r^{3}}[/tex]    (6)

[tex]T=\sqrt{\frac{4\pi^{2}}{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(7.34(10)^{22}kg)}(1750(10)^{3}m)^{3}}[/tex]   (7)

Finally:

[tex]T=6571.37619s=109.522 min[/tex]  

Final answer:

Given the moon's diameter and the acceleration due to gravity at its surface, a spacecraft in low, circular orbits roughly 115.2 minutes to complete one orbit, using the equations of circular motion.

Explanation:

To calculate the time it takes for the spacecraft to complete one orbit, you need to know the speed of the craft, which is determined by the gravitational force between the Moon and the spacecraft. This force creates the centripetal acceleration that keeps the spacecraft in its circular orbit.

The formula to calculate the speed (v) in a circular orbit is v =  √(g*r), where g is the acceleration due to gravity (1.6 m/s^2) and r is the radius of the orbit. Because the spacecraft is very close to the lunar surface, the radius is approximately the radius of the moon, which is 1.75 x 10^6 m (half the diameter).

Then, the orbital period (time for one complete orbit) can be calculated using the formula T = 2πr/v. Substituting known values and calculating, it takes approximately 1.92 hours, or 115.2 minutes, for the spacecraft to complete one orbit.

Learn more about Orbital Period here:

https://brainly.com/question/13207632

#SPJ3

Explain dalton's law of partial pressures and how it relates to the collection of gas by water displacement.

Answers

Answer:

12

Explanation:

(6 x 1) 2

Why does water have a high surface tension

Answers

Answer:

The water molecules attract one another due to the water's polar property. The hydrogen ends, which are positive in comparison to the negative ends of the oxygen cause water to "stick" together. This is why there is surface tension and takes a certain amount of energy to break these intermolecular bonds.

Explanation:

Please mark brainliest

A large cruise ship of mass 7.00 ✕ 107 kg has a speed of 11.6 m/s at some instant. (a) What is the ship's kinetic energy at this time? (b) How much work is required to stop it? (Give the work done on the ship. Include the sign of the value in your answer.) (c) What is the magnitude of the constant force required to stop it as it undergoes a displacement of 3.00 km?

Answers

(a) [tex]4.7\cdot 10^9 J[/tex]

The kinetic energy of an object is given by

[tex]K=\frac{1}{2}mv^2[/tex]

where

m is the mass of the object

v is its speed

For the ship in this problem,

[tex]m=7.00 \cdot 10^7 kg[/tex] is the mass

[tex]v = 11.6 m/s [/tex] is the speed

Substituting,

[tex]K=\frac{1}{2}(7.00 \cdot 10^7 kg)(11.6 m/s)^2=4.7\cdot 10^9 J[/tex]

(b) [tex]-4.7\cdot 10^9 J[/tex]

The work done on the ship is equal to the change in kinetic energy of the ship; so we have:

[tex]W = K_f - K_i[/tex]

where

W is the work done

Kf is the final kinetic energy of the ship, which is zero since it comes to rest

Ki is the initial kinetic energy of the ship, which is [tex]4.7\cdot 10^9 J[/tex]

Substituting into the formula,

[tex]W=0-4.7\cdot 10^9 J=-4.7\cdot 10^9 J[/tex]

and the sign is negative because the force used to stop the ship acts against the direction of motion of the ship, in order to slow it down.

(c) [tex]1.57\cdot 10^6 N[/tex]

The work done by the force applied to stop the ship is

W = Fd

where

W=-4.7\cdot 10^9 J is the work done

F is the force applied

d = 3.00 km = 3000 m is the displacement of the ship

Solving the equation for F, we find the force:

[tex]F=\frac{W}{d}=\frac{-4.7\cdot 10^9 J}{3000 m}=-1.57\cdot 10^6 N[/tex]

and ignoring the negative sign, the magnitude of the force is

[tex]1.57\cdot 10^6 N[/tex]

The law of reflection states that the angle of incidence and the angle of reflection are always A: greater than 45 degrees each B: less than 45 degrees each C: equal in measure D: different in measure

Answers

Answer:

It'll be, C.) equal in measure.

The law of reflection states that the angle of incidence and the angle of reflection are always C: equal in measure.

What are the three laws of reflection?

Incoming rays, normal rays, and reflected rays are all in the same plane. Changing the direction of the incident ray changes the angle of the plane. Again, the incident, normal, and reflected rays are all in the same plane.

Set of optics: When light hits a flat surface, it is reflected so that the angle of reflection is equal to the angle of incidence, placing incident, reflected, and vertical rays on the surface. ..

Law of light reflection (i) The incident rays, normals, and reflected rays are all in the same plane. (Ii) The angle of incidence is equal to the angle of reflection.

Learn more about the law of reflection here: https://brainly.com/question/46881

#SPJ2

What would be the radius of the earth if it had its actual mass but had the density of nuclei?

Answers

Final answer:

If the Earth had the density of a nucleus, its radius would be only about 200 meters compared to the actual radius of approximately 6.4 x 10^6 meters.

Explanation:

Protons and neutrons, collectively called nucleons, are packed together tightly in a nucleus. With a radius of about 10-15 meters, a nucleus is quite small compared to the radius of the entire atom, which is about 10-10 meters. Nuclei are extremely dense compared to bulk matter, averaging 1.8 × 1014 grams per cubic centimeter. If the earth's density were equal to the average nuclear density, the earth's radius would be only about 200 meters (earth's actual radius is approximately 6.4 x 106 meters, 30,000 times larger).

What is the magnification of a real image if the image is 10.0 cm from a mirror and the object is 50.0 cm from the mirror ? Use the equation m=-di/do.
A. -5.0
B. 5.0
C. 0.20
D. -0.20

Answers

Answer:

D

Explanation:

m = -di/do

Given:

di = 10.0 cm

do = 50.0 cm

Find: m

m = -(10.0) / (50.0)

m = -0.200

The magnification of a real image is -0.20

Image from a mirror = 10 cm

Object from the mirror = 50 cm

What is magnification?

        The process of enlarging the apparent size of the object is called

magnification.

Here, the formula is given as

                             m = - di / d₀

   m - magnification

   di - distance of the image

   do - distance of the object

                             m = - 10 / 50

                                 =  - 0.20

Hence, Option D is the correct answer.

Learn more about the magnification,

https://brainly.com/question/20368024

#SPJ2

which image illustrates diffraction

Answers

Answer:

I think it is C

Explanation:

I think C because it is the one. I might be wrong but I helped and your welcome if you thanking me.

Answer:

Figure C

Explanation:

Here different figure represents different situations

Figure A

it represents the situation of reflection of light in which light bounce back into the same medium after reflecting by a surface

Figure B

It show refraction of light in which light will bend from its path when light travels from one medium to other medium

Figure C)

here we can see that a plane wavefront incident on the small opening and after that it converts into spherical wavefront. So when light passes through a small opening then it gets diverge at the corners of the opening which is known as diffraction

Figure D

it is just the incident of light ray which get completely absorbed by the medium.

Given the relatively modest number of calories burned by anything but the most vigorous activities, why can people consume over 2,000 kilocalories a day, yet maintain a healthy body weight?View Available Hint(s)Given the relatively modest number of calories burned by anything but the most vigorous activities, why can people consume over 2,000 kilocalories a day, yet maintain a healthy body weight?Not all calories are created equal, so a person who consumes 2,000 kilocalories of sugar- and fat-laden processed food will gain weight, whereas a person who consumes 2,000 calories of nonprocessed, low-carbohydrate food will not.People really should exercise vigorously for one to two hours per day.They can't, and this has led to a problem of obesity in the United States.Most of the energy consumed in food is spent maintaining the body's functions, so only a fraction of food energy needs to be burned in exercise.

Answers

Answer:

Much of the caloric intake is used to maintain normal body functioning -- heart rate, respiration, muscle contraction, etc..  Therefore, only some of the calories are actually stored as fuel for later use.

Explanation:

In the question, there is a comment to indicate that 2,000 of low-carbohydrate food will not cause weight gain.  This is not exactly accurate.  Weight gain depends upon what is taken in (calories in food) and what is expended (calories in activity).

There has to be moderation in what is consumed.  Consuming all fats or all carbs is not the answer.  Yes, fat has more calories per gram (9) than does carbohydrates (4.5), but it should be noted that if you take in too many calories in carbs, they will be converted and stored as fat.

A soccer player is running at a constant speed of 1.8 m/s when she speeds up in the same direction with an acceleration of 0.50 m/s2. What will be her final speed if she accelerates for a total distance of 10.0 meters?

Answers

Answer:

3.6 m/s

Explanation:

v² = v₀² + 2a(x - x₀)

v² = (1.8 m/s)² + 2 (0.50 m/s²) (10.0 m)

v = 3.6 m/s

Answer:

Final speed, v = 3.63 m/s

Explanation:

It is given that,

Initial speed of the player, u = 1.8 m/s

Acceleration of the player, [tex]a=0.5\ m/s^2[/tex]

Distance, s = 10 m

We need to find the final speed of the player. Let it is given by v. Using third equation of motion as :

[tex]v^2-u^2=2as[/tex]

[tex]v^2=2as+u^2[/tex]

[tex]v^2=2\times 0.5\times 10+(1.8)^2[/tex]

v = 3.63 m/s

So, the final speed of the player is 3.63 m/s. Hence, this is the required solution.

An object weighing 20 n moves horizontally toward the right a distance of 5.0 m. What is the work done on the object by the force of gravity?

Answers

Answer:

Zero

Explanation:

The work done by a force on an object is given by:

[tex]W = Fd cos \theta[/tex]

where

F is the magnitude of the force

d is the displacement of the object

[tex]\theta[/tex] is the angle between the direction of the force and the displacement

From the formula, we see that if the force and the displacement are perpendicular to each other, then the cosine term is zero, so the work done is zero.

In this problem, the force is the force of gravity, which pulls downward, while the displacement is horizontal (in the right direction): so, the force and the displacement are perpendicular to each other, and so the work done by gravity is zero.

Final answer:

The work done by gravity on an object moving horizontally is zero because the displacement is perpendicular to the direction of the gravity force.

Explanation:

The student wants to know the work done on an object by the force of gravity as it moves horizontally. The work done by a force on an object is the product of the force and the distance moved in the direction of the force. In this case, the object is moving horizontally, perpendicular to the direction of the force of gravity, which acts downwards.

Since work done is the product of force and displacement in the direction of the force, and here the displacement is perpendicular to the force of gravity (represented by the weight), the work done is zero. This is because the angle between the direction of the force and direction of displacement is 90 degrees, and the cosine of 90 degrees is zero, making the entire product of force and displacement zero.

This is in line with the concept that gravity does zero work when the displacement is horizontal. In essence, for a horizontal movement, no work is done by gravity.

Learn more about Work by Gravity here:

https://brainly.com/question/33720534

#SPJ12

What phenomenon would cause you to see an emission of a specific wavelength of light from metal salts during the flame test?

Answers

Answer: excitement of the electrons caused by the increased temperature

The the flame test is used to identify some inorganic chemical elements, by means of the emission of light by the phenomenon of atomic excitation by the increase in temperature.

In this sense, when an atom is excited, it means that it has left its ground state (in which each electron occupies its place in its orbit, around the nucleus), when this happens some electron jumps out of the orbit it occupied in its fundamental state to an outer orbit, further away from the nucleus and then return to the ground state, emitting in the form of light the energy received.

To understand it better:

An excited electron is an unstable electron, and when passing from one orbit to another, it produces light of a specific wavelength (color) that depends on the amount of energy the electron loses.

This is how the color of the light emitted in the flame is related to a characteristic chemical element.

What is the magnitude of the gravitational force acting on the earth due to the sun?

Answers

Answer: [tex]3.524(10)^{22}N[/tex]

Explanation:

According to Newton's law of Gravitation, the force [tex]F[/tex] exerted between two bodies of masses [tex]m1[/tex] and [tex]m2[/tex]  and separated by a distance [tex]r[/tex]  is equal to the product of their masses and inversely proportional to the square of the distance:

[tex]F=G\frac{(m1)(m2)}{r^2}[/tex]   (1)

Where:

[tex]G[/tex] is the Gravitational Constant and its value is [tex]6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}[/tex]  

[tex]m1=1.99(10)^{30}kg[/tex] is the mass of the Sun

[tex]m2=5.972(10)^{24}kg[/tex] is the mass of the Earth

[tex]r=1.50(10)^{11}m[/tex]  is the distance between the Sun and the Earth

Substituting the values in (1):

[tex]F=6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}\frac{(1.99(10)^{30}kg)(5.972(10)^{24}kg)}{(1.50(10)^{11}m)^2}[/tex]   (2)

Finally:

[tex]F=3.524(10)^{22}N[/tex]   This is the gravitational force acting on the earth due to the sun

The magnitude of the gravitational force acting on Earth due to the Sun is about  3.52 x 10^22 newtons, governing the Earth's orbit and the dynamics of the solar system.

The magnitude of the gravitational force acting on the Earth due to the Sun is approximately 3.52 x 10^22 newtons. This colossal force arises from Newton's law of universal gravitation, which states that every mass attracts every other mass with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. In this case, the mass of the Sun, which is about 1.989 x 10^30 kilograms, exerts an immense gravitational pull on the Earth, situated at an average distance of approximately 93 million miles (or 150 million kilometers).

The gravitational force is responsible for keeping the Earth in orbit around the Sun and governing the motion of all celestial bodies in the solar system. It is a fundamental force of nature that shapes the dynamics of our universe.

To learn more about gravitational, visit this link:

https://brainly.com/question/3009841

#SPJ12

Shiny reflective clothing allows a firefighter to get closer to a fire. What type of heat transfer is reduced because of this material?
A.Conduction
B.Insulation
C.Radiation
D.Convection

Answers

Answer:

radiation

Explanation:

Answer:

C.Radiation

Explanation:

dude above was correct, took the test on apex and got this one correct..ty

which statement correctly describes a hypothesis?
A.It is a result of an experiment
B.it cannot be tested
C.it is a conclusion based on scientific evidence
D.it is directly testable

Answers

Answer:

D

Explanation:

A hypothesis is pretty much what you think something is, what you think the solution is, with the little information that you already have. this can go on to be tested

Final answer:

Correct answer is option D. A hypothesis is a testable proposed explanation for a phenomenon, capable of being supported or refuted by scientific experiments or observations.

Explanation:

Within the realm of science, a hypothesis is a suggested explanation for a phenomenon that is based on evidence and can be tested through observation and experimentation. The key aspect of a hypothesis is its ability to be supported or refuted by experimental data.

So, the correct statement that describes a hypothesis is that it is directly testable (D). Contrary to a hypothesis that cannot be tested, which would not be a scientific hypothesis, a valid hypothesis must allow for the design of experiments or observations that could potentially demonstrate it to be false.

What do sound waves and infrared waves have in common

Answers

Answer: Both can transfer energy through matter

Explanation:

Sound waves (mechanical waves) and infrared waves (electromagnetic waves), both can transfer energy through matter. However, there is a huge diference between them:

Mechanical waves only propagate through matter and can not propagate in vacuum. This means, they necessarily need a medium to propagate.

On the other hand, electromagnetic waves can propagate  through matter and in vacuum, too. This means their propagation does not depend on the existence of a medium.

What is the definition of physical weathering?

Answers

Final answer:

Physical weathering refers to the process of rocks breaking down due to external conditions like temperature and water, without their chemical composition being altered. Examples include temperature changes causing cracks in rocks, and water freezing in rock cracks leading to their breakage.

Explanation:

Physical weathering, also known as mechanical weathering, is a concept in geography that describes the process of rocks breaking down into smaller pieces due to external conditions, without any change in their chemical composition. This occurs primarily due to temperature changes, water, wind, and biological activity.

For example, in the case of temperature changes, the rock can expand and contract causing it to crack and eventually break apart. This is often seen in desert environments where there is a large temperature difference between day and night. Similarly, water, when it gets into the cracks of the rock and freezes, expands, causing the rock to break apart. This process is known as freeze-thaw weathering and is commonly found in cold climates.

Learn more about Physical Weathering here:

https://brainly.com/question/33716850

#SPJ6

Final answer:

Physical weathering is the process of breaking down rocks into smaller pieces by physical forces like temperature changes and erosion, without any change in the rock's chemical composition. Factors like climate and biotic activity can significantly influence the rate and extent of physical weathering.

Explanation:

Physical weathering, also known as mechanical weathering, is a geological process where rock is broken down into smaller pieces by mechanical means, without any change in the chemical composition of the rock. This can occur through a variety of processes, including temperature changes, wind, water erosion, and biological activity. An example of physical weathering could be the process by which a mountain range is eroded by water and ice: the rocks are not chemically altered, but they are gradually worn down into smaller pieces due to the abrasive action of the moving water and ice.

Another important factor in physical weathering is the climate. Higher temperatures cause rocks to expand, and cooler temperatures cause them to contract. This expansion and contraction can cause stress in the rock that leads to cracking and breaking. Also, in areas of high moisture, water can seep into cracks in rocks and freeze, causing the cracks to widen and the rock to break.

Learn more about Physical Weathering here:

https://brainly.com/question/14426457

#SPJ6

The distance from the bottom of the objective lens to the surface of the slide is called the

Answers

Answer:

It's called the working distance .

The distance from the bottom of the objective lens to the surface of the slide is called the working distance, which decreases with higher magnification and requires careful focusing.

The working distance is the length of time between the objective lens's bottom and the slide's surface. This distance is critical in microscopy as it can affect the focus and resolution of the image being observed.

In general, as you increase the magnification by switching to a higher power objective lens, the working distance decreases. This means that there is less space between the objective lens and the specimen, resulting in a closer and more magnified view of the specimen.

However, a higher magnification also increases the risk of bringing the lens too close to the specimen, potentially damaging both the specimen and the lens if not handled carefully.

Therefore, when using high magnification, only minor adjustments should be made using the fine focus knob to avoid collision between the lens and the slide.

Which scientist is often called the “father of the atomic bomb” because of his work as the head of the manhattan project?

Answers

Answer:

J. Robert Oppenheimer

Explanation:

He led the Manhattan project and created the first nuclear bomb in WWII

Final answer:

J. Robert Oppenheimer is considered the 'father of the atomic bomb' for his leadership of the Manhattan Project, which developed the first nuclear weapons during World War II.

Explanation:

The scientist often called the “father of the atomic bomb” is J. Robert Oppenheimer because of his pivotal role as the head of the Manhattan Project. Oppenheimer was a leading theoretical physicist who, after seeing the power of the bomb, opposed the subsequent nuclear arms race. The Manhattan Project was a top-secret research and development project during World War II that produced the first nuclear weapons. Employing over 100,000 people, this project led to the successful detonation of the world's first atomic explosion in July 1945. Despite his involvement in the development of nuclear weapons, Oppenheimer had complicated feelings about their use and later became a proponent of controlling nuclear arms.

The decision to drop the atomic bomb was influenced by various complex factors, including the desire to bring a swift end to World War II and the fear that Nazi Germany might develop a bomb first, spurred by alarmed messages from scientists like Albert Einstein and Leo Szilard to President Roosevelt.

2 Points
What kind of simple machine is the shin bone in your leg?
O
A. Lever
O
B. Inclined plane
O
C. Pulley
O D. Wedge
SUBMIT​

Answers

Answer:

A. Lever

Explanation:

A  Lever is the kind of simple machine is the shin bone in your leg.

Hope this helps!

Feel free to ask if you have anymore questions!

Final answer:

The shin bone in your leg, also known as the tibia, acts like a lever in the context of simple machines. It helps create movement, with muscles providing the force, and joints serving as fulcrums.

Explanation:

The shin bone in your leg, also known as the tibia, is similar to a lever in the context of simple machines. In our bodies, bones, muscles, and joints work together to create movement. Muscles exert force, bones act as levers, and joints act as fulcrums. For instance, when you kick a ball, your shin bone acts as the lever; the joint at your knee serves as the fulcrum; and the muscles in your thigh and calf provide the force.

Learn more about shin bone here:

https://brainly.com/question/32477080

#SPJ2

A molecule must be nonpolar if the molecule1. is liner2. is neutral3. has ionic and convalent bonding4. has a symmetrical charge distribution

Answers

Answer:

4. has a symmetrical charge distribution

Explanation:

Symmetrical charge distribution in molecules results in the formation non-polar molecules.

For a symmetrical distribution of charge to occur, there must be a sort of sharing of electrons between two atoms. In the case where electrons are transferred, there won't be any need to distribute charges.

When electrons are shared between atoms with similar likeness for the electron, none of the two atoms pulls the electrons more to itself. The electrons are shared evenly and symmetrically between the two atoms. This leaves no charge separation on any of the atom. Therefore, the dipoles in one direction cancels out the dipoles in another direction and this leaves no charge.

This makes the molecule non-polar.

Answer:

has a symmetrical charge distribution

Explanation:

A symmetrical charge distribution means the atoms have the same electronegativity or they are a molecule with the same atoms in a regular pattern around the center is in CH4, identical along a central line.

What metal is most commonly used as a conductor?

Answers

Answer:

Copper

Explanation:

Copper is the most popular material used for wires because it is a quality conductor of electrical current

Which of the following represents an upright image?
A. -do
B. +m
C. -m
D. +do

Answers

Answer:

B. +m

Explanation:

The magnification of an image is defined as the ratio between the size of the image and of the object:

[tex]m = \frac{y'}{y}[/tex]

where we have

y' = size of the image

y = size of the object

There are two possible situations:

- When m is positive, y' has same sign as y: this means that the image image is upright

- When m is negative, y' has opposite sign to y: this means that the image is upside down

Therefore, the correct option representing an upright image is

B. +m

Final answer:

In optics, a positive magnification represents an upright image. Option B: +m represents an upright image.

Explanation:

In optics, an upright image is represented by a positive magnification (+m). When the magnification is positive, it indicates that the image is upright, meaning it has the same orientation as the object.

For the options given, option B: +m represents an upright image.

A positive magnification (+m) indicates that the image is upright. On the other hand, the distance from the object to the mirror or lens (often represented by do or d₁), is concerned with the real versus virtual nature of the image; the sign does not directly indicate the image's orientation. Based on this, the answer which represents an upright image is B. +m.

Other Questions
The composition of a function and its inverse is always __________. which of the following values of X is not in the domain of f(x)=x+3/x-7 Which of these is one of the nitrogenous bases in DNA?A. ProlineB. LeucineC. GlycineD. Thymine 15 Points; will give brainliestWhat youth club or community organization have you participated in or volunteered at? What impact or benefits did your participation have on your professional development? What are some of the impacts of humans on the earth? Becky is using the expression 2z + 3 to represent the number of chairs in her classroom. There are twice as many chairs as tables, and there are three extra chairs in the back. What does z represent? The number of chairs. The number of tables. The number of chairs at tables. The number of chairs and tables How many chromosomes are in human Which pair of elements is most apt to form a molecular compound with each other? (a) sulfur, fluorine (b) potassium, lithium (c) aluminum, oxygen (d) barium, bromine (e) magnesium, iodine Can someone plz give me the answer for this question? first operation to solve 2x + 3 = 11 cold syrup flows sluggishly because of?? France might be classified as which kind of nation?GlobalCoreSemi-peripheralPeripheral Position vs TimeCalculate the slope of the line on the graph using theformulaThe slope of the line is____m/s It is a because that right The map below shows the location of 3 houses where you had to do lawn work today. Your truck gets 8 miles per gallon of gasoline, so you chose the shortest route from your house to the jobs and then back home, as shown below. If gas costs $1.52 per gallon, what was the total cost of the gas that you used today? High Pacific islands are formed by _____.volcanic eruptionssand that forms soilshallow lagoonsunderwater mountain chains Give one example of a factor that can influence airflow resistance. The area of a parking lot is 1710 square meters. A car requires 5 square meters and a bus requires 32 square meters of space. There can be at most 180 vehicles parked at one time. If the cost to park a car is $2.00 and a bus is $6.00, how many buses should be in the lot to maximize income? Please help :( According to the Rational Root Theorem, the following are potential roots of f(x) = 6x4 + 5x3 - 33x2 12x + 20.Which is an actual root of f(x)?a) -5/2b) -2c) 1d) 10/3 On a coordinate grid Ming's house is located 2 blocks to the right and 5 blocks up from (0,0). Joe house is located 3 blocks to the right and 2 blocks down from Ming's house. What ordered pair describes the location of joe house?