Gravity acts more strongly on the object.
Explanation:
When an object is dropped from a height, it reaches the ground despite friction acting on it because the force of gravity acting on it is stronger than the air resistance and friction. Air resistance and friction acts upward and prevents the ball from falling. However, it is negligible. The gravity acting on the object is so strong that it pulls the object towards earth with a constant acceleration called as acceleration due to gravity which has a constant value of 9.8m/s².
What is an economic impact of biodiversity?
Answer:
Sustainability.
Explanation:
Each organism and living creature has its part to play, and with the diverseness, each one supports the other - the cycle of life and the food chain.
Explanation:
an economic part of biodiversity could be tourism so people would want to see all the different species so that may be good for hotels flight companies and tour guides it may also be good for zoo companies if they increase the different amount of species it could attract more people brainliest pls
what is the position of the car at the end of the 10 secs?
Answer:
S=400m
Explanation:
Given t=10.and [tex]a=8m/s^2[/tex],
Initial velocity,[tex]u[/tex], of the car is zero.
To find distance,[tex]s[/tex]
[tex]S=ut+0.5at^2[/tex]
[tex]S=0\times10+0.5\times8\times10^2\\S=400m[/tex]
Therefore, car's position after 10seconds is 400m away from the start.
help? the first line is supposed to say "all _ has heat"
click the image
A uniformly charged rod (length = 2.0 m, charge per unit length = 3.0 nc/m) is bent to form a semicircle. What is the magnitude of the electric field at the center of the circle?
Answer:
84.82N/C.
Explanation:
The x-components of the electric field cancel; therefore, we only care about the y-components.
The y-component of the differential electric field at the center is
[tex]$dE = \frac{kdQ }{R^2} sin(\theta )$[/tex].
Now, let us call [tex]\lambda[/tex] the charge per unit length, then we know that
[tex]dQ = \lambda Rd\theta[/tex];
therefore,
[tex]$dE = \frac{k \lambda R d\theta }{R^2} sin(\theta )$[/tex]
[tex]$dE = \frac{k \lambda d\theta }{R} sin(\theta )$[/tex]
Integrating
[tex]$E = \frac{k \lambda }{R}\int_0^\pi sin(\theta )d\theta$[/tex]
[tex]$E = \frac{k \lambda }{R}*[-cos(\pi )+cos(0) ]$[/tex]
[tex]$E = \frac{2k \lambda }{R}.$[/tex]
Now, we know that
[tex]\lambda = 3.0*10^{-9}C/m,[/tex]
[tex]k = 9*10^9kg\cdot m^3\cdot s^{-4}\cdot A^{-2},[/tex]
and the radius of the semicircle is
[tex]\pi R = 2.0m,\\\\R = \dfrac{2.0m}{\pi };[/tex]
therefore,
[tex]$E = \frac{2(9*10^9) (3.0*10^{-9}) }{\dfrac{2.0}{\pi } }.$[/tex]
[tex]$\boxed{E = 84.82N/C.}$[/tex]
A car starts from rest with an acceleration of 6
which decreases linearly with time to zero in 10 seconds, after which the car continues at a constant speed. Determine the time t required for the car to travel 400 m from the start.
Answer:
[tex]t=16.67s[/tex]
Explanation:
From the question, acceleration from [tex]6m/s^2 \ to \ 0m/s^2[/tex] in 10 seconds.
Acceleration function can be written as:-
[tex]a_t=6-0.6t[/tex]
From the acceleration equation, we can obtain the velocity equation:
[tex]v(t)=\int\limits^t_b {0} \, dv=\int\limits^t_0 {a(t)} \, dt\\v(t)=\int\limits^t_0 {(6-06t)} \, dt=6t-0.3t^2\\*dv=a(t)dt[/tex]
We calculate velocity after 10sec from the above v(t) as [tex]30m/s[/tex].
To obtain distance travelled after 10 seconds:-
[tex]S=\int\limits^{10}_0 {6t-0.3t^2} \, dt=|3t^2-0.1t^3| \ *lims(10,0)\\ S=200m[/tex]
Therefore 200m is for 10seconds, and next 200m at 30m/s
Total time=[tex]10+\frac{200}{30}=16.67s[/tex]
If two objects with different masses are pushing each other, which exerts the greater force?
A. The object with the greater mass exerts the greater force on the smaller object because the larger object has more inertia.
B. It is impossible to tell which object exerts the greater force unless we know which object accelerates.
C. The object with the smaller mass exerts the greater force on the larger object because it requires more force to make the larger object move.
D. They both exert the same amount of force on each other regardless of their mass, but in opposite directions.
Answer:
the answer is 100% A
Explanation:
Answer:
If two objects with different masses are pushing each other, which exerts the greater force?
The object with the greater mass exerts the greater force on the smaller object because the larger object has more inertia.
Explanation:
Why and how is oil used to reduce the effects of friction in large machines
By reducing friction
Explanation:
A big machine is composed of several moving and stationary parts. Some of these parts are in a state of constant motion hence they periodically rub against each other. The friction between the body parts causes the body part to wear out and heat up in the process. This heat is symbolic of waste of energy.
The lubricating agents are a saviour in such conditions. Lubricating oils with high viscosities reduces friction. If we go deep into the working of the lubrication we find that the interacting parts of machines are quite rough when viewed under microscope. These rough surfaces when interact produce bumpy motion, wear and tear, heat etc.
Oil fills these microscopic voids and thus provides temporary relief. When these lubricated body parts interact, they encounter plain surface with decreased friction (due to high viscosity of the oils) and thus glide over each other freely thereby producing smooth movements, noiseless working.
Your father used weigh 484 N.What was his mass (to the nearest tenth)?
Final answer:
To find your father's mass, divide the force (484 N) by the acceleration due to gravity (9.8 m/s^2). The mass is approximately 49.4 kg (to the nearest tenth).
Explanation:
To determine your father's mass, we can use Newton's second law of motion, which states that force equals mass times acceleration (F = ma). In this case, the force is 484 N (Newtons) and the acceleration is the acceleration due to gravity, which is approximately 9.8 m/s^2. Rearranging the formula, we get mass = force / acceleration, which gives us mass = 484 N / 9.8 m/s^2. Calculating this, we find that your father's mass is approximately 49.4 kg (to the nearest tenth).
In lab, your instructor generates a standing wave using a thin string of length L = 1.65 m fixed at both ends. You are told that the standing wave is produced by the superposition of traveling and reflected waves, where the incident traveling waves propagate in the +x direction with an amplitude A = 3.65 mm and a speed vx = 13.5 m/s . The first antinode of the standing wave is a distance of x = 27.5 cm from the left end of the string, while a light bead is placed a distance of 13.8 cm to the right of the first antinode. What is the maximum transverse speed vy of the bead?
The given standing wave on a string has a wavelength (λ) of 0.55 m, a frequency (f) of 24.54 Hz, a wave number (k) of 11.46 rad/m, and an angular frequency (ω) of 154.3 rad/s. The displacement of the bead at its position is given by the wave equation, and the maximum transverse speed (vy_max) is estimated to be approximately 0.4 m/s.
Length of the string (L) = 1.65 m
Amplitude of the traveling wave (A) = 3.65 mm
Speed of the traveling wave (vx) = 13.5 m/s
Distance of the first antinode from the left end (x) = 27.5 cm
Distance of the bead from the first antinode (d) = 13.8 cm
2. Finding the wavelength (λ):
Since the antinode is the point of maximum displacement, the first antinode is located at half the wavelength from the fixed end. Therefore,
λ = 2 * x = 2 * 0.275 m = 0.55 m
3. Finding the frequency (f):
We can use the relationship between wave speed, wavelength, and frequency:
v = λf
f = v / λ = 13.5 m/s / 0.55 m = 24.54 Hz
4. Finding the wave equation:
The equation for a standing wave on a string can be written as:
y(x, t) = A sin(kx) cos(ωt)
where:
k = wave number (k = 2π/λ)
ω = angular frequency (ω = 2πf)
5. Finding the wave number (k):
k = 2π/λ = 2π / 0.55 m = 11.46 rad/m
6. Finding the angular frequency (ω):
ω = 2πf = 2π * 24.54 Hz = 154.3 rad/s
7. Finding the displacement of the bead at its position:
The bead is located at x = x1 + d, where x1 is the distance of the first antinode from the left end (0.275 m) and d is the distance of the bead from the first antinode (0.138 m).
x1 + d = 0.275 m + 0.138 m = 0.413 m
Substitute this value of x in the wave equation:
y(0.413 m, t) = 3.65 mm * sin(11.46 rad/m * 0.413 m) * cos(154.3 rad/s * t)
8. Finding the maximum transverse speed (vy):
The maximum transverse speed occurs when the derivative of the displacement with respect to time (dy/dt) is at its maximum.
vy(t) = dy/dt = -Aω * cos(kx) sin(ωt)
The maximum value of sin(ωt) is 1, and the maximum value of cos(kx) depends on the position of the bead. Since the bead is not at a node or antinode, cos(kx) will not be 0 or 1.
Therefore, the maximum transverse speed (vy_max) can be estimated as:
vy_max ≈ Aω ≈ 3.65 mm * 154.3 rad/s ≈ 0.4 m/s
What is a substance?
A
a uniform mixture that can't be separated
B. a mixture that can be separated
C.
a single component that can't be separated
D. a single component that can be separated
Reset
Next
Answer:
A single component that can’t be separated
brainliest please ;)
A substance is a single component that can't be separated. It can be an element or a compound, like pure water.
Explanation:A substance in the realm of chemistry is generally referred to as C. a single component that can't be separated. This implies that it consists of one type of particle only, and these particles cannot be separated by simple physical means. A substance can be either an element, which contains a single type of atom, or a compound, which contains molecules formed from different types of atoms chemically bonded together. For example, pure water (H2O) is a substance.
Learn more about Substance here:https://brainly.com/question/32839637
#SPJ2
5. In Ohm's Law, "\" stands for
it is measured in amps.
O current
O resistance
Answer:current is measured in amps
Explanation:
Current measured in amps
Answer:
Current
Explanation:
Obviously
How do you find the value of e?
refractive index = sin i / sin e
where i is the angle of incidence
e is the angle of refraction
1.5 = sin 35 / sin e
1.5 = 0.5736/sin e
sin e = 0.5736/ 1.5
sin e = 0.3824
e = 22.48°
I need help for this exercise:
Crumple zones in cars increase the time and the distance over the which a car stop during a collision. The length of the crumple zone is 1.6m.
a) Find the maximum speed that the car could have when hitting a wall head-on without subjecting the passager to an acceleration of more than 46.2g (i.e., 46.2 times the acceleration due the gravity)
b) How long would that collision last?
Answer:
a) The maximum speed is 38 m/sb) The collision would last 0.083 s
Explanation:
By increasing the time and the distance over which a car stops during a collision, the change in the velocity (acceleration) is reduced, reducing, in consequence, the impact.
The equation to determine the change in velocity for a uniformly accelerated motion is given by the relation between the speed, the distance, and the acceleration:
v² - u² = 2×acceleration × distanceThe acceleration must be less than or equal to 46.2g, which is 46.2 × 9.8m/s² = 452.76m/s². Thus, the condition is acceleration ≤ 452.76m/s²
Here, using the maximum acceleration:
u = final velocity = 0acceleration = 457.76m/s²distance = 1.6 mThus:
v² = 2 (457.76m/s²) × 1.6mv = 38.06m/sv = 38 m/sTo determine the time use the impulse notion.
Impulse = Force × ΔtChange in momentum = mass × ΔvImpulse = Change in momentumForce × Δt = mass × ΔvForce / mass = Δv / Δtacceleration = Δv / ΔtSince the final velocity is 0 (the car stops), Δv is the speed of the car: Δv = v.
Substitute:
v/Δt = 457.76 m/s²Δt = v / 457.76 m/s²Δt = (38 m/s) / (457.76m/s²) = 0.083sWitch part of the ear is responsible for sending singnals about sound to the brain
Answer:
Cochlea
Explanation:
Cochlea. The [tex]cochlea[/tex] changes the sound vibrations from the middle ear into nerve signals. The nerve signals the travel to the brain via the [tex]cochlea \ nerve[/tex].
The cochlea nerve is also called the auditory nerve.
is there carbon atoms in the compound Ca3N2
No, there are not any carbon atoms inside this compound.
The compound is [tex]Ca_3N_2[/tex]. This means there are 3 "Ca" atoms and 2 "N" atoms.
Ca is calciumN is nitrogenThus, none of the elements in this compound are carbon, meaning there are no carbon atoms. Let me know if you need any clarifications, thanks!
~ Padoru
When a light ray passes from LESS dense water (n = 1.33) into a MORE dense diamond (n = 2.419) at an angle of 45 degrees, its path is bend _____ the normal.
Towards
Explanation:
When light is incident at a transparent surface, the transmitted component of the light changes direction at the interface. Another component of the light is reflected at the surface. When a ray of light passes from water to diamond at an angle 45°, its path is bent towards the normal. This is so because water is less dense than the diamond. The refractive index of water (n = 1.33) is less than the refractive index of diamond (n = 2.419).
Light passing from less dense water to more dense diamond bends towards the normal due to a significant change in refractive indices.
When a light ray passes from less dense water (n = 1.33) into more dense diamond (n = 2.419) at an angle of 45 degrees, its path is bent towards the normal.
To calculate the angle of refraction, we can use Snell's Law: n1sinθ1 = n2sinθ2. Given n1 (water) = 1.33, n2 (diamond) = 2.419, and θ1 = 45°, we can solve for θ2.
The larger change in direction in diamond compared to water is due to the significant difference in refractive indices, leading to a greater impact on the path of the light ray.
which type of energy is stored in a stretched string on the bow in the following figure
Answer:
potential energy
Explanation:
Answer: Elastic Potential Energy
Explanation: For stretched material such as ropes or strings they have a certain form of energy that allows them to stretch or compress. The energy is called elastic energy. For the case of the string on the bow it possess Elastic Potential Energy since there is no motion in the string.
Why is the speed of sound faster in a humid and warm sea-level rainforest compared to the top of Mount Everest?
Answer: Because the speed of sound varies depending on the medium and its temperature.
Explanation:
Sound is a mechanical wave, this means its velocity of propagation depends on the medium.
Now, in general sound waves travel faster in solids than in liquids or gases. In addition, it varies with changes in the temperature of the medium. This is because an increase in temperature means that the frequency of interactions between the particles that transport the vibration increases, hence this increase in activity increases the speed.
So, the speed of sound in a gas (air, for example) is not constant, but depends on the temperature.
Hence, the higher the air temperature, the greater the velocity of propagation; that is why the speed of sound is faster in a humid and warm sea-level rainforest compared to the top of Mount Everest, which is cold.
What is Earth described as?
Answer:
Earth, our home, is the third planet from the sun. It's described as the only planet known to have an atmosphere containing free oxygen, oceans of water on its surface and, of course, life. Earth is also the fifth largest of the planets in the solar system. Hope this helped.
Explanation:
A 59 kg man has a total mechanical energy of 150,023. J. If he is swinging downward and is currently 2.6 m above the ground, what is his speed ?
Answer:
71
Explanation:
A 59 kg man has a total mechanical energy of 150,023. J. If he is swinging downward and is currently 2.6 m above the ground, his speed 71 m/sec.
What is energy?Energy is the ability or capability to do tasks, such as the ability to move an item (of a certain mass) by exerting force. Energy can exist in many different forms, including electrical, mechanical, chemical, thermal, or nuclear, and it can change its form.
Using conservation of energy
m*g*h + 0.5 m*v² = 150023 joule
59*9.8*2.6 + 0.5*59*v² = 150023
1503.32 + 29.5 v² = 150023
29.5 v² = 148519.60
v² = 5034.56
v = 70.95 = 71 m/sec
A 59 kg man has a total mechanical energy of 150,023. J. If he is swinging downward and is currently 2.6 m above the ground, his speed 71 m/sec.
To learn more about energy refer to the link:
brainly.com/question/1932868
#SPJ2
A sample of gas has a volume of 42 L at a pressure of 200 kPa and a temperature of 30^ * C . What would be the volume, if the pressure were increased to 250 kPa and the temperature were decreased to 5^ * C ?
Answer:
30 L
Explanation:
Ideal gas law:
PV = nRT
Rearranging:
PV / T = nR
Since n and R are constant:
P₁ V₁ / T₁ = P₂ V₂ / T₂
Plugging in values and solving:
(200 kPa) (42 L) / (30 + 273.15 K) = (250 kPa) V / (5 + 273.15 K)
V = 30.8 L
Rounded to one significant figure, the new volume is 30 L.
2. A 1.00 x 103 kg sports car accelerates from rest to 25.0 m/s in 7.50 s. What is the
average power output of automobile engine?
a. 20.8 kW
b. 30.3 kW
C. 41.7 kW
Answer:
C = 41.7kW
Explanation:
Data ;
Mass (M) = 1x10³kg
Initial velocity (u) = 0m/s
Final velocity (v) = 25m/s
Time (t) = 7.5s
Power = Work / time
Work = force * distance
acceleration = average velocity/ time
Acceleration = (25 - 0) / 7.5 = 3.3m/s²
Power = force * velocity (speed)
Average velocity = (25 - 0) / 2 = 12.5m/s
Force = mass * acceleration = 1x10³ * 3.3 = 3333.33N
Power = force * velocity
Power = 3333.33 * 12.5 / 41666.67W
Answer:
C. 41.7 kW
Explanation:
car's acceleration is the velocity difference over time: a = (v1 - v0)/t = (25 - 0)/7.5 = 3.3 m/s^2
The avg. power P = F * v
The avg. speed is thus v = (v0 + v1)/2 = (0 + 25)/2 = 12.5 m/s
F = m * a = 1*10^3 * 3.3 = 3,333 N
P = 3,333 * 12.5 = 41,667 W = 41.7 kW
A 63 kg astronaut drifting with 7.0 m/s to the right with
respect to a spacecraft uses a jetpack to slow down.
Suppose it takes 14.0 s to come to a stop with respect to the spacecraft. What is the force exerted by the jetpack?
Answer:
31.5N
Explanation:
M = 63kg, v = 7.0m/s t = 14.0s F =?
Force = Mass * acceleration
but acceleration = change in velocity / time
a = dV/dt
F = (63 * 7.0) / 14
F = 31.5N
To calculate the force exerted by the jetpack, we use the astronaut's deceleration and mass. The deceleration is obtained from the change in velocity (from 7.0 m/s to 0 m/s in 14.0 s). Applying Newton's second law, the force equals to the mass (63 kg) multiplied by the deceleration (-0.5 m/s²), resulting in a force of 31.5 newtons in magnitude.
Explanation:The question is asking to calculate the force exerted by a jetpack that an astronaut uses to come to a stop relative to a spacecraft. First, we'll use the formula for acceleration (a) which is the change in velocity (Δv) divided by the change in time (Δt). In this case, the astronaut decelerates from 7.0 m/s to 0 m/s in 14.0 s, so the acceleration is -7.0 m/s divided by 14.0 s, which equals -0.5 m/s² (the negative sign indicates deceleration).
The next step is to apply Newton's second law of motion: F = ma, where F is the force, m is the mass, and a is the acceleration. Plugging in the values we have: F = 63 kg * (-0.5 m/s²) = -31.5 N. The negative sign indicates that the force is in the opposite direction of the initial velocity, i.e., to the left if the initial movement was to the right.
The magnitude of the force exerted by the jetpack is 31.5 newtons.
what is nuclear radiation?
Answer:
noun. Physics. radiation in the form of elementary particles emitted by an atomic nucleus, as alpha rays or gamma rays, produced by decay of radioactive substances or by nuclear fission.
Explanation:
Nuclear radiation, or radioactivity, is energy and particles emitted by the nucleus in a nuclear reaction. It includes gamma-rays, alpha-particles, beta-particles, neutrons, and positrons. While useful in many areas, such as cancer detection and city powering, it can also pose health risks.
Explanation:Nuclear radiation, also known as radioactivity, is the energy and particles emitted by the nucleus during a nuclear reaction. It is a form of ionizing radiation, meaning the energy is sufficient to ionize matter, or change the structure of atoms.
Nuclear radiation includes gamma-rays (y-radiations), alpha-particles (a-particles), beta-particle (B-particles), neutrons (n), and positrons (3+-particles). These types of radiation originate from the radioactive decay of naturally occurring radionuclides.
While nuclear radiation is integral to many aspects of daily life, such as cancer detection, artifact study, city powering, it can also pose health risks. For instance, high doses of nuclear radiation can cause burns and hair loss.
Learn more about Nuclear Radiation here:https://brainly.com/question/11878930
#SPJ12
Determining Current as a Function of Voltage
A set of data is collected from a simple circuit with a
20 2 resistor and is represented in the table.
Voltage
Current
Resistance
(V)
(A)
The current at 5.0 VisY A.
The current at 15 Vis a
5.0
20
15 T
I
20.
Answer:5.0 v is 0.25a
15v is 0.75a
Explanation:
1: A, 0.25
2: C, 0.75
for inclined plane derive efficiency =L/h
Answer: L=F/a
Explanation:
Efficiency of inclined plane is L/h VR.
What is meant by the efficiency of an inclined plane ?Efficiency of an inclined plane is defied as the ratio of effort in moving a body up or down without friction to that with friction.
Here,
The efficiency of an inclined plane,
η = MA/VR
η = (l/h)/ (dE/dl)
η = L/h (VR)
Hence, derived the efficiency for inclined plane is L/h VR.
To learn more about efficiency of inclined plane, click:
https://brainly.com/question/6242390
#SPJ2
The differential distribution of ions across the cell membrane is due to the:
A. A lack of cell ATP
B. Difference in permeability of the cell membrane to ions
C. Resting membrane potential
D. Na+-K+-ATPase pump
The differential distribution of ions across the cell membrane is due to the "resting membrane potential".
Option: C
Explanation:
The unequal allocation of charged particles like ions between the internal and external portion of cell, and by the varying membrane permeability to various ion forms, understood as resting membrane potential.
Within a sleeping brain, Na+ and K+ ions exhibit concentration gradients throughout the membrane, which push their gradients down through channels, resulting in a differentiation of the charges that generates the resting potential. With K+ than Na+ ions, the membrane is even more permeable, so the resting potential is similar to potassium ion's equilibrium potential.
The differential distribution of ions across the cell membrane is largely due to the Na+-K+-ATPase pump, a protein that uses ATP to transport sodium and potassium ions against their concentration gradients. Other factors such as the membrane's ion permeability, the resting membrane potential, and ATP levels also contribute.
Explanation:The differential distribution of ions across the cell membrane is primarily due to the Na+-K+-ATPase pump, also known as the sodium-potassium pump. This protein structure uses energy from ATP to pump three sodium ions out of the cell and two potassium ions into the cell, establishing a concentration gradient. The difference in permeability of the cell membrane to various ions also plays a role in the differential distribution, but the Na+-K+-ATPase pump is the primary mechanism.
The resting membrane potential and cell ATP levels also indirectly influence ion distribution. The resting membrane potential is a result of the charge difference across the cell membrane due to the ion distribution, while a lack of ATP can affect the energy-dependent Na+-K+-ATPase pump's function.
Learn more about Na+-K+-ATPase pump here:https://brainly.com/question/38842807
#SPJ11
Which numbers indicate the phases during which the moon is waxing?
A)1,5
B)2,3,4
C)5,6,7,8
D)2,3,4,5,6,7
Answer:
A
Explanation:
it is just right
The unit for frequency is the meter. Question 8 options: True False
False
Explanation:
The Unit of Frequency is Hertz (Hz)
Frequency in layman’s language can be said as a number of times a particular event repeat itself in unit time.
E.g. Supposing a hypothetical situation in which a boy cracks 5 nuts every minute, then his frequency can be said to be 5 nuts /min
However, in physical dimensions, the frequency is always calculated in terms of a second (as a measure of unit time).
Hence the Standard unit (SI)of Frequency is named after German origin physicist Heinrich Hertz. In simple terms, 1 Hertz denotes the event repeats itself one time per second and in physics domain one cycle per second.
Four ball are simultaneously launched with the same speed from the same height and h above the ground. At the same instant, ball 5 is released from the rest at the same height. Rank in order, from shortest to longest, the amount of time it takes each of these balls to hit the ground ( some maybe simultaneously.)
In this scenario of Physics involving free fall and projected motion, all the balls launched, whether from rest or different angles, from the same height will hit the ground simultaneously. The time of flight in such a case, considering no air resistance, will only depend on the initial height from the ground and the acceleration due to gravity, not on the initial speed or direction of projection.
Explanation:The question pertains to the physics concept of free fall and their time of flights. To reiterate, all the balls are being launched from the same height, h, including ball 5 which is released from rest. According to physics, irrespective of their initial velocities or launch angles, all objects in free fall will hit the ground at the same time assuming they are dropped from the same height. This is because the time a projectile is in the air is governed by its vertical motion alone and in this scenario, all the balls have the same vertical component which is the same height from which they are dropped. So, all of the balls including ball 5 will hit the ground simultaneously.
This understanding is backed by two key principles. One, that the horizontal and vertical motions of a projectile are independent of each other, meaning the horizontal velocity does not affect the vertical fall. Two, that the time of flight of a projectile is linearly proportional to the initial velocity in the y direction (height in this case) and inversely proportional to g (acceleration due to gravity). Considering the fact that all the balls start from rest, have the same height, and experience the same acceleration due to gravity, the time of flight for all balls becomes equal.
Learn more about Projectile Motion here:https://brainly.com/question/29545516
#SPJ3