When the reaction
CH3Cl(g) + H2O(g) →CH3OH(g) + HCl(g)

Was studied, the tabulated data were obtained. Based on thesedata, what are the reaction orders?

Initial Concentrations, M; Initial Rates,Ms-1

Exp CH3Cl H2O Rate, Ms-1

1 0.100 0.100 0.182

2 0.200 0.200 1.45

3 0.200 0.400 5.81

A. CH3Cl: firstorder H2O:first order

B. CH3Cl: second order H2O: first order

C. CH3Cl: firstorder H2O: second order

D. CH3Cl: second order H2O: second order
Please EXPLAIN your answer.

Answers

Answer 1
Final answer:

The reaction orders for CH3Cl and H2O are determined to be second order for both reactants as evidenced by the quadrupled rate increase when their concentrations are doubled. So the correcct option is D.

Explanation:

To determine the reaction orders for CH3Cl and H2O in the given reaction, we analyze the provided experimental data by comparing initial concentrations and initial rates.

Comparing Experiment 1 and Experiment 2: The concentration of both CH3Cl and H2O is doubled, and the rate increases from 0.182 to 1.45, an 8-fold increase. This suggests that both are of second order because doubling the concentration of a second-order reactant increases the rate by a factor of 22, which is 4, and since both reactants are doubled, 4*4=16, accounting for the 8-fold increase.Comparing Experiment 2 and Experiment 3: Only the concentration of H2O is doubled, and the rate increases from 1.45 to 5.81, a 4-fold increase. This change indicates that H2O is second-order because doubling the concentration of a second-order reactant increases the rate by a factor of 22 or 4.

Based on these observations, the answer is D. CH3Cl: second order and H2O: second order. Both the concentrations of CH3Cl and H2O have a squared relationship to the rate, characteristic of second-order reactions.


Related Questions

What is the temperature written on the thermometer

Answers

So, we see that the thermometer reads between 99 and 100 ºF, so we can rule out A.,C., and D.
Thus, the only answer left is B. (99.4ºF).
The reason I say the thermometer reads between 99 and 100 ºF is because the shaded line is over the 99 mark, yet under the 100 mark.

what are radial wave function and angular wave function

Answers

The part of a wave function that depends on the angles theta and phi when the Schrodinger wave equation is expressed in spherical polar coordinates Radical wave function is the part of the wave function that depends only on the distance r when the Schrodinger wave equation is expressed in spherical polar coordinates
Final answer:

The radial wave function represents the radial behavior of the electron, while the angular wave function describes the orientation and shape of the electron orbital.

Explanation:

The radial wave function and angular wave function are components of the wave function in quantum mechanics.

The radial wave function, denoted by R, depends only on the radial coordinate r and represents the probability density of finding an electron at a certain distance from the nucleus. It is responsible for the radial behavior of the electron.

The angular wave function, denoted as φ (phi), depends on the polar angle θ (theta) and azimuthal angle φ (phi). It describes the orientation and shape of the electron orbital.

A circuit contains two devices that are connected in parallel. If the resistance of one of these devices is 12 ohms and the resistance of the other device is 4 ohms, the total resistance of the two devices is

Answers

16 ohms is the answer to this question

Answer:

16 oms

Explanation: 12+4 +16

A compound is 54.53% C, 9.15% H, and 36.32% O by mass. What is its empirical formula?

Answers

Hope it cleared your doubt

Calculate the equilibrium constant for each of the reactions at 25 ∘C. 2Fe3+(aq)+3Sn(s)→2Fe(s)+3Sn2+(aq)

Answers

Final answer:

Equilibrium constants are calculated using thermodynamic data such as standard free energy changes and standard cell potentials, which are then related to the equilibrium constant at a specific temperature using the formula ΔG° = -RTlnK.

Explanation:

The calculation of equilibrium constants for chemical reactions requires the use of thermodynamic data, such as standard free energy changes (ΔG°) or standard cell potentials (E°cell). The relationship between the standard free energy change and the equilibrium constant (K) at a given temperature (T) is given by the equation ΔG° = -RTlnK, where R is the universal gas constant and T is the temperature in Kelvin.

For a reaction such as 2Fe3+(aq) + 3Sn(s) → 2Fe(s) + 3Sn2+(aq), the standard free energy change ΔG° can be calculated from the standard reduction potentials of the half-reactions involved. The equilibrium constant K is then calculated using the aforementioned relationship. If ΔG° is negative, the reaction is spontaneous, and at equilibrium, there will be a greater concentration of products than reactants. Conversely, if ΔG° is positive, the reaction is non-spontaneous, and reactants will predominate at equilibrium.

To determine the equilibrium constant for a solubility product (Ksp), like for FeF2 (s), the concentration of the ions at equilibrium is calculated, considering that the product of the ion concentrations raised to the power of their respective stoichiometric coefficients in the dissolution reaction equals the Ksp. This assessment is key for predicting whether a precipitate will form when solutions containing different ions are mixed.

Final answer:

The equilibrium constant for a chemical reaction can be calculated using standard free energy change and the relationship K = e^{-ΔG°/RT}, or by using standard cell potentials through the equation ΔG° = -nFE°.

Explanation:

The question asks to calculate the equilibrium constant for a chemical reaction at 25 °C. The equilibrium constant, denoted as K, is a dimensionless number that provides a measure of the extent to which a reaction will proceed at a given temperature. The calculation of K often involves using the standard free energy change (ΔG°) and the relationship given by the equation K = e^{-ΔG°/RT}, where R is the universal gas constant and T is the temperature in Kelvin. To determine ΔG° for a reaction, one may need to reference thermodynamic data for the formation of compounds and elements involved in that reaction.

Standard cell potentials can also be used to calculate the equilibrium constant as they are related to the free energy change through the equation ΔG° = -nFE°, where F is Faraday's constant, E° is the standard cell potential, and n is the number of moles of electrons transferred in the reaction.

Calculate ΔH∘ in kilojoules for the reaction of ammonia NH3 (ΔH∘f=−46.1kJ/mol) with O2 to yield nitric oxide (NO) (ΔH∘f=91.3 kJ/mol) and H2O(g) (ΔH∘f=−241.8kJ/mol), a step in the Ostwald process for the commercial production of nitric acid.

4NH3(g)+5O2(g)→4NO(g)+6H2O(g)

Answers

Answer: [tex]\Delta H^o[/tex] for the given reaction is -901.2 kJ.

Explanation: Enthalpy of the reaction is the amount of heat released or absorbed in a given chemical reaction.

Mathematically,

[tex]\Delta H_{rxn}=\Delta H_f_{(products)}-\Delta H_f_{(reactants)}[/tex]

For  given reaction:

[tex]4NH_3(g)+5O_2(g)\rightarrow 4NO(g)+6H_2O(g)[/tex]

[tex]H_f_{(NH_3)}=-46.1kJ/mol[/tex]

[tex]H_f_{(O_2)}=0kJ/mol[/tex]

[tex]H_f_{(H_2O)}=-241.8kJ/mol[/tex]

[tex]H_f_{(NO)}=-91.3kJ/mol[/tex]

[tex]\Delta H_{rxn}=[6\Delta H_f_{(H_2O)}+4\Delta H_f_{(H_2O)}-[4\Delta H_f_{(NH_3)}+5\Delta H_f_{(O_2)}][/tex]

Putting values in above equation, we get:

[tex]\Delta H_{rxn}=[6mol(-241.8kJ/mol)+4mol(91.3kJ/mol)]-[4mol(-46.1kJ/mol)+5mol(0kJ/mol)][/tex]

[tex]\Delta H_{rxn}=-901.2kJ[/tex]

Final answer:

To calculate ΔH∘ for the reaction, we need to use the given ΔH∘f values for the reactants and products. By finding the difference between the sum of the standard enthalpies of formation of the products and reactants, we can calculate ΔH∘.

Explanation:

To calculate the standard enthalpy change (ΔH°) for a reaction, we need to use the given standard enthalpy of formation (ΔH°f) values for the reactants and products. We'll start by determining the sum of the standard enthalpies of formation of the products and reactants, and then find the difference to calculate ΔH°. For the given reaction:

4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)

ΔH° = (4ΔH°f(NO) + 6ΔH°f(H2O)) - (4ΔH°f(NH3) + 5ΔH°f(O2))

Substituting the given ΔH°f values into the equation, we get:

ΔH° = (4 * 91.3 kJ/mol + 6 * -241.8 kJ/mol) - (4 * -46.1 kJ/mol + 5 * 0 kJ/mol)

Simplifying the equation, we find:

ΔH° = 603.4 kJ/mol

Learn more about Enthalpy here:

https://brainly.com/question/32882904

#SPJ11



How many electrons are transferred between the cation and anion to form the ionic bond in one formula unit of each compound? (1 electrons, 2 electrons, 3 electrons, 4 electrons) ?
NaCI
CaS
BaO
KBr
LiF





Answers

Here are the solutions:
For NaCl, there would be one electron transferred from the sodium atom, now producing a cation to the chlorine atom resulting in a chlorine anion. Forming ionic bond.
For CaS, there would be 2 electrons transferred from an atom of Ca to S, this can be obtained by simply looking at the ionic charges and or combining capacities of Ca.
For BaO, likewise, 2 electrons that are valence electrons are transferred from Ba to Oxygen.
In the ionic compound of KBr, the atom of K, potassium donated its one valence electron to Br, in need of it to achieve a stable octet, and produce the chemical bond.
Finally, LiF, a single valence electron is transferred from a metal atom of Li to F, for both of the atoms that would form the ionic bond to achieve a stable octet, and or full electron shell.

Final answer:

In ionic compounds such as NaCl, CaS, BaO, KBr, and LiF, 1 or 2 electrons are transferred to form the ionic bond, depending on the charges of the ions involved, to achieve electrical neutrality.

Explanation:

The number of electrons transferred between the cation and the anion to form an ionic bond in one formula unit of each compound can be determined by considering the charges of the ions involved.

Each compound aims for overall electric neutrality by balancing the total positive and negative charges.

For NaCl (sodium chloride), one electron is transferred from Na to Cl, forming Na+ and Cl-For CaS (calcium sulfide), two electrons are transferred, forming Ca2+ and S2-For BaO (barium oxide), two electrons are transferred, forming Ba2+ and O2-For KBr (potassium bromide), one electron is transferred from K to Br, forming K+ and Br-For LiF (lithium fluoride), one electron is transferred from Li to F, forming Li+ and F-

Accordingly, NaCl transfers 1 electron, both CaS and BaO transfer 2 electrons each, and KBr and LiF also transfer 1 electron each.

3.15 g of an unknown gas at 35 °C and 1.10 atm is stored in a 1.85-L flask. What is the density of the gas? what is the molar mass of the gas?

Answers

ensity: 
(1.05 g) / (1.45 L) = 0.724 g/L 

Answer:

[tex]M=39.1g/mol[/tex]

[tex]\rho=1.70g/L[/tex]

Explanation:

Hello,

In this case, one uses the ideal gas equation:

[tex]PV=nRT[/tex]

By solving for moles in terms of mass and molar mass one obtains:

[tex]PV=\frac{m}{M}RT\\M=\frac{mRT}{PV} =\frac{3.15g*0.082 \frac{atm*L}{mol*K} *(35+273)K}{1.10atm*1.85L} \\M=39.1g/mol[/tex]

On the other hand, the density is easily computed as shown below:

[tex]\rho=\frac{m}{V}=\frac{3.15g}{1.85L}=1.70g/L[/tex]

Best regards.

which of the following statements correctly describes boyle's law

Answers

Answer:

A law stating that the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature.

Explanation:

Final answer:

Boyle's Law states that the pressure and volume of a gas are inversely proportional at constant temperature, described mathematically as PV = k.

Explanation:

The Boyle's Law correctly describes the relationship between pressure and volume of a gas. At a constant temperature, for a given mass of confined gas, the pressure (P) and the volume (V) are inversely proportional, which can be mathematically expressed as PV = k, where k is a constant for the given mass and temperature of the gas. This means that if the volume decreases, the pressure increases proportionally and vice versa, provided the temperature stays the same.

what is the common name of the group whose members are characterized by endoskeleton and a unique water vascular system
a. Medusas
b. Echinoderms
c. Brachiopods
d. Tunicates

need now worth 25 points if correct will give the brainly-est

Answers

The correct answer for this question would be option B. The common name of the group whose members are characterized by endoskeleton and a unique water vascular system are called the  Echinoderms. Examples of echinoderms are starfish, sea urchin, feather stars and sea cucumbers. Hope this is the answer that you are looking for.

Answer:

answer b

Explanation:

Balance this nuclear reaction by supplying the missing nucleus: 249/98 Cf +__ --> 263/106 Sg +4 1/0 n

Answers

Answer: the missing nucleus is an isotope of oxygen 18/8 O

Explanation:

Since the reacting mass must be equal to the resulting mass

That is right hand side must be equal to the left

We check the total number of reacting moles in the equation

On the right hand we have 267/106

On the left hand side we have 249+x/98+x

Equation both we have

249+ x/98+y = 267/106

Therefore x = 18

y = 8

This is an isotope of oxygen

Final answer:

To balance the nuclear equation, we must find a nucleus whose addition will make the mass and atomic numbers equal on both sides. The missing nucleus is an oxygen isotope, 18/8 O, which balances the equation to 249/98 Cf + 18/8 O → 263/106 Sg + 4 1/0 n.

Explanation:

The student's question is asking to balance a nuclear reaction by supplying the missing nucleus in the given reaction. After analyzing the reaction 249/98 Cf +__ → 263/106 Sg + 4 1/0 n, we can see that the mass numbers (top numbers) and atomic numbers (bottom numbers) need to be balanced on both sides of the equation. In order to balance the equation, we need to add the missing mass number and atomic number from the left side to match the total on the right side.

To balance this equation, note that the sum of the mass numbers on the right side (seaborgium-263 plus four neutrons) is 263 + (4 × 1) = 267, while the mass number on the left side of the equation is 249 for the californium (Cf) nucleus. The missing mass number is therefore 267 - 249 = 18. Similarly, the sum of the atomic numbers on the right side (seaborgium-106 plus zero from the neutrons) is 106, and the atomic number on the left is 98 for the californium nucleus. The missing atomic number is 106 - 98 = 8.

Therefore, the missing nucleus must have a mass number of 18 and an atomic number of 8, which corresponds to an oxygen nucleus, 18/8 O. The balanced nuclear equation is 249/98 Cf + 18/8 O → 263/106 Sg + 4 1/0 n.

The pressure of a gas is 750.0 torr when its volume is 400.0 mL. What is the pressure if the gas is allowed to expand to 600.0 mL at constant temperature?

Answers

pv = constant
P pressure
V volume
If you would increase volume for 1.5 times - pressure will drop 1.5 times
750 divide 1.5
Equals 500
Pressure will become 500 torr

What is the molarity of a 5.00 x 10^2 ml solution containing 21.1 g of potassium bromide (KBr) if the molar mass of KBr is 119.0 g/mol?

Answers

* number of moles :

1 mole KBr -------------- 119.0 g
? moles KBr ------------- 21.1 g

21.1 x 1 / 119.0 => 0.1773 moles

Volume in liters:

5.00 x 10² mL / 1000 => 0.5 L

Therefore:

M = moles KBr / volume

M = 0.1773 / 0.5

= 0.3546 M
Final answer:

The molarity of a 5.00 x 10² mL solution containing 21.1 g of potassium bromide (KBr) is 0.354 M, calculated by converting the mass of KBr to moles and then dividing by the volume of the solution in liters.

Explanation:

To find the molarity of a 5.00 x 10² mL solution containing 21.1 g of potassium bromide (KBr), you will need to use the definition of molarity, which is moles of solute per liter of solution (mol/L). The molar mass of KBr is given as 119.0 g/mol. First, convert the mass of KBr to moles by dividing by the molar mass:

21.1 g ÷ 119.0 g/mol = 0.177 moles of KBr

Next, convert the volume of the solution from milliliters to liters:

5.00 x 10² mL = 0.500 L

Now, you can calculate the molarity by dividing the moles of KBr by the volume of the solution in liters:

0.177 moles ÷ 0.500 L = 0.354 M

The molarity of the potassium bromide solution is 0.354 M.

Learn more about Molarity Calculation here:

https://brainly.com/question/15948514

#SPJ2

If 6.89 g of CuNO3 is dissolved in water to make a 0.460 M solution, what is the volume of the solution?

Answers

3.67  grams is the volume of the solution

To find the volume of a 0.460 M solution of CuNO₃ made from 6.89 g of CuNO₃, you calculate the number of moles and use the molarity formula, resulting in approximately 119 mL of solution.

To solve this problem, follow these steps:

Determine the molar mass of CuNO₃:

Cu: 63.55 g/mol

N: 14.01 g/mol

O: 16.00 g/mol (3 atoms, so 16.00 g/mol × 3 = 48.00 g/mol)

Molar mass of CuNO₃ = 63.55 + 14.01 + 48.00 = 125.56 g/mol.

Find the number of moles of CuNO₃⁺:

Number of moles = mass / molar mass = 6.89 g / 125.56 g/mol ≈ 0.0549 mol.

Use the molarity formula to find the volume of the solution:

M = moles of solute / volume of solution (in liters)

0.460 M = 0.0549 mol / volume

Volume = 0.0549 mol / 0.460 M ≈ 0.119 L (or 119 mL).

Therefore, the volume of the solution is approximately 119 mL.

Which of the following is not true of chemical changes?

A chemical change rarely occurs at the molecular level.
Flammability and decomposition are examples of chemical changes.
Chemical changes involve a rearrangement of atoms to form new substances.
Chemical changes can often be identified by clues such as formation of a gas or a solid and a release of heat.

Answers

They rarely occur at molecular levels is incorrect, actually they always occur at molecular levels

Answer: Option (a) is the correct answer.

Explanation:

At molecular level there will be need of energy always for breaking or making of chemical bonds. Therefore, a chemical change will always occur at molecular level.

Thus, we can conclude that out of the given options, the statement a chemical change rarely occurs at the molecular level is not true of chemical changes.  

When an aqueous solution of sodium sulfate is electrolyzed, a gas is observed to form at the anode. the gas is?

Answers

Electrolysis of Aqueous SolutionsIn the electrolysis of aqueous solutions only one ion is involved in the selective discharge of ions at each electrode during the electrolysis. The ion which is selected for discharge at an electrode depends on a number of factors, includingPosition of the ions in the electrochemical series,For positive ions, the facility of discharge decrease in going from those least electropositive to those most electropositive. For example, if both copper and hydrogen ions are present in solution, it will be the copper ions which take electrons from the cathode to become copper atoms.For negative ions, the ease of discharge decrease in going from those least electronegative to those most electronegative.Concentration of the Ions in SolutionIrrespective of the position of the ions in the electrochemical series, there is a tendency to promote the discharge of the most concentrated ion present. For example, in concentrated sodium chloride solution (i.e. brine) , the two cations present are the chlorine ion and the hydroxyl ion. Although the hydroxyl ion is more easily oxidised than the chlorine ion, it is the chlorine ion which will be discharged because its concentration is much greater than that of the hydroxyl ion.Nature of the ElectrodeThis is not as important as either of the other two factors, except in certain cases. For example in the electrolysis of molten sodium chloride using a mercury cathode, sodium ions are discharged in preference to hydrogen ions which are lower in the series.

Electrolysis of an Aqueous Copper Sulphate Solution using Copper Electrodes

The electrolysis of an aqueous solution of copper sulphate using copper electrodes (i.e. using active electrodes) results in transfer of copper metal from the anode to the cathode during electrolysis. The copper sulphate is ionised in aqueous solution.

CuSO4 ==> Cu(++) + SO4(-.-)

The positively charged copper ions migrate to the cathode, where each gains two electrons to become copper atoms that are deposited on the cathode.

Cu(++) + 2e(-) ==> Cu

At the anode, each copper atom loses two electrons to become copper ions, which go into solution.

Cu ==> Cu(++) + 2e(-)

The sulphate ion does not take part in the reaction and the concentration of the copper sulphate in solution does not change. The reaction is completed when the anode is completely eaten away. This process is used in electroplating.

Electrolysis of an Aqueous Solution of Sodium SulphateThe electrolysis of an aqueous solution of sodium sulphate using inert electrodes produces hydrogen at the cathode and oxygen at the anode and a neutral solution of sodium sulphate remains unaltered by the electrolysis.

Cathode Reaction : 4 H2O + 4 e(-) ==> 2 H2 + 4 OH(-)

Anode Reaction : 2 H2O ==> O2 + 4 H(+) + 4 e(-)

The overall cell reaction is : 6 H2O ==> 2 H2 + O2 +4 H(+) +4 OH(-)

If the reaction is carried out in a Hofmann Voltammeter, with some universal indicator in the solution, it will be noticed that around the cathode the solution becomes alkaline and around that anode the solution becomes acidic. This is explained as follows :

At the cathode :Hydrogen ions are being removed from solution, thereby leaving an excess of hydroxyl ions which makes the solution alkaline, andAt the anode :Hydroxyl ions are being removed, so leaving an excess of hydrogen ions which makes the solution acidic.

Electrolysis of a solution of dilute Sulphuric AcidThe electrolysis of an aqueous solution of dilute sulphuric acid is often carried out in a Hofmann Voltammeter, an apparatus in which the gases evolved at the anode and cathode can be collected in separate graduated tubes. When the solution is electrolyzed hydrogen is produced at the cathode and oxygen at the anode. These gases can be shown to be present in a 2 to 1 ratio and result from the electrolysis of water under acidic conditions.

Sulphuric acid is a strong electrolyte is fully dissociated in aqueous solution.

H2SO4 ==> 2 H(+) + SO4(2 -)

Water is a weak electrolyte and is only slightly dissociated

H2O ==> H(+) + OH(-)

During electrolysis, the hydrogen ions migrates towards the cathode, and are discharged there (i.e. they gain an electron and are converted to hydrogen gas).

2 H(+) + 2 e(-) ==> H2

At the anode the concentration of hydroxyl ions is too low to maintain a reaction and the sulphate ions are not oxidized but remain on in solution at the end. Water molecules must be the species reacting at the anode.

2 H2O ==> O2 + 4 H(+) + 4 e(-)

The overall reaction is

Cathode Reaction :2 H(+) + 2e(-) ==> H2 4 H(+) + 4e(-) ==> 2H2 Anode Reaction :2 H2O ==> O2 + 4 H(+) + 4 e(-) Overall Cell Reaction:4 H(+) + 2 H2O ==> 2 H2 + O2 + 4 H(+)

For every hydrogen ions discharged at the anode, another hydrogen ion is formed at the cathode. The net result is that the concentration of the sulphuric acid remains constant and this electrolysis consists of the decomposition of water with the overall reaction

2H2O ==> 2H2 + O2

Final answer:

When an aqueous sodium sulfate solution is electrolyzed, the gas formed at the anode is typically oxygen. This is because the electrolysis of water, which involves similar processes, produces oxygen at the anode. However, the exact reactions at the anode may differ based on the specific conditions.

Explanation:

When an aqueous solution of sodium sulfate is electrolyzed, a gas is observed to form at the anode. This is a common phenomenon observed in the electrolysis of aqueous solutions of ionic compounds. The gas that is produced depends on the species undergoing reaction at the electode, which may involve either water species (H₂O, H¹, OH´) or solute species (the cations and anions of the compound). However, in the electroysis of aqueous sodium solutions, the hydrogen ions are more easily reduced than the sodium ions, resulting in the formation of hydrogen gas at the cathode.

It's important to note that the reaction taking place at the anode may vary depending the specific conditions. In general, however, it could be said that oxygen gas may form at the anode during electrolysis. This is suggested by the fact that electrolysis of water produces stoichiometric amounts of oxygen gas at the anode. So, similar effects might be expected in this case.

Learn more about Electrolysis of Sodium here:

https://brainly.com/question/24358068

#SPJ5

How many unpaired electrons would you expect on aluminum in aluminum oxide.?

Answers

In aluminum (III) oxide [tex](\(Al_2O_3\))[/tex], aluminum has a +3 oxidation state, resulting in the loss of all its valence electrons. Hence, aluminum in [tex]\(Al_2O_3\)[/tex] has zero unpaired electrons, contributing to its diamagnetic properties.

In aluminum (III) oxide[tex](\(Al_2O_3\))[/tex], each aluminum atom has a +3 oxidation state. Aluminum's electron configuration [tex](\(1s^22s^22p^63s^23p^1\))[/tex] suggests one unpaired electron, but in the +3 oxidation state, it loses all three valence electrons. Thus, aluminum in [tex]\(Al_2O_3\)[/tex] has zero unpaired electrons because all its valence electrons are lost when it forms ions. Consequently, no unpaired electrons contribute to its magnetic properties, making it diamagnetic. Therefore, the number of unpaired electrons on aluminum in aluminum (III) oxide is 0.

Complete Question :

How many unpaired electrons would you expect on aluminum in aluminum (III) oxide. Enter an integer.

When 1.187 g of a metallic oxide is reduced with excess hydrogen 1.054 g of the metal is produced. what is the metallic oxide?

Answers

Answer: The metallic oxide formed will be [tex]Cu_2O[/tex]

Explanation:

We are given a metallic oxide, having general chemical formula [tex]M_2O_n[/tex]

We are given:

Mass of metallic oxide = 1.187 g

Mass of metal = 1.054 g

Mass of oxygen = 1.187 - 1.054 = 0.133 g

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]     .......(1)

Given mass of oxygen = 0.133 g

Molar mass of oxygen = 16 g/mol

Putting values equation 1, we get:

[tex]\text{Moles of oxygen}=\frac{0.133g}{16g/mol}=0.0083mol[/tex]

Number of moles of metal in the oxide is twice than the number of moles of oxygen

Number of moles of metal = [tex](2\times 0.0083)=0.0166[/tex] moles

Now, calculating the molar mass of metal by using equation 1, we get:

Moles of metal = 0.0166 moles

Mass of metal = 1.054 g

Putting values in equation 1, we get:

[tex]0.0166mol=\frac{1.054g}{\text{Molar mass of metal}}\\\\\text{Molar mass of metal}=\frac{1.054g}{0.0166mol}=63.49g/mol[/tex]

The metal having 63.49 g/mol as molar mass is copper

Hence, the metallic oxide formed will be [tex]Cu_2O[/tex]

Atoms in molecules share pairs of electrons when they make what type of bonds?

Answers

ionic bonds; they make ionic bonds.

A balloon is floating around outside. The temperature outside is -19 Celsius, and the air pressure is 0.800 ATM. Your neighbor, who released the balloon, tell you that he filled it with 4.50 moles of gas. What is the volume of gas inside this balloon

Answers

I don't have my data booklet handy but this question seems like it can be solved by manipulating the formula PV=nRT

So I would convert .800 atm into Kpa, then turn -19 to Kelvin by adding 273 which gives you . R is a constant represented by 8.314 and n is the moles that you have which is 4.50

when you manipulate the formula you can put it a V=nRT÷P
plug in 4.50 for n, 8.314 for R and 254 for T (what your temperature is in Kelvin)
change your atm to Kpa and you can solve for volume ...

P.S this is the ideal gas law so all units should be put in in their proper form, IE; Volume in litres, "n" in moles, R as 8.314, Temperature in Kelvin, and P in KPA

the h3o+ of a solution with pH = 8.7 is

Answers

Final answer:

The concentration of hydronium ions (H3O+) in a solution with a pH of 8.7 is approximately 2.0 × 10^-9 M. This is determined using the formula [H3O+] = 10^{-pH}.

Explanation:

The student is asking about the concentration of hydronium ions, or H3O+, in a solution with a pH of 8.7. The pH scale is used to determine the acidity or basicity of a solution and is calculated as the negative logarithm of the hydronium ion concentration. To find the H3O+ concentration from pH, we use the formula:

[H3O+] = 10^{-pH}

So, for a solution with a pH of 8.7:

[H3O+] = 10-8.7

On a calculator, you would take the antilog, or the "inverse" log, of -8.7 to find the H3O+ concentration:

[H3O+] = antilog (-8.7)

Or simply calculate:

[H3O+] = 10-8.7

This results in the hydronium ion concentration of approximately 2.0 × 10-9 M.

The [H₃O⁺] of a solution with a pH of 8.7 is approximately 2 × 10^-9 M.

The [H₃O⁺] of a solution with pH = 8.7 can be calculated using the formula:

[H₃O⁺] = 10-pH.

For pH = 8.7, the calculation is [H₃O⁺] = 10-8.7.

Using a calculator, you find [H₃O⁺] ≈ 2.015 × 10-9.

Comparing this result with the given options, the closest one is 2 × 10-9 M.

Therefore, the correct answer is [H₃O⁺] ≈ 2 × 10-9 M.

The complete question is:

The [H_3 O^+ ]of a solution with pH=8.7 is

5.3M

8.7×10^(-1) M

8.7M

2×10^(-9) M

5×10^(-6) M

Add electron dots and charges as necessary to show the reaction of calcium and oxygen to form an ionic compound.

Answers

well you have to have energy levels. once those energy levels are done you have electrons to put on them. only 2 on the first level then eight and eight on the third level. and more on next levels.
Final answer:

Calcium (Ca) donates two electrons to become Ca2+, and oxygen (O) each accepts an electron to become O2-. The Ca2+ and O2- ions combine in a 1:1 ratio to form the electrically neutral ionic compound, CaO, known as calcium oxide.

Explanation:

Let's consider the Lewis symbols for each element to show the reaction of calcium and oxygen forming an ionic compound. Calcium (Ca), with an atomic number of 20, has two electrons in its outermost shell. Oxygen (O), with an atomic number of 8, has six electrons in its outermost shell and needs two more to achieve a full octet.

During the reaction, calcium donates its two electrons, one each going to two separate oxygen atoms. This results in calcium becoming a Ca2+ ion, losing its two outermost electrons. Upon receiving an electron, each oxygen atom becomes an O2- ion. The formation of these ions can be illustrated with Lewis symbols and arrows:

[Ca] 0 → [Ca]2+ + 2[e-]
[O]0 + [e-] → [O]2-

The positive charge of the calcium ion and the negative charges of the oxygen ions attract each other, and as a result, they come together to form the ionic compound calcium oxide, CaO. Since the ratio between Ca2+ and O2- needs to be 1:1 to balance the charges, the final compound formula is simply CaO, showing the combination of one calcium ion with one oxygen ion.

One loss mechanism for ozone in the atmosphere is the reaction with the ho2 radical what is the rate law expression

Answers

it turns unto h2o and then back into water

One loss mechanism for ozone in the atmosphere is the reaction with the HO₂ radical is Rate = k[O₃][HO₂]. The correct option is a.

The link between the rate of a chemical reaction and the concentrations of the reactants is described by the rate law expression.

In this instance, the ozone and HO₂ radical concentrations have a direct correlation with the rate of reaction.

A rate constant is denoted by the letter "k." As a result, Rate = k[O₃][HO₂] is the rate law equation for this reaction.

It shows that the ozone and HO₂ radical concentrations have a direct correlation with the rate of the reaction.

Thus, the correct option is a.

For more details regarding rate of reaction, visit:

https://brainly.com/question/13693578

#SPJ4

Your question seems incomplete, the probable complete question is:

One loss mechanism for ozone in the atmosphere is the reaction with the ho2 radical what is the rate law expression

a) Rate = k[O3][HO2]

b) Rate = k[O3]^2[HO2]

c) Rate = k[O3][HO2]^2

d) Rate = k[O3]^2/[HO2]

Palmitic acid C16H32O2 is a dietary fat found in beef and butter. The caloric content of palmitic acid is typical of fats in general.

Part A
Write a balanced equation for the complete combustion of palmitic acid. Use \rm H_2O(l) in the balanced chemical equation because the metabolism of these compounds produces liquid water.
Express your answer as a chemical equation. Identify all of the phases in your answer.

Answers

C16H32O2(aq) --> 16CO2(g) + 16H2O(l) ... said its wrong though? 
This is because you haven't added any oxygen needed for the combustion, so your equation does'nt balance. Also a solution in water [aq] doesn't burn! 
Try C16H32O2(s) + 23O2(g) --> 16CO2(g) + 16H2O(l) 

Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.

Explanation:

Combustion is a type of chemical reaction in which substance burns under the presence of oxygen or in other words reaction of hydrocarbon with oxygen to produce water and carbondioxide.

Palmitic acid when undergoes combustion it gives carbondioxide and water.

The balanced chemical  equation is given as:

[tex]C_{16}H_{32}O_2(s)+23O_2(g)\rightarrow 16CO_2(g)+16H_2O(l)[/tex]

According to stoichiometry, when 1 mol of palmitic acid reacts with 23 moles of oxygen to give 16 moles of carbondioxide and 12 moles of water.

What is the value of a in the following nuclear reaction? 238 92u→234 90th azx

Answers

Final answer:

In the nuclear reaction of Uranium-238 decaying into Thorium-234, an alpha particle (He) with a mass number of 4 and atomic number of 2 is emitted. Uranium-235 contains 92 protons and 143 neutrons.

Explanation:

The nuclear reaction presented is 238 92U → 234 90Th + 4 2He. Here, we see Uranium-238 decaying into Thorium-234 and an alpha particle, which is identical to a helium nucleus with a mass number of 4 and an atomic number of 2. The original equation given in the question lacks the alpha particle (He), but by understanding the law of conservation of mass and charge, we can deduce the identity of the missing particle.

An isotope of uranium with an atomic number of 92 and a mass number of 235 will thus contain 92 protons, as the atomic number defines the number of protons in an atom's nucleus. To find the number of neutrons, we subtract the atomic number from the mass number: 235 - 92 = 143 neutrons.

How many grams of carbon are present in 45.0 g of CCl4?

Answers

Final answer:

To find the grams of carbon in 45.0 g of CCl4, calculate the molar mass of CCl4, convert the mass of CCl4 to moles, and then multiply the moles of carbon by the molar mass of carbon. The result is 3.513 grams of carbon.

Explanation:

To calculate the grams of carbon in 45.0 g of CCl4, we first need to determine the molar mass of CCl4. Carbon tetrachloride (CCl4) consists of one carbon atom and four chlorine atoms. The atomic mass of carbon (C) is approximately 12.01 g/mol, and the atomic mass of chlorine (Cl) is approximately 35.45 g/mol. So, the molar mass of CCl4 can be calculated as follows:

Molar mass of CCl4 = (1 × 12.01 g/mol) + (4 × 35.45 g/mol)

= 12.01 g/mol + 141.80 g/mol

= 153.81 g/mol.

Next, convert the mass of CCl4 to moles:

Moles of CCl4 = 45.0 g / 153.81 g/mol

= 0.2927 moles of CCl4.

Since there is one carbon atom in each molecule of CCl4, the moles of carbon are equal to the moles of CCl4. Now multiply the moles of carbon by the molar mass of carbon to get the grams:

Grams of Carbon = 0.2927 moles × 12.01 g/mol

= 3.513 grams of carbon.

A sample of gas of 752 torr and occupies a volume of 5.12 L. What will the new volume be when the pressure is increased to 1.5 ATM

Answers

 7.80 hop it help u ok

According to Boyle's law and as 1 atmosphere= 760 torr the new volume when pressure is increased to 1.5 atmospheres is 3.37 L.

What is Boyle's law?

Boyle's law is an experimental gas law which describes how the pressure of the gas decreases as the volume increases. It's statement can be stated as, the absolute pressure which is exerted by a given mass of an ideal gas is inversely proportional to its volume provided temperature and amount of gas remains unchanged.

Mathematically, it can be stated as,

P∝1/V or PV=K. The equation states that the product of of pressure and volume is constant for a given mass of gas and the equation holds true as long as temperature is maintained constant.

According to the equation the unknown pressure and volume of any one gas can be determined if two gases are to be considered.That is,

P₁V₁=P₂V₂

Substitution in above equation gives V₂=0.989×5.12/1.5=3.37 L.

Thus, the new volume of gas is 3.37 L.

Learn more about Boyle's law,here:

https://brainly.com/question/1437490

#SPJ2

Many amines with useful medicinal properties are sold as their ammonium salts true or false

Answers

true Many amines with useful medicinal properties are sold as their ammonium salts this is infact true

A microwave oven produces energy waves with wavelengths that are

A.shorter than visible light
B.longer than visible light
C.the same length as visible light
D.not part of the electromagnetic spectrum

Answers

longer than visable light

A) longer than visible light

if the column of water in the water barometer rose to a height of 33 feet, what would the atmospheric pressure be in mm Hg?



Answers

Final answer:

A column of water that is 33 feet high in a water barometer would indicate normal atmospheric pressure, which is equivalent to a column of mercury that is 760 mm high.

Explanation:

In physics, we use tools like the barometer to measure atmospheric pressure. The atmospheric pressure is measured by the height to which a column of liquid, such as mercury or water, rises. If it's a water barometer, normal atmospheric pressure will support a column of water over 10 meters high, but since mercury (Hg) is denser, it only needs to be 1/13.6 as tall as a water barometer.

A standard atmospheric pressure of 1 atm at sea level (101,325 Pa) corresponds to a column of mercury that is about 760 mm high. So if the column of water rose to a height of 33 feet (approximately 10 meters), this would suggest a pressure equivalent to the normal atmospheric pressure.

However, we have to convert the height in a barometer containing mercury because of its density relative to water. We know water is 13.6 times less dense than mercury. Therefore, to find the height in a mercury barometer, we would need to divide the height of water by 13.6. So, 33 feet of water would be equivalent to 760 mm (29.92 inches) of mercury.

Learn more about Barometer here:

https://brainly.com/question/35887661

#SPJ11

Other Questions
What is the sequence of energy transformations associated with a hydroelectric dam? What is the volume of a coffee can that is 6.5 inches high and has a diameter of 5 inches? 85% of 40 emails equals What is the meaning of Barter? How does the authors word choice, figurative language, and use of poetic devices convey the meaning and the tone? Use evidence from the text to support your response. Please help me someone! According to a magazine, a cleaning solution of 5% bleach will remove mildew from a shower or tub. a. How many ounces of bleach do you need to make a quart of 5% bleach solution? b. Explain the method you used using complete sentences. Whats the answer? Frank can type a report in 4 hours and James takes 6 hours how long will it take the two of them typing together what did the British do to make the people of India less opposed to their colonial government in 1935 which body system of a pregnant woman shows the most dramatic physiological changes during pregnancy? Last year, there were 381 students at Woodland Middle School. This year, there are 419 students. What is the percent of change? Is it a percent increase or decrease? What's the difference and definition of effect and affect? People with an eating disorder can seek professional help to overcome their disorder or can wait until the disorder goes away on its own. A chicken soup recipe calls for 15cups of chicken stock how much is this in quarts Define element and compound. explain the difference between an element and a compound. Find the perimeter of the figure below. Notice that one side length is not given.Assume that all intersecting sides meet at right angles.Be sure to include the correct unit in your answer What is the slope of the hillside if the contour lines are spread out? When river waters recede after floods, the uncovered soil is described as? Eric bought 300 t-shirts, which were sold in packs of 12. how many packs did eric buy? When pangea broke into two land masses what did they name the two? If the wall is 8 feet high, what is the combination height of all of the heights of the bouncy balls? A 70kg divers steps off of a 10m tower and drops from rest straight into the water. If he comes to rest 5m beneath the surface, determine the average resistance force exerted on him by the water.