Answer:
Flexion.
Explanation:
Flexion is the movement of bones that occur at sagittal plane. Flexion refers the bending or movement of a limb or join. Flexion allows the movement of hinge joint.
Flexion movement decreases the angle between the two bones. The knee flexion decreases the angle between the femur and tibia. The movement of elbow decreases the angle between the humerus and ulna.
Flexion is the movement that decreases the angle between articulating bones, bringing them closer together, like when you bend your arm at the elbow or knees.
Explanation:Flexion is the movement that decreases the angle between articulating bones, bringing them closer together, like when you bend your arm at the elbow or knees.
The movement that decreases the angle between articulating bones is called flexion. This is a common movement in many joints, such as the elbow or knee.
During flexion, the angle between the bones decreases, bringing them closer together. For example, bending your arm at the elbow when lifting something or bending your knees to squat are both examples of flexion.
Learn more about Flexion here:https://brainly.com/question/34814401
#SPJ6
The two hornlike processes that serve as attachment sites are the ________.
(Choose all that apply.)
a. Ramus
b. Greater cornua
c. Mental protuberance
d. Lesser cornua
e. Coronoid process
I think the answers are b. greater cornua and d lesser cornua
Final answer:
The hornlike processes that serve as attachment sites are the b. Greater cornua and d. Lesser cornua, which are part of the hyoid bone in the neck, distinct from the mandibular structures such as the ramus, mental protuberance, and coronoid process.
Explanation:
The two hornlike processes that serve as attachment sites are the b. Greater cornua and d. Lesser cornua. The greater and lesser cornua are prominent features of the hyoid bone, a horseshoe-shaped bone situated in the anterior midline of the neck between the chin and the thyroid cartilage. Unlike the other options, which include the ramus and coronoid process related to the mandible, and the mental protuberance related to the chin's projection, the greater and lesser cornua specifically refer to structures designed for muscle and ligament attachments that support the tongue and larynx.
Which of the following white blood cells is not capable of phagocytosis?
A. lymphocytes
B. neutrophils
C. eosinophils
D. monocytes
Answer:
Lymphocytes
Explanation:
White blood cells ( leukocytes) is one of the formed elements of blood that provides immunity and protection against the pathogens. Different types of leukocytes are eosinophils, basophils, monocytes, lymphocytes and neutrophils.
Lymphocytes are B cells and T cells of the immune system. B cells produce antibodies against the antigen and T cells kills the harmful cells of the body. by specific cell determinants.These cells are not capable of phagocyte the pathogen.
Thus, the correct answer is option (A).
Answer:
A. lymphocytes
Explanation:
Lymphocytes white blood cells is not capable of phagocytosis.
What would happen if the glucose concentration within the blood plasma became 1.2%? What direction would water flow (in or out of the cell) and what would happen to the cell shape?
Answer:
Water would flow out of the cells consequently leading to shrinking of the cells.
Explanation:
If the glucose concentration within the blood plasma became 1.2% then the blood plasma will be hypertonic with respect to the contents of the cells, that is the blood plasma will be highly concentrated compared to the cells. Water would flow out of the cells via osmosis (from their region of high concentration to their region of low of concentration) and thus the cells would shrink.
Final answer:
If blood plasma had a glucose concentration of 1.2%, cells would shrivel (crenation) because water would flow out to dilute the external hypertonic solution. Without a gradient, no net flow of glucose would occur; but with transport proteins, active transport could still move glucose.
Explanation:
If the glucose concentration within the blood plasma became 1.2%, this would create a hypertonic environment outside of the cells. In response to this, water would move out of the cells and into the plasma to balance the solute concentration. As a result, the cells would lose volume and shrivel, a process known as crenation. This is due to the semipermeable nature of the cell membrane, which allows water to move in and out to reach osmotic equilibrium.
In a scenario where the concentration of glucose is equal inside and outside the cell, we would not expect a net flow of glucose across the cell membrane in the absence of other forces. This is because the concentration gradient, which drives passive transport, does not exist. However, cell membranes often have glucose transport proteins that can facilitate the movement of glucose against or with its concentration gradient in an active transport process.
Availability of food: a. is dependent upon kin selection. b. can be highly variable, depending on season and rainfall. c. is determined by the alpha male only. d. is restricted to individuals in the dominant hierarchy.
Answer:
b. can be highly variable depending on season and rainfall.
Explanation:
What is LDL cholesterol? Explain in details.
Answer:
LDL Cholesterol
Explanation:
First of all, LDL stands for low-density lipoprotein and this specific protein is one of the five major groups of lipoprotein that help transport all the fat molecules.
For a person to be diagnosed with major depressive disorder, he or she must have experienced a significant depressive episode and depressed characteristics, suchas lethargy and hopelessness, for at least
Answer:
For at least 2 weeks
Explanation:
Final answer:
To be diagnosed with major depressive disorder, one must experience a total of five symptoms for at least two weeks, including feeling down or depressed and experiencing anhedonia.
Explanation:
To receive a diagnosis of major depressive disorder, one must experience a total of five symptoms for at least two weeks; these symptoms must cause significant distress or impair normal functioning, and they must not be caused by substances or a medical condition. At least one of the two symptoms mentioned above must be present, plus any combination of the following symptoms (APA, 2013):
Feeling down or depressedExperiencing anhedonia-loss of interest or pleasure in things that one typically enjoysSignificant weight loss or gainInsomnia or hypersomniaPsychomotor agitation or retar-dationFatigue or loss of energyFeelings of worth-lessness or excessive guiltDiminished ability to think or concentrateRecurrent thoughts of de-ath or sui-cidal ideationWhat is the purpose of the pericardial sac?
Answer:
The main purpose of pericardial sac is the fixation of heart at mediastinum, protection and lubrication of heart.
Explanation:
Pericardial sac is also known as pericardium and contains heart and large vessels. Two main layers of pericardium are fibrous pericardium and serous pericardium.
Pericardial sac secretes the fluid that provide lubrication and reduces the friction of heart. The sac fixes the position of the heart and limits the heart movement. The pericardial sac also reduces the excessive dilation of heart during acute volume overload.
Which statement is true?
Stomata, when closed, allow CO2 to diffuse into plants. Stomata are important in terrestrial plants because they allow CO2 to diffuse into the plant. Stomata are not important in algae because they do not need CO2. Stomata are important in terrestrial plants because they allow the roots to absorb water and nutrients from the soil.
Answer:
The 3rd answer that they allow the roots to absorb water & nutrients from the soil.
Compare and contrast mitosis and meiosis in terms of where and when they occur and their products.
Answer:
Mitosis: Occurs in somatic cells during growth, development and healing. Produces two genetically identical daughter cells from one parent cell.
Meiosis: Occurs in germ cells during gamete formation for sexual reproduction.
Produces genetically different four daughter cells from one parent cell.
Explanation:
Mitosis is the cell division that occurs during growth and healing process in somatic cells. It gives rise to two diploid daughter cells from one diploid parent cell. The daughter cells are genetically identical to the parent cell.
Meiosis is the reductional cell division and occurs in germs cells for gamete formation. It forms four haploid daughter cells from one diploid parent cell. The daughter cells also carry some new gene combinations.
The structural unit of compact bone is the
Answer:
the answer would be Osteon!
The microscopic structural unit of compact bone is called an osteon, or Haversian system.
Hope this helps!
The structural unit of compact bone is the osteon or Haversian system. It is a cylindrical structure consisting of mineralized matrix and osteocytes maintained by capillaries. The osteon's design allows it to provide strength and support to the skeletal system.
Explanation:The structural unit of compact bone is the osteon, also referred to as the Haversian system. The osteon is a cylindrical structure filled with mineralized matrix and living osteocytes maintained by capillaries in the Haversian canal. Compact bone is arranged in concentric rings known as lamellae. Within these lamellae are small spaces called lacunae that house osteocytes, the bone cells that maintain the bone matrix.
Imagine the osteon like a tiny, densely packed straw within the bone. This structure makes the bone highly resistant to bending and twisting forces, thus providing the skeletal system with its strength and support.
Learn more about Structural unit of compact bone here:
https://brainly.com/question/33442304
#SPJ12
Name the calf muscle.
Answer:
The calf muscle
Explanation:
U said name the calf muscle
Which of the following is NOT a muscle of respiration?
a. internal intercostals
b. erector spinae
c. diaphragm
d. external intercostals
Answer:
The erector spinae is NOT a muscle of respiration
Erector spinae the following is not a muscle of respiration. The correct option is B.
Thus, One of the core and paraspinal muscles, the erector spinae (ES) comes from the erector spinae aponeurosis (ESA) and is a big, superficial muscle that is located right under the thoracolumbar fascia.
With a proximal attachment on the sacrum and the spinous processes of the lumbar vertebra.
The ESA is a common aponeurosis that fuses with the thoracolumbar fascia.
Thus, Erector spinae the following is not a muscle of respiration. The correct option is B.
Learn more about Erector spinae, refer to the link:
https://brainly.com/question/31286455
#SPJ6
Why are tendons and ligaments difficult to heal?
Cpr stands for cardiopulmonary resuscitation. true or false'
CPR is an acronym for cardiopulmonary resuscitation.
This means that this statement is...
True!
Hope this helped!
~Just a girl in love with Shawn Mendes
Yes, CPR stands for Cardiopulmonary Resuscitation. It is an emergency procedure involving chest compressions and artificial respiration to maintain the flow of oxygen-rich blood to the brain. Proper training is crucial for its correct application.
Explanation:The statement you have made is true. CPR does indeed stand for Cardiopulmonary Resuscitation. This emergency life-saving technique consists of simultaneous chest compressions and artificial respiration. CPR is applied when someone's breathing or heartbeat has stopped, with the purpose of maintaining a flow of oxygen-rich blood to the brain until the patient's heartbeat and breathing can be restored.
Proper execution of CPR can increase the chance of survival substantially. The process consists of applying pressure with the flat portion of one hand on the sternum, in order to manually compress the blood within the heart enough to push a portion of it into the pulmonary and systemic circuits. This is especially important for the brain, as loss of blood flow can result in irreversible damage and death of neurons within minutes.
However, proper training is essential for correct application of CPR as incorrect technique can, in some cases, cause severe damage to the patient.
Learn more about CPR here:https://brainly.com/question/32374770
#SPJ6
Organ where defecation reflex is initiated
The answer is rectum
Which of the following are primary lymphoid organs?bone marrow and thymus appendix and spleen lymph nodes and tonsils spleen and thymus
Answer:
The correct answer is bone marrow and thymus
Explanation:
Primary lymphoid organs are bone marrow and thymus. Both organs consist of primary lymphoid tissue where B and T cells are produced.
Lymphocytes are also complete the early phases of maturation in the primary lymphatic organs in the body. In humans, B cells are generated and mature in the bone marrow. However, T cells are produced in the bone marrow and maturation takes place in the thymus.
Thus, the correct answer is the bone marrow and thymus gland.
Answer:
bone marrowthymusExplanation: Primary lymphoid tissues are responsible for the creation and maturation of white blood cells.
The primary lymphoid organs are:
bone marrowthymusHow do primates acquire food? a. through a limited set of highly specialized foraging strategies b. through the use of highly developed material culture c. through cooperation among kin groups, mostly by hunting d. through a wide variety of food-foraging strategies
Answer:
The correct option is D.
Explanation:
Primates refer to an order of animals that include: apes, monkeys, bush babies, etc. The group is very diverse and include up to 350 different species. The smallest primate is mouse lemur while the biggest is wild gorilla. Generally, primate have pairs of prehensile hands and feet, flexible shoulders and hips and well developed brains. They also have hands that are sensitive to touch. Primates have different foraging methods, which they use to acquire their foods.
Primates gain their food through a diverse range of food-foraging strategies, including using tools, cooperating with kin groups, and adapting their strategies based on available resources. Each species has developed its own unique ways of obtaining food based on its habitat and physical adaptations.
Explanation:Primates obtain their food through a wide variety of food-foraging strategies. These strategies are dependent on their environment, species-specific behaviors, and physical adaptations. For example, some primates such as chimpanzees and orangutans use tools like sticks or stones to obtain insects, honey, or nuts. They may also combine their foraging efforts in cooperation with kin groups.
There are others like the gorillas that predominantly eat vegetation and have developed strategies to find the best leaves, stems, and fruits in their habitat. Hunting of smaller mammals can also occur, primarily in some larger primates, but this is not the main strategy for most. Therefore, the versatility in foraging strategies of primates is what makes their diet varied and balanced.
Learn more about Primate Foraging Strategies here:https://brainly.com/question/33829369
#SPJ6
_______ is a brain-imaging technique that shows us precisely which areas of the brain are active at a particular moment in time; _______ is a technique that shows us the exact structure of each of the brain’s parts.
Answer:
see below
Explanation:
This question was answered here:
https://brainly.com/question/8257191
I hope this is helpful!
fMRI is a neuroimaging technique that maps brain activity in real-time by detecting changes in blood flow, while MRI provides detailed structural images of the brain.
The technique that shows us precisely which areas of the brain are active at a particular moment in time is functional magnetic resonance imaging (fMRI), which measures changes in blood oxygen levels and can map out active regions with a three-dimensional representation. In contrast, the technique that shows us the exact structure of each of the brain’s parts is magnetic resonance imaging (MRI), which takes images of the brain structure itself in cross-sectional "slices" without requiring any blood flow measurement.
fMRI is particularly useful for observing brain activity during specific tasks as it can indicate which parts of the brain are engaged based on increased blood flow and oxygen usage, though it provides only an indirect measure of neuron activity and has limited temporal resolution. Conversely, while MRI offers detailed pictures of brain structures, it does not indicate which areas are active during tasks.
Where in the lymph node do the t cells first encounter antigens presented by dendritic cells?
Answer:
Which of the following are functions of lymphoid tissue?
A. furnish an ideal surveillance vantage point for lymphocytes and macrophages
B. house and provide a proliferation site for neutrophils
C. house and provide a proliferation site for lymphocytes
D. A and C
Explanation:
its A
Answer:
deep in the cortex
Explanation:
the T cells encounter antigens presented by dendritic cells in the deeper part of the cortex. The cortex is the outer area of the lymph node
What is intramembranous ossification?
Answer:
Intramembranous ossification is a process in the human body by which the long bones, clavicles, flat bones, and the skull, are formed during the fetal development and also happens when there is a fracture of a bone.
In essence, this process determines the specification of mesenchymal stem cells into what will later on be known as osteoblasts and then osteocytes. Basically, what happens is that the mesenchymal cells, at a stimulus, begin to replicate and form what is known as a nidus. As these cells replicate, grow and specialize, they start to form the basic unit of bones, which are known as osteocytes. In order for this to happen, the mesenchymal cells will undergo several changes, and adaptations, to elongate, grow and then form the tissue. They will also become able to capture minerals, such as calcium, in order to finish their formation.
A small gap, called the _________ occurs at the synapse.
Answer:
Synaptic cleft
Explanation:
Synapse is the region where the impulse is conducted between two neurons. This occurs because two neurons are in maximum possible proximity to each other at the synapse.
However, there is no physical contact between two neurons even at the synapse. And a small space is present between two neurons at synapse. This gap is called the synaptic cleft. The neurotransmitters are released in this cleft.
The small gap at the synapse is called the synaptic cleft. It is where a neurotransmitter diffuses from the presynaptic element to the postsynaptic element, initiating a new electrical signal in the target cell.
Explanation:The small gap at the synapse is called the synaptic cleft. It is the space between the presynaptic element (the transmitting neuron) and the postsynaptic element (the receiving neuron or target cell). In this narrow junction, a neurotransmitter diffuses from the presynaptic element to the postsynaptic element, initiating a new electrical signal in the target cell.
The synaptic cleft is indeed a small gap or space that separates the presynaptic element (ending of the neuron sending the signal) from the postsynaptic element (receiving neuron or target cell). This gap is a crucial part of the synaptic junction.
In this gap, neurotransmitters are released from vesicles in the presynaptic neuron and diffuse across the synaptic cleft to bind with receptors on the postsynaptic neuron. This binding triggers a cascade of events that can lead to the generation of a new electrical signal in the postsynaptic cell, allowing the signal to be transmitted from one neuron to the next.
Understanding the function of the synaptic cleft is key to comprehending the process of synaptic transmission, which is fundamental to how nerve cells communicate with one another in the nervous system.
Learn more about synaptic cleft here:https://brainly.com/question/6346282
#SPJ12
The meiotic division in which the number of chromosomes is reduced is
a. meiosis I
b.meiosis II
Answer:
Meiosis I
Explanation:
Meiosis is the process of cell division in which the daughter cells contain half number of chromosomes as compared to the parent cell. Meiosis is also known as reduction division.
AnaphaseI of meiosis reduces the chromosome number to half. The homologous chromosomes are separated and daughter receives only half number of chromosomes. Meiosis II is similar to the process of mitosis.
Thus, the correct answer is option (A).
. The bleeders disease, hemophilia, is X-linked recessive. If a normal male and a female who is a carrier of the hemophilia allele decide to have children, what are the chances any of the offspring will have hemophilia? Can male offspring be carriers of the trait?
Answer:
The chance that any of the offspring having hemophilia is 25% or 0.25. No male will be a carrier.
Explanation:
Normal Male = X Y
Carrier Female = Xh X
Thus, the genotype of their possible offsprings will be X Xh, X X, Xh Y, X Y.
2 normal children, 1 female carrier and 1 infected male.
The chance of any offspring having hemophilia is 1/4 as only the Xh Y offspring will have hemophilia, the other X Xh will be a carrier and not have hemophilia.
A male cant be a carrier of an X linked trait like hemophilia but will be an infected or not. A male offspring could be infected with a probability of 0.5.
List the types of bones (according to their shape) present in the human body
Answer:
the types of bone that present in the human body is flatbone , short bone,long bone, sutural bone, irregular bone , and sesamoid bone .
Explanation:
Describe the function of Broca's area.
Answer:
Broca's area has a function that produces language. It controls motor functions involved with speech production.
Explanation:
:)
Describe the functions of T cells and B cells.
Answer:
T cells ( The thymus cells) and B cells ( The bone marrow) are the major cellular components of the adaptive immune response . T cells are involved in cell- mediated immunity , whereas B cells are primarily responsible for humoral immunity
Explanation:
Your body can produce the most effective weapons that are against the invaders, which may be bacteria, viruses or parasites. Other types of T-cells recognise and kill virus-infected cells directly. Some help B-cells to make antibodies, which circulate and bind to antigens. A T-cell (orange) killing a cancer cell (mauve).
The ____________ is a single, large extension from the soma.
Answer:
Axon
Explanation:
Soma or cell body is one of the parts of neurons, the cells of the nervous system. Several short and branched and one large extension arise from the soma.
The single large extension of soma is called the axon. Axon is the part of the neuron that serves to carry the nerve impulse away from soma during conduction of the impulse.
What role does the skin play in the regulation of body temperature?
The skin helps regulate body temperature through sweating and blood vessel constriction.
The skin plays a crucial role in regulating body temperature through a process called thermoregulation. When the body gets too hot, sweat glands in the skin produce sweat, which evaporates and helps to cool the body down. When the body gets too cold, the blood vessels in the skin constrict, reducing blood flow to the surface of the skin and conserving heat.
Learn more about Skin's role in regulating body temperature here:https://brainly.com/question/34188140
#SPJ6
If cells are placed in a hypotonic solution, what will happen to them?
A. Nothing will happen
B. They will burst
C. They will shrivel
D. They will stick together
Answer:
D. they will burst
Explanation:
Since the surrounding medium has more water content, the cells will take in water. After some time the cell membrane will burst.
Describe how Schwann cells form the myelin sheath and the neurilemma.
Answer:
Schwann cells or neurilemma cells are the cells which form the myelin sheath around neuronal axons in the peripheral nervous system (PNS) only.
Neurilemma is the collective term used for cytoplasm and nuclei present around the myelin sheath which helps in the regeneration process of nerves.
A Schwann cell surrounds the axon, invaginate it and the plasmalemma of the Schwann cells joins and from a double membrane structure called mesaxon. This mesaxon starts wrapping the axon in spiral fashion and cytoplasm start condensing into the compact myelin sheath.
Schwann cells, a type of glial cell, form the myelin sheath and neurilemma by wrapping layers of their cell membrane around an axon segment. This insulates the axon facilitating the transmission of electrical signals. A single Schwann cell insulates one axon segment, unlike oligodendrocytes which can insulate multiple axon segments.
Explanation:Schwann cells are a type of glial cell that forms the myelin sheath and the neurilemma around the axons in the peripheral nervous system. Schwann cells wrap several layers of their cell membrane around the axon segment, creating the myelin sheath. The wrapping process is similar to a pastry being wrapped around a hot dog, with the glial cell wrapping around the axon multiple times with minimal cytoplasm between the layers.
The outermost layer of the Schwann cell membrane contains cytoplasm and the nucleus of the cell, creating a bulge on one side of the myelin sheath which forms the neurilemma. This process creates an insulation layer around the axon, facilitating the transmission of electrical signals along the axon. Differences exist between Schwann cells and other myelinating cells like oligodendrocytes, with a single Schwann cell insulating only one segment of axon, whereas an oligodendrocyte in the central nervous system may insulate multiple axon segments.
Learn more about the Myelination process here:https://brainly.com/question/33833703
#SPJ3