Answer:
B. (2/3) x (2/3) x (2/3)
C. 8/27
D. 2^3 /3^3
Step-by-step explanation:
You need to know the following property
[tex]\LARGE \left(\frac{a}{b} \right)^c = \frac{a^c}{b^c}[/tex]
Exponent also means you're multiplying the same number for an 'n' number of times.
For example, 2^3 = 2 * 2 * 2
we multiply it by itself 3 times since 3 is the exponent.
x^y
x is the base, y is the exponent
we read it as x to the power of y
If the exponent is 2, we say it as x squared
If the exponent is 3, we say it as x cubed
The exponential expression (2/3)^3 is equivalent to options B: (2/3) x (2/3) x (2/3), C: 8/27, and D: 2^3 /3^3, because they all result in the same value.
Explanation:The exponential expression (2/3)^3 can be interpreted as multiplying 2/3 by itself three times. Here's how it works:
(2/3) x (2/3) x (2/3) = 8/27. In other words, 2 cubed (2^3 = 8) divided by 3 cubed (3^3 = 27), which equals 8/27.
So, the equivalent expressions among the given options are:
B. (2/3) x (2/3) x (2/3) C. 8/27 D. 2^3 /3^3 Learn more about Exponential Expressions here:
https://brainly.com/question/26540624
#SPJ2
two cars start to drive around a 2 km track at the same time. car x make one lap every 80 seconds while car y makes one lap every 60 s
(a)how long will it take for the cars to be at their starting point again? give your answer in minutes.
(b)how long will it take to the faster car to be ahead by 15 laps? give your answer in hours.
Answer:
20 minutes
Step-by-step explanation:
Both will meet again at start point after LCM(60,80) seconds.
That is 240 seconds.
in time slower car completes one lap, faster one covers 1 +20/80 lap, that is 1.25 laps. After 20 laps faster by slower car car will be 5 laps ahead, time =20*60 = 1200s = 20 minutes
Jeff is very tall he is 6 feet 5 inches tall how tall is he in inches
Answer:
77 inches
Step-by-step explanation:
1 foot=12 inches so what you have to do is 12x6=72 and since he is 6 foot 5 inches you add 5 to get 77.
Please mark brainliest and have a great day!
Ify is 2.5 when x is 5 and y varies directly with x, find y when x is 10.
5
7.5
12.5
20
Answer:A
Step-by-step explanation:
Y varies directly as x
Y = kx
When y = 2.5, x = 5
Substitute the value of y and x
2.5 = k * 5
Make k the subject of the formula
k = 2.5/5
k = 1/2
:. The equation connectin y and x is
Y = 1/2x
When x = 10
Y = 1/2*10
Y = 10/2
Y = 5
The cost of performance tickets and beverages for a family of four can be modeled using the equation 4x + 12 = 48, where x
represents the cost of a ticket. How much is one ticket?
$3.00
$4.00
$9.00
$15.00
Answer:
$9.00
Step-by-step explanation:
4x + 12 = 48 - First, subtract 12 from both sides.
4x = 36 - Then, divide each side by 4 to get x by itself.
x = 9 - After getting x by itself, we see that x = 9, so one ticket will
cost $9.00
For this case we have the following equation:
[tex]4x + 12 = 48[/tex]
Where the variable "x" represents the cost of a performance ticket.
Clear "x" of the equation to know the cost of a ticket.
Subtracting 12 on both sides of the equation:
[tex]4x = 48-12\\4x = 36[/tex]
Dividing between 4 on both sides of the equation:
[tex]x = \frac {36} {4}\\x = 9[/tex]
So, the cost of a ticket is $ 9.00
Answer:
Option C
The equation of the circle whose center is at (2, 1) and radius is 3 is
Answer: The equation of the circle whose center is at (2, 1) and radius is 3 is [tex](x-2)^2+(y-1)^2=9[/tex]
Step-by-step explanation:
We know that the equation of a circle having center at (h,k) and radius r is given by :-
[tex](x-h)^2+(y-k)^2=r^2[/tex]
Given : The center of the circle : (2, 1)
The radius of the circle : 3 units
Then the equation of a circle with center at (2, 1) and radius is 3 is will be :-
[tex](x-2)^2+(y-1)^2=3^2\\\\\Rightarrow\ (x-2)^2+(y-1)^2=9[/tex]
Solve what x if for the equation below
7x - 4 = 2x + 11
Answer:
x = 3
Step-by-step explanation:
Given
7x - 4 = 2x + 11 ( subtract 2x from both sides )
5x - 4 = 11 ( add 4 to both sides )
5x = 15 ( divide both sides by 5 )
x = 3
What is the final balance for an account starting with $2000 at 3.5% interest compounded annually for 3 years?
A = P(1 + r)t
$2217.44
$4290.75
$6210.00
$8100.00
Please Help i got a Test Tommaro Thank u!
Answer:
The length is 39.6 feet.
Step-by-step explanation:
Since the area is lw, we make this an equation. The width is already known, it's 26.2. So make a single variable equation: 26.2w=1037.52
dividing both sides by 26.2 gives you the answer of 39.6.
Hope this helps!
We know that - Area of a Rectangle is given by : Length × Width
Here : Length = u and Width = 26.2 ft
Given : Area of the Rectangle = 1037.52 ft²
[tex]:\implies[/tex] u × 26.2 = 1037.52
[tex]\mathsf{\implies u = \dfrac{1037.52}{26.2}}[/tex]
[tex]:\implies[/tex] u = 39.6 ft
You toss a coin and roll a number cube. Find P(heads and an even number).
The probability of getting heads on a coin toss is 1/2
The probability of getting an even number rolling a number cube is 1/2 ( 3 even numbers out of 6 total numbers).
To find the probability of both happening, multiply each probability by each other:
1/2 x 1/2 = 1/4
Which equation represents the graphed function ?
Y= -2x+3
Y=2x+3
Y=1/2x +3
Y=-1/2x+3
Answer:
A
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (0, 3) and (x₂, y₂ ) = (1, 1)
m = [tex]\frac{1-3}{1-0}[/tex] = - 2
note the line crosses the y- axis at (0, 3) ⇒ c = 3
y = - 2x + 3 → A
What is the value of the expression when c = 4 c/2
Answer:
32
Step-by-step explanation:
Plug in 4 for c.
(c³)/2 = (4³)/2
First, solve the parenthesis, then divide. Multiply:
4³ = 4 * 4 * 4 = 16 * 4 = 64
Next, divide:
64/2 = 32
32 is your answer.
~
During the spring and summer, a concession stand at a community Little League baseball game field sells soft drinks and other refreshments. To prepare for the season, the concession owner refers to the previous year’s files, in which he had recorded the daily soft drinks sales (in gallons) and the average daily temperature (in degrees Fahrenheit). Using the coordinates of the two points (84,80) and (74,65), determine the slope of the line of best fit.
Answer:
1.5
Step-by-step explanation:
m=80-65/84-74
=15/10
1.5
*Since this is an application problem, we can use decimals.*
Answer:
The slope of the line is 1.5
Step-by-step explanation:
To know the slope of a line we can have the equation or to know points of the line. In this case from the graph we have to points (84,80) and (74,65). Having this and using the equation to calculate the slope, we have:
[tex]m=\frac{y2-y1}{x2-x1} \\[/tex]
Defining:
[tex](x1=84,y1=80)[/tex] and [tex](x2=74,y2=65)[/tex]
Now using the equation:
[tex]m=\frac{65-80}{74-84}[/tex]
[tex]m=\frac{-15}{-10} \\m=\frac{15}{10} =1.5[/tex]
The slope of the line is 1.5
Paul needs to find 310% of 72. Which expression should he use
Answer:
3.10 * 72
Step-by-step explanation:
To find 310% of 72
Of means multiply and is means equal
310% * 72 = answer
Change to decimal form
3.10 * 72 = answer
223.20
Answer: (3.10)(72) is the correct answer
Step-by-step explanation:
what is 8^2 X8^3 as one base ?
Answer:
8^5
Step-by-step explanation:
Someone help me out pleas s
What is the standard form of
[tex]y + 2 = \frac{1}{2} (x - 4)[/tex]
bearing in mind that standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient
[tex]\bf y+2=\cfrac{1}{2}(x-4)\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{2}}{2\left( y+2 \right)=2\left( \cfrac{1}{2}(x-4) \right)}\implies 2y+4=2(x-4) \\\\\\ 2y+4=2x-8\implies 2y=4x-12\implies -4x+2y=-12\implies 4x-2y=12[/tex]
Find the solution of x- 13 =25
[tex]x- 13 =25\\x=38[/tex]
Answer:
[tex]x = 38[/tex]
Step-by-step explanation:
We have the following equation
[tex]x- 13 =25[/tex]
We must solve the equation for the variable x
Add 13 on both sides of the equation
[tex]x- 13 +13 =25+ 13[/tex]
[tex]x=25+ 13[/tex]
[tex]x=38[/tex]
So the solution to the equation is [tex]x = 38[/tex]
what is the value of k
Answer:
10°
Step-by-step explanation:
i did it in my brain maybe not the best but can help u 75°(180°-115°)+4k+5°+6k+10°=180
Answer:
k=10
Step-by-step explanation:
The measure of the exterior angle is equal to the sum of the opposite interior angles
115 = 4k+5 + (6k+10)
Combine like terms
115 = 10k +15
Subtract 15 from each side
115-15 =10k+15-15
100 = 10k
Divide by 10
100/10= 10k/10
10 =k
how do you convert 1.27 to a percentage
Answer:
127%
Step-by-step explanation:
All you have to do is multiply both numerator and denominator by 100.
Hello There!
1.27 to a percent would be 127%
"Percent" means "per 100" or "over 100". So, to convert 1.27 to percent we rewrite 1.27 in terms of "per 100" or over 100.
Multiply 1.27 by 100/100. Since 100/100 = 1, we are only multiplying by 1 and not changing the value of our number.
Therefore, we have shown that
1.27 = 127%
Can someone help me plz
Answer:
The first answer :)
Step-by-step explanation:
That is because N represents the amount of hours that the other person studied.
Factor the Following:
1.) 8
2.) -12
3.) -3y²
4.) 6x²+36x
5.) 7x -14x²
Answer:
1.) 8 = 8
2.) -12 = -12
3.) -3y² = -3y²
4.) 6x² + 36x = 6x(x + 6)
5.) 7x - 14x² = 7x(1 - 2x)
~
Which of these statements is correct?
The system of linear equations 6x - 5y = 8 and 12x - 10y = 16 has no solution.
The system of linear equations 7x + 2y = 6 and 14x + 4y = 16 has an infinite number of solutions.
The system of linear equations 8x - 3y = 10 and 16x - 6y = 22 has no solution.
The system of linear equations 9x + 6y = 14 and 18x + 12y = 26 has an infinite number of solutions.
Answer:
The system of linear equations 8x - 3y = 10 and 16x - 6y = 22 has no solution is correct.
Step-by-step explanation:
1) The system of linear equations 6x - 5y = 8 and 12x - 10y = 16 has no solution.
Solve these linear equations simultaneously
Step 1 : Find y in terms of x from any one equation
6x - 5y = 8
y = 8 - 6x
-5
Step 2 : Substitute y in terms of x from step 1 in the second equation.
16x - 6y = 22
16x - 6 (8 - 6x) = 22
-5
80x - 48 + 36x = 22 x -5
94x = 43
x = 0.457
This statement is incorrect as it does have a solution.
2) The system of linear equations 7x + 2y = 6 and 14x + 4y = 16 has an infinite number of solutions.
Solve these linear equations simultaneously
Step 1 : Find y in terms of x from any one equation
7x + 2y = 6
y = 6 - 7x
2
Step 2 : Substitute y in terms of x from step 1 in the second equation.
14x + 4y = 16
14x + 4(6 - 7x) = 16
2
14x + 12 - 14x = 16
0 ≠ 4
This statement is not true as there are no solutions.
3) The system of linear equations 8x - 3y = 10 and 16x - 6y = 22 has no solution.
Solve these linear equations simultaneously
Step 1 : Find x in terms of y from any one equation
8x - 3y = 10
x = 10 + 3y
8
Step 2 : Substitute x in terms of y from step 1 in the second equation.
16x - 6y = 22
16(10 + 3y) - 6y = 22
8
20 + 6y - 6y = 2
0 ≠ -18
This statement is true because there are no solutions
4) The system of linear equations 9x + 6y = 14 and 18x + 12y = 26 has an infinite number of solutions.
Solve these linear equations simultaneously
Step 1 : Find x in terms of y from any one equation
9x + 6y = 14
x = 14 - 6y
9
Step 2 : Substitute x in terms of y from step 1 in the second equation.
18x + 12y = 26
18 (14 - 6y) + 12y = 26
9
8 - 12y + 12y = 26
0 ≠ 18
This statement is incorrect because there are no solutions. It does not have infinite number of solutions.
!!
Answer:
The system of linear equations 8x - 3y = 10 and 16x - 6y = 22 has no solution.Step-by-step explanation:
The true statement is the third one, because that system of equations has no solutions. This is because those lines are parallel, see image attached.
We can demonstrate this by solving the system:
[tex]\left \{ {{8x-3y=10} \atop {16x-6y=22}} \right.[/tex]
If we multiply the first equation by -2, we would have
[tex]\left \{ {{-16x+6y=-20} \atop {16x-6y=22}} \right\\0x+0y=2\\0=2[/tex]
When this happens, means that the system has no solution, that is, the lines that represents those linear equations, are parallel.
Therefore, the right answer is the third option.
3.1x−16.3=−0.8
URGENT
find the value of x please
Answer:
x =5
Step-by-step explanation:
3.1x−16.3=−0.8
Add 16.3 to each side
3.1x−16.3+16.3=−0.8+16.3
3.1x = 15.5
Divide each side by 3.1
3.1x = 15.5/3.1
x =5
If b = 7, what is the value of the expression 2(10 – b)?
Answer:
6
Step-by-step explanation:
10-7=3
2*3=6
Answer:
6
Step-by-step explanation:
Order of operations
PEMDAS
Parenthesis
Exponent
Multiply
Divide
Add
Subtract
[tex]2(10-b)[/tex]
[tex]2(10-7)[/tex]
First, do parenthesis.
[tex]2(10-7)[/tex]
[tex]10-7=3[/tex]
[tex]2(3)[/tex]
Then, multiply to find the answer.
[tex]2*3=6[/tex]
6 is the correct answer.
please help
What is the slope of the line that is represented by the equation y−15=−6(x+7)?
Answer:
m = -6
Step-by-step explanation:
Put this given equation into slope-intercept form:
y−15=−6(x+7) becomes y - 15 = -6x - 42.
Adding 15 to both sides results in y = -6x - 27,
and so the slope is -6. The y-intercept is -27, or (0, -27).
Answer:
slope m = -6
Step-by-step explanation:
y−15=−6(x+7)
y =−6(x+7) + 15
y =−6x +7(-6) + 15
y =−6x -42 + 15
y =−6x - 27
THis is in slope intercept form where slope m = -6
Each tray holds 58 kiwis and you can put 6 trays in crates how many kiwis does the crate contain when it’s full
Answer: 348 kiwis.
Step-by-step explanation:
You need to analize the information provided in the exercise.
First: You know that you can put 6 trays in crates.
Second: Each one of these trays holds 58 kiwis.
Therefore, in order to calculate the number of kiwis that the crates contain when it is full, you need to multiply the total number of trays you can put in crates by the number of kiwis each tray can hold.
Then:
[tex]number\ of\ kiwis=(6)(58\ kiwis)\\\\number\ of\ kiwis=348\ kiwis[/tex]
The difference of two numbers is 1. What is the smallest possible value for the sum of their squares?
The smallest possible value for the sum of the squares of two numbers differing by 1 is 0.5. This is obtained by setting one number as x and the other as x + 1, and then minimizing the function f(x) = x² + (x + 1)².
Explanation:The difference of two numbers is 1 implies that if we set one number as x, then the other would be x + 1. To find the smallest possible value for the sum of their squares, you need to minimize the function f(x) = x² + (x + 1)².
Completing the square, this simplifies to 2(x² + 1)². Setting the derivative of this expression, 4x(x² + 1), equal to zero and solving for x, we obtain x = 0 or x = -1. Testing these values within the function f(x), we find that the minimum value is when x = -0.5 and x + 1 = 0.5 and the sum of their squares equals 0.5.
Significance and DiscussionAlthough one can handle an equation containing an unknown square which produces two solutions, in this problem, the meaningful solution is that the smallest possible value for the sum of their squares is 0.5.
Learn more about Minimum Value of Square Sum here:https://brainly.com/question/28284783
#SPJ2
A parallelogram has a base of 4 and height of 7x-2. If the area of the parallelogram is 96 square units, what is the value of x to the nearest tenth?
A) 2.3
B) 3.7
C) 5.7
D) 4.2
Cells undergoing mitosis double with each cycle. A biologist has a sample containing 15 cells. Which graph and equation represents the number of cells after each cycle occurs?
Answer:
The equation is y = 15(2)^x , the graph is X
Step-by-step explanation:
* Lets talk about the exponential graph
- The form of the exponential function is y = ab^x, where a ≠ 0, b > 0 ,
b ≠ 1, and x is any real number
- It has a constant base b
- It has a variable exponent x
- The constant a is the beginning value
* Lets solve the problem
- The sample containing 15 cells
∴ a = 15
- The cells double with each cycle ⇒ means × 2 each cycle
∴ b = 2
- x is the number of cycles
- y is the number of cells
∴ The equation is y = 15(2)^x
- From the graphs the answer could be X or Y
* To know which one substitute the values of x to find the value of y
# Figure X
∵ y = 15(2)^x
∵ x = 0
∴ y = 15(2)^0
∵ (2)^0 = 1 ⇒ any number to the power of 0 = 1 except the zero
∴ y = 15(1) = 15
∵ x = 1
∴ y = 15(2)^1 = 15(2) 30
- The graph has y = 30 when x = 1
# In the Figure Y the value of y not equal 30 at x = 1
∴ The answer is graph X
* The equation is y = 15(2)^x , the graph is X
Final answer:
The number of cells after each cycle of mitosis can be represented by an exponential growth model with the equation N = 15 × 2ⁿ. Graphically, this will be a rapidly ascending curve, starting with 15 cells at cycle 0 and doubling each cycle.
Explanation:
The question is asking us to determine the number of cells after each cycle of mitosis given an initial count of 15 cells. When a cell undergoes mitosis, it produces two genetically identical daughter cells, effectively doubling the number of cells with each cycle. To represent the number of cells after each cycle, we will need to use an exponential growth model as each cell division results in doubling the number of cells present.
The general equation representing the growth of cells through mitosis is given by N = N0 × 2ⁿ, where N is the number of cells after n cycles, N0 is the initial number of cells, and n is the number of cycles of mitosis. For the given initial condition of 15 cells (N0 = 15), the equation becomes N = 15 × 2ⁿ.
The corresponding graph to this equation would show a curve that rises sharply upward, reflecting the exponential increase in the number of cells after each cycle. The graph starts at 15 cells when n = 0 (no cycles have occurred) and doubles with each subsequent cycle.
The radius of a sphere is 3 inches. Which represents the volume of the sphere?
Answer:
36π cubic inches
Step-by-step explanation:
Volume of sphere:
V = 4/3 πr^3
Given: r = 3 in.
Plug in
V = 4/3 π (3^3)
V = 4/3 π (27)
V = 36 π
Answer
36π cubic inches
Answer with explanation:
Radius of the Sphere (r)= 3 inches
Volume of the sphere
[tex]=\frac{4*\pi *r^3}{3}\\\\\rightarrow \frac{4*\pi *3^3}{3}\\\\\rightarrow 4*\pi *3^2\\\\=36\pi \text{Cubic inches}[/tex]
→→→Option B: 36 π Cubic inches