What type of waves carry energy at a right angle to the direction of the energy flow?

Answers

Answer 1

Transverse waves In transverse waves, particles of the medium vibrate to and from in a direction perpendicular to the direction of energy

Hope this answer helps you

Answer 2

The transverse wave carries the energy in the right angle of the direction of the wave's advances.

Transverse waves:It is the in which all points of the wave oscillate perpendicular to the direction of the wave's advances.They do not need the medium to travel.For example- Electromagnetic waves

Therefore, the transverse wave carries the energy in the right angle of the direction of the wave's advances.

Learn more about Transverse waves:

https://brainly.com/question/3813804


Related Questions

What is the gravity between two objects proportional to?

Answers

The gravitational force between two objects is proportional to their masses and inversely proportional to the square of the distance between their centers.

Match the glacier feature with its description.

A. (Kettles) Holes left by glaciers

B.( Drumlins) Egg-shaped hills

C.(Erratics) Three-sided valleys

D.(Cirques) Large, out-of-place boulders

Answers

Answer:

kettles: holes left by glaciers.

cirques: three-sided valleys

erratics: large, out-of-place rocks bouldersleft by glaciers.

drumlins: egg-shaped hills

Explanation:

Final answer:

Kettles are holes left by glaciers, drumlins are egg-shaped hills, erratics are large, out-of-place boulders, and cirques are three-sided valleys carved out by glaciers.

Explanation:

A. Kettles are holes left by glaciers. They are formed when a block of ice becomes buried in glacial sediments and then melts, leaving behind a depression or hole.

B. Drumlins are egg-shaped hills, typically found in clusters. They are formed when glaciers deposit sediments in elongated mounds parallel to the flow of the ice.

C. Erratics are large, out-of-place boulders that are transported by glaciers and left behind when the ice melts. They can be found in areas different from the type of rock they are made of.

D. Cirques are three-sided valleys carved out by glaciers. They are typically found at the head of a mountain valley and have steep walls.

If the temperature of an iron sphere is increased a. Its mass will decreaseb. Its density will increasec. Its density will decreased. Its density will remain unchanged

Answers

a. Its mass will decreaseb.

A 1000-kg car is slowly picking up speed as it goes around a horizontal curve whose radius is 100 m. The coefficient of static friction between the tires and the road is 0.350. At what speed will the car begin to skid sideways?

Answers

Answer:

18.5 m/s

Explanation:

On a horizontal curve, the frictional force provides the centripetal force that keeps the car in circular motion:

[tex]\mu mg = m\frac{v^2}{r}[/tex]

where

[tex]\mu[/tex] is the coefficient of static friction between the tires and the road

m is the mass of the car

g is the gravitational acceleration

v is the speed of the car

r is the radius of the curve

Re-arranging the equation,

[tex]v=\sqrt{\mu gr}[/tex]

And by substituting the data of the problem, we find the speed at which the car begins to skid:

[tex]v=\sqrt{(0.350)(9.8 m/s^2)(100 m)}=18.5 m/s[/tex]

The car will begin to skid sideways at 18.5 m/s

[tex]\texttt{ }[/tex]

Further explanation

Centripetal Acceleration can be formulated as follows:

[tex]\large {\boxed {a = \frac{ v^2 } { R } }[/tex]

a = Centripetal Acceleration ( m/s² )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

[tex]\texttt{ }[/tex]

Centripetal Force can be formulated as follows:

[tex]\large {\boxed {F = m \frac{ v^2 } { R } }[/tex]

F = Centripetal Force ( m/s² )

m = mass of Particle ( kg )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

Let us now tackle the problem !

[tex]\texttt{ }[/tex]

Given:

mass of car = m = 1000 kg

radius of curve = R = 100 m

coefficient of static friction = μ = 0.350

Asked:

speed of the car = v = ?

Solution:

We will derive the formula to calculate the maximum speed of the car:

[tex]\Sigma F = ma[/tex]

[tex]f = m \frac{v^2}{R}[/tex]

[tex]\mu N = m \frac{v^2}{R}[/tex]

[tex]\mu m g = m \frac{v^2}{R}[/tex]

[tex]\mu g = \frac{v^2}{R}[/tex]

[tex]v^2 = \mu g R[/tex]

[tex]\boxed {v = \sqrt { \mu g R } }[/tex]

[tex]v = \sqrt { 0.350 \times 9.8 \times 100 }[/tex]

[tex]v = \sqrt { 343 }[/tex]

[tex]v = 7 \sqrt{7} \texttt{ m/s}[/tex]

[tex]\boxed {v \approx 18.5 \texttt{ m/s}}[/tex]

[tex]\texttt{ }[/tex]

Learn moreImpacts of Gravity : https://brainly.com/question/5330244Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454The Acceleration Due To Gravity : https://brainly.com/question/4189441

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Circular Motion

Which statement correctly describes the movement of thermal energy according to the second law of thermodynamics? The natural tendency of systems is for heat to flow from a cooler object to a warmer one. The natural tendency of systems is to evenly distribute energy until the objects are the same temperature. The natural tendency of systems is for heat to flow continuously between objects of the same temperature.

Answers

Your answer is B) The natural tendency of systems is to evenly distribute energy until the objects are the same temperature.

Answer:

The correct answer is:

The natural tendency of systems is to evenly distribute energy until the objects are the same.

Explanation:

Thermal equilibrium

When ever two bodies differing in temperatures comes in contact with each other heat flow takes place from hotter body to cooler body in order to establish an equilibrium in which temperature of both the bodies becomes constant.

According to second law of thermodynamics:

When the energy of the system increases, matter moves more freely and change in entropy that is disorderliness of the system increases.

This increase in entropy is due to the energy possessed by the matter particles which has resulted in their motion or movement

With this increase in entropy of system, system will start interacting with its surroundings .And this interaction will results in evenly distribution of energy in its surroundings.

A 20.0 μf capacitor is charged to a potential difference of 850 v. the terminals of the charged capacitor are then connected to those of an uncharged 12.0 μf capacitor. (a) compute the original charge of the system. (b) compute the final potential difference across capacitor. (c) compute the final energy of the system. (d) compute the decrease in energy when the capacitors are connected.

Answers

(a) [tex]Q = 1.70\times 10^{-2}\;\text{C}[/tex];(b) [tex]V_\text{final} = 5.31\times 10^{2}\;\text{V}[/tex];(c) [tex]E_\text{final} = 4.52\;\text{J}[/tex];(d) [tex]\Delta E = 2.82\;\text{J}[/tex].

All four values are in 3 sig. fig.

Explanation

(a)

[tex]Q = C\cdot V = 20.0\times 10^{-6} \times 850\;\text{V} = 1.70\times 10^{-2}\;\text{J}[/tex].

(b)

Sum of the final charge on the two capacitors should be the same as the sum of the initial charge. Voltage of the two capacitors should be the same. That is:

[tex]C_1\cdot V_\text{final} +C_2 \cdot V_\text{final} = C_1\cdot V_\text{initial}[/tex];

[tex](C_1+C_2)\cdot V_\text{final} = C_1\cdot V_\text{initial}[/tex];

[tex]\displaystyle V_\text{final} = \frac{C_1}{C_1+C_2}\cdot V_\text{initial}\\\phantom{V_\text{final}} = \frac{20.0\;\mu\text{F}}{20.0\;\mu\text{F} + 12.0\;\mu\text{F}} \times 850\;\text{V}\\\phantom{V_\text{final}} =531\;\text{V}[/tex].

(c)

[tex]\displaystyle E = \frac{1}{2}\cdot C\cdot V^{2}[/tex].

[tex]\displaystyle E_\text{final} = \frac{1}{2} (C_1 + C_2) \cdot {V_\text{final}}^{2} \\\phantom{E_\text{final}} = \frac{1}{2} \times (20.0\times 10^{-6} + 12.0\times 10^{-6}) \times 531.25\\\phantom{E_\text{final}} = 4.52\;\text{J}[/tex].

(d)

Initial energy of the system, which is the same as the initial energy in the [tex]20.0\;\mu\text{F}[/tex] capacitor:

[tex]\displaystyle E_\text{initial} = \frac{1}{2} \times 20.0\times 10^{-6} \times 850^{2} = 7.225\;\text{J}[/tex].

Change in energy:

[tex]\Delta E = 7.225\;\text{J} - 4.516\;\text{J} = 2.70\;\text{J}[/tex].

The properties of the capacitors can be calculated the answers are:

     a) Q₁ = 1.70 10-2 C

     b) V_f = 531 V

     c) U_f = 4.52 J

     d) ΔU = 2.71 J

 

Given parameters

The capacitance C₁ = 20.0 10⁻⁶ F and C₂ = 12.0 10⁻⁶ F The initial potential deference V1 = 850 V

To find

     a) The initial charge

     b) The potential difference of the system connected capacitors

     c) The final energy of the system

     d) the energy change when connecting the capacitors

A capacitor is a system formed by two separate parallel plates that serves to store electrical charge,

          Q = C V

Where Q is the stored charge, C the capacitance and V the potential difference

a) ask for the initial charge

         Q₀ = C₁ V₀

         Q₀ = 20.0 10⁻⁶  850

         Q₀ = 1.70 10⁻² C

b) The law of conservation of charge establishes that the electric charge cannot be created or destroyed, therefore the initial charge (Q₀) must be distributed between the two connected capacitors

           Q₀ =  [tex]Q_{1f} + Q_{2f}[/tex]

           C₁ V₀ = C₁ [tex]V_{1f}[/tex]  + C₂  [tex]V_{2f}[/tex]

the Power Difference final  between the two capacitors must be the same, parallel connection

           C₁ V₀ = (C₁ + C₂) [tex]V_f[/tex]

           [tex]V_f[/tex] = [tex]\frac{C_1}{C_1+C_2} \ V_o[/tex]

           V_f = [tex]\frac{20}{20+12} \ 850[/tex]

           V_f = 531.25 V

c) The stored energy capacitor is

          U = ½ C V²

The final energy system is

          U = ½ (C₁ + C₂) [tex]V_f^2[/tex]

          U = ½ (20 + 12) 10⁻⁶  531.25²

          U = 4.516 J

d) To calculate the energy change

         ΔU = U₀ - [tex]U_f[/tex]

let's look for the initial energy

         U₀ = ½ C₁ V₀²

         U₀ = ½ 20 10⁻⁶  850²

         U₀ = 7.225 J

whereby the energy change is

         ΔU = 7.225 - 4.516

         ΔU = 2.71 J

           

In conclusion using the properties of the capacitors we were able to calculate the answers are:

         a) Q₁ = 1.70 10-2 C

         b) V_f = 531 V

         c) U_f = 4.52 J

         d) ΔU = 2.71 J

Learn more about capacitors here:

https://brainly.com/question/24212501

what is the preception of intensity?​

Answers

Intensity being the physical parameter that describes the sound signal, sound stimulus, at the basilar membrane that we talked about last time. And, loudness being the perception of the sound signal intensity.

hope this helps:)sorry if it doesnt

plz mark brainliest

Final answer:

The perception of sound intensity is known as loudness, measured in phons or more commonly in decibels (dB). Light intensity is perceived as brightness and measured in candelas. The overall perception of sound, including loudness, pitch, and timbre, is processed by the CNS through the encoding of action potentials.

Explanation:

The perception of intensity in sound is commonly referred to as loudness, which is influenced by the physical property of sound wave amplitude. The unit of measurement for loudness is the phon, though more commonly, sound intensity level is measured in decibels (dB). In the case of light, intensity is perceived as luminous intensity or brightness, with the candela as its standard unit. Furthermore, timbre is what distinguishes different sounds at the same pitch and loudness, being influenced by the unique frequencies and intensities produced by an instrument.

The intensity of a stimulus, such as sound, can be encoded in two ways in the nervous system. One is by the rate of action potentials: an intense stimulus generates a rapid train of action potentials. The second method is by the number of receptors activated—the more intense the stimulus, the more receptors stimulated. The Central Nervous System (CNS) integrates these signals, further processing the sensory information into what we perceive.

Light enters air from water. The angle of refraction will be A. less than the angle of incidence. B. greater than or equal to the angle of incidence. C. less than or equal to the angle of incidence. D. equal to the angle of incidence. E. greater than the angle of incidence.

Answers

Answer:

E. greater than the angle of incidence.

Explanation:

Snell's law states that:

[tex]n_i sin \theta_i = n_r sin \theta_r[/tex] (1)

where

[tex]n_i, n_r[/tex] are the refractive index of the first and second medium

[tex]\theta_i, \theta_r[/tex] are the angle of incidence and refraction, respectively

For light moving from water to air, we have:

[tex]n_i = 1.33[/tex] (index of refraction of water)

[tex]n_r = 1.00[/tex] (index of refraction of air)

Substituting into (1) and re-arranging the equation, we get

[tex]\sin \theta_r = \frac{n_i}{n_r} sin \theta_i = 1.33 sin \theta_i[/tex]

which means that

[tex]\theta_r > \theta_i[/tex]

so, the correct answer is

E. greater than the angle of incidence.

Light enters air from water. The angle of refraction will be

A. less than the angle of incidence. B. greater than or equal to the angle of incidence. C. less than or equal to the angle of incidence. D. equal to the angle of incidence. E. greater than the angle of incidence.Further explanation

Refractive Index is the value that calculated from the speed of light ratio in a vacuum to in a second medium of greater density. The refractive index variable is symbolized by the letter [tex]n[/tex] or [tex]n'[/tex] in descriptive text and mathematical equations.

Light enters air from water, the angle of refraction will be greater than the angle of incidence.

When light passed from a less dense to a more dense substance for example passing from air into water, the light is refracted towards the normal. The normal is a line perpendicular (forming a 90 degree angle) to the boundary between the two substances.

Hope it helps!

Learn moreLearn more about The angle of refraction https://brainly.com/question/2660868 Learn more about the angle of incidence https://brainly.com/question/1562672Learn more about the law of reflection https://brainly.com/question/12617938

Answer details

Grade:  9

Subject:  physics

Chapter:  refraction

Keywords:  The angle of refraction, the angle of incidence

A positive charge of 3.2 x 10 -5 C is located 0.85 m away from another positive charge of 7.4 x 10 -6 C. What is the electric force between the two charges?

Answers

by using Coulumbs Law its 2.95N.

The nucleus of an atom contains positively charged particles, called protons, and neutral particles, called neutrons. How is the nucleus of an atom held together?

Answers

Final answer:

The nucleus of an atom, which contains positively charged protons and neutral neutrons, is held together by the strong nuclear force. This force overcomes the repulsive electromagnetic force between protons, allowing the nucleus to remain stable.

Explanation:

The nucleus of an atom is at the center and contains protons and neutrons, known together as nucleons. While the protons carry a positive charge, the neutrons are neutral. The presence of protons with like charges would typically cause them to repel each other due to electromagnetic force. However, protons and neutrons in the nucleus do not fly apart because they are bound together by the strong nuclear force. This is a much stronger force than the electromagnetic force that causes like charges to repel each other and it is the key to keeping the nucleus stable, despite the repulsion between positively charged protons.

Many nuclei contain roughly equal numbers of protons and neutrons, with these nucleons making up most of the atom's mass. The atomic nucleus is incredibly dense and occupies only a tiny portion of the atom's volume, suggesting its strong nuclear forces are short-range but potent within that small space.

It's the strong nuclear force that prevents the nucleus from disintegrating under the repulsive force experienced by the protons. Without this force, the positive protons would indeed repel each other and the atom would not be stable. The strong nuclear force ensures that atoms can exist and form the matter that constitutes the world around us.

True or false? A protostellar cloud spins faster as it contracts

Answers

Answer:

No. The protostellar cloud spins faster in the collapsing stage (stage 1) and becomes much slower in the contraction stage (stage 2)

Explanation:

Once the cloud is so dense that the heat which is being produced in its center cannot easily escape, pressure rapidly rises, and catches up with the weight, or whatever external force is causing the cloud to collapse, and the cloud becomes stable, as a protostellar cloud.

The protostellar cloud will become more dense over thousands of years. This stage of decreasing size is known as a contraction, rather than a collapse. In the contraction stage the cloud has become much slower, and because weight and pressure are more or less in balance. In the first stage of formation, the decrease of size is very rapid, and compressive forces completely overwhelm the pressure of the gas, and we say that the cloud is collapsing.

Which of the following sets of characteristics describes the image formed by a plane mirror?A. Virtual and invertedB. Real and uprightC. Virtual and uprightD. Real and invertedE. All the previous statements can be correct

Answers

Answer: Virtual and upright

A plane mirror is a highly polished flat surface with a very high capacity to reflect incident light.  

We can understand in a better way how this works with the figure attached:  

1. The incident rays coming from the real object reach the mirror and  

2.are reflected following the law of Reflection.  

3.The prolongation of those reflected rays converge at a point that does not coincide with the actual position of the object. At that point the virtual image of the object is formed.  

4.Then, the reflected divergent rays are captured by our eye converging on the retina.  

Now, the image is said to be virtual because it is a copy of the object that looks as if the object is behind the mirror and not in front of it or on the surface, but it is not really there. However, it can be seen when we focus it with our eyes.  

In addition, the image formed is:  

symmetrical, because apparently it is at the same distance from the mirror  

the same size as the object.  

upright, because it retains the same orientation as the object.

Why is iron significant to understanding how a supernova occurs?

Answers

Answer;

Iron cannot release energy by fusion.

Explanation;Supernovae are some of the most magnificent events in the cosmos. When a massive star dies, it can result in a spectacular explosion many times that of man's total nuclear arsenal.When a star has used up all the lighter elements and has just iron left, it has no more nuclear "fuel". That causes the star to contract then explode very violently as a supernova.

A truck accelerates 2 m/s2 when it is empty. If the truck is filled so that it has twice the mass and the same amount of net force is applied, how much will the truck accelerate?

8 m/s2
1 m/s2
4 m/s2
2 m/s2

Answers

This is a conceptual problem, I’ll try to upload a picture:

Answer :

a = 1 m/s^2

Explanation:

Given information

Net force is a constant

The mass of the truck is [tex]m_{o}[/tex]

Initial acceleration [tex]a_{o}[/tex]= 2 m/[tex]s^{2}[/tex]

The mass of the truck is increased twice as much

[tex]F_{net}= m_{o} a_{o}[/tex] = ma

[tex]F_{net}= m_{o} a_{o}[/tex] = [tex]2m_{o}[/tex]a

a=[tex]\frac{a_{o} } {2}[/tex]

a = 2/2

a = 1 m/[tex]s^{2}[/tex]

Two long parallel wires placed side-by-side on a horizontal table carry identical size currents in opposite directions. The wire on your right carries current toward you, and the wire on your left carries current away from you. From your point of view, the magnetic field at the point exactly midway between the two wires

A) points away from you.
B) is zero.
C) points toward you.
D) points down.
E) points up.

Answers

Answer:

D) points down.

Explanation:

The problem can be solved by using the right-hand rule to determine the direction of the magnetic field produced by each wire:

- Thumb: direction of the current in the wire

- The other fingers wrapped around the wire: direction of the magnetic field

So let's apply this rule to both wires:

- Wire on the right:

-- Thumb: direction of current --> toward you

-- Other fingers: direction of magnetic field --> point down (at a point on the left of the wire, which is where we want to determine the total field)

- Wire on the left:

-- Thumb: direction of current -->away from you

-- Other fingers: direction of magnetic field --> point down (at a point on the right of the wire, which is where we want to determine the total field)

So, at the point exactly midway between the two wires, both magnetic fields point down, so when they add together the total field will also point down.

A car is traveling in a race. The car went from the initial velocity of 35 m/s to the final velocity of 65 m/s in 5 seconds. What is the acceleration?

Answers

6 m/s is the acceleration

Answer:

6 m/s

Explanation:

edge 2021

please help on this one?

Answers

a is the right answer

C reactant. Both 2C0 and 02 are reactants and 2C02 is the product

What is the MAIN reason water from the oceans turns to water vapor, and then evaporates into the air?

Answers

This has a two word answer: sun's heat. The faster moving molecules near the ocean's surface are provided with enough energy from the sun to escape the surface they are near.

 

There is a current of 0.99 a through a light bulb when its connected to a 9.7 v battery what is the resistance of the light bulb

Answers

Ohm's law states that V=IR, where V=voltage, I=current(amps), and R=resistance (in Ohms).

Plugging the values into the above equation yields a resistance in the light bulb of 9.8 ohms

A double-slit diffraction pattern is formed on a distant screen. If the separation between the slits decreases, what happens to the distance between interference fringes? Assume the angles involved remain small.

The effect cannot be determined unless the distance between the sits and the screen is known.
The distance between interference fringes increases.
The distance between interference fringes remains the same.
The distance between interference fringes also decreases.

Answers

Answer:

The distance between interference fringes increases.

Explanation:

In a double-slit diffraction pattern, the distance of the n-order fringe from the centre of the pattern is

[tex]y=\frac{n \lambda D}{d}[/tex]

where [tex]\lambda[/tex] is the wavelength of the light, D the distance of the screen, and d the separation between the slits.

If we take two adjacent fringes, n and (n+1), their distance is

[tex]\Delta y = \frac{(n+1)\lambda D}{d}-\frac{n\lambda D}{d}=\frac{\lambda D}{d}[/tex]

so, we see that it is inversely proportional to the slit separation, d.

Therefore, if the separation between the slits decreases, the distance between the interference fringes increases.

As more lamps are put into a series circuit, the overall current in the circuit a. Increasesb. Decreasesc. Remains the same

Answers

Answer:

b. Decreases

Explanation:

The total resistance of a series circuit is equal to the sum of the individual resistances:

[tex]R_T=R_1+R_2+...+R_n[/tex] (1)

Therefore, as we add more lamps, the total resistance increases (because we add more positive tems in the sum in eq.(1).

The current in a circuit is given by Ohm's law:

[tex]I=\frac{V}{R_T}[/tex]

where V is the voltage provided by the power source and [tex]R_T[/tex] is the total resistance. We notice that the current, I, is inversely proportional to the total resistance: therefore, when more lamps are added to the series circuit, the total resistance increases, and therefore the current in the circuit decreases.

A mass of 50g is attatched with one end of a spring o spring constant 10Nm^-1 whose other end is tied with a wall.Find the period and frequency of its oscillation.

Answers

Answer:

T = 0.444 sec

f = 2.25 Hz

Explanation:

Mass of the object = m = 50g = 0.05 kg

Spring constant = k = 10N/m

The time period of mass attached to a spring is calculated as:

[tex]T=2\pi\sqrt{\frac{m}{k} }[/tex]

Using the values in the formula, we get:

[tex]T=2\pi\sqrt{\frac{0.05}{10} }=0.444[/tex]

Thus the time period is 0.444 sec.

Frequency is the reciprocal of the time period.

[tex]f=\frac{1}{T}\\\\ f=\frac{1}{0.444} =2.25[/tex]

Thus the frequency of oscillation is 2.25 Hertz

Final answer:

The period of the oscillations of the mass on the spring is 0.4472 seconds and the frequency is 2.236 Hz. This is calculated using the formula for simple harmonic motion T=2π √(m/k)

Explanation:

The question relates to the motion of a mass attached to a spring commonly studied in physics as simple harmonic motion. The period and frequency of the motion can be calculated using the equations of physics that relate to this type of motion. Specifically, these are the equations for the period(T) and frequency(f) of simple harmonic motion:

T = 2π √(m/k)
f = 1/T

The mass (m) 50g needs to be converted to kilograms, so m = 0.05 kg. The spring constant (k) is provided as 10 N/m. Substituting these into the equation for T we get:

T = 2π √(0.05/10) = √(0.01*π*2) = 0.4472 seconds

The frequency of the oscillations is then given by:

f = 1/T = 1/0.4472 = 2.236 Hz

Learn more about Simple Harmonic Motion here:

https://brainly.com/question/28208332

#SPJ3

As more resistors are added in parallel across a constant voltage source, the power supplied by the sourcea. decreases.b. does not change.c. increases.

Answers

Answer:

C. increases

Explanation:

The total resistance of a parallel circuit is given by:

[tex]\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+...[/tex]

where R1, R2, etc. are the individual resistances.

From the formula, we notice that as new resistors are added to the configuration, the total resistance [tex]R_T[/tex] decreases.

According to Ohm's law, the current flowing in the circuit is inversely proportional to the total resistance:

[tex]I=\frac{V}{R_T}[/tex]

where V is the voltage supplied by the source: so, when adding more resistors in parallel, the total resistance decreases and the current increases.

Finally, the power supplied by the source is

[tex]P=VI[/tex]

we said that V (voltage) remains constant, while I (the current) increases, so the power supplied increases as well.

Substance A has a higher heat capacity than does substance B, and substance B has a higher heat capacity than does substance C. If you add the same amount of heat to all three, which order shows the proper temperature increase for the three substances?
A.
Temperature of C will increase first, then B, then A.
B.
Temperature of A will increase first, then B, then C.
C.
Temperature of B will increase first, then C, then A.

Answers

Answer:

A.  Temperature of C will increase first, then B, then A.

Explanation:

Heat capacity is the amount of heat required to raise the temperature of one mole of an object by one degree Celsius.

A higher value of heat capacity indicates that higher amount of heat will be required to change the temperature of that substance.

So in the given statement the order of heat capacity is:

A > B > C

So, it will be harder to change the temperature of A(larger amount of heat will be required) as compared to B and C. And between B and C it will be hard to change the temperature of B.

So, if equal amount of heat is supplied, substance C must undergo a temperature change first, then the substance B and substance A in the end.

Therefore, the correct option is:

A.  Temperature of C will increase first, then B, then A.

what is ohm law form?

Answers

Answer:

[tex]V=RI[/tex]

Explanation:

Ohm's law states the relationship between voltage, resistance and current in an electrical circuit containing passive elements only:

[tex]V=RI[/tex]

where

V is the voltage supplied by the battery

R is the resistance of the circuit

I is the current

From the equation, we see that the voltage, V, is directly proportional to the current in the circuit, I.

Ohm's Law is the mathematical relationship among electric current, resistance, and voltage. The principle is named after the German scientist Georg Simon Ohm. In direct-current (DC) circuits, Ohm's Law is simple and linear. Suppose a resistance having a value of R ohm s carries a current of I ampere s.

An overhead door is guided by wheels at a and b that roll in horizontal and vertical tracks. when θ = 40°, the velocity of wheel b is 1.8 ft/s upward. determine the angular velocity of the door and the velocity of end d of the door.

Answers

I think the situation is modeled by the scenario in the attached image. Some specific values seem to be missing (like the height of door [tex]d[/tex])...

The door forms a right triangles that satisfies

[tex]\tan\theta=\dfrac ab\implies\sec^2\theta\dfrac{\mathrm d\theta}{\mathrm dt}=\dfrac{b\frac{\mathrm da}{\mathrm dt}-a\frac{\mathrm db}{\mathrm dt}}{b^2}[/tex]

We also have

[tex]\tan\theta=\dfrac ab\implies\cos\theta=\dfrac bd[/tex]

so if you happen to know the height of the door, you can solve for [tex]b[/tex] and [tex]a[/tex].

[tex]d[/tex] is fixed, so

[tex]a^2+b^2=d^2\implies2a\dfrac{\mathrm da}{\mathrm dt}+2b\dfrac{\mathrm db}{\mathrm dt}=0\implies\dfrac{\mathrm da}{\mathrm dt}=-\dfrac ba\dfrac{\mathrm db}{\mathrm dt}[/tex]

We can solve for the angular velocity [tex]\dfrac{\mathrm d\theta}{\mathrm dt}[/tex]:

[tex]\dfrac{\mathrm d\theta}{\mathrm dt}=\cos^2\theta\dfrac{b\left(-\frac ba\frac{\mathrm db}{\mathrm dt}\right)-a\frac{\mathrm db}{\mathrm dt}}{b^2}=-\dfrac1a\dfrac{\mathrm db}{\mathrm dt}[/tex]

At the point when [tex]\theta=40^\circ[/tex] and [tex]\dfrac{\mathrm db}{\mathrm dt}=1.8[/tex] ft/s, we get

[tex]\dfrac{\mathrm d\theta}{\mathrm dt}=-\dfrac{1.8}a\dfrac{\rm deg}{\rm s}=-\dfrac{1.8}{d\sin40^\circ}\dfrac{\rm deg}{\rm s}[/tex]

The angular velocity of the door is [tex]\rm \( 0.744 \, \text{rad/s} \)[/tex], and the velocity of end D is approximately [tex]\rm \( 3.6 \, \text{ft/s} \)[/tex] in the horizontal direction and [tex]\rm \( 2.6964 \, \text{ft/s} \)[/tex] in the upward direction.

To determine the angular velocity of the door and the velocity of end D, we'll need to use the concept of relative velocity.

Let:

- [tex]\rm \( v_b = 1.8 \, \text{ft/s} \)[/tex] (velocity of wheel B)

- [tex]\( \theta = 40^\circ \)[/tex] (angle between horizontal and the line connecting wheel A to wheel B)

We'll use the following relations for the velocity components:

- For wheel B: [tex]\rm \( v_b = v_{b_x} \hat{i} + v_{b_y} \hat{j} \)[/tex]

- For end D: [tex]\rm \( v_d = v_{d_x} \hat{i} + v_{d_y} \hat{j} \)[/tex]

Since the door's velocity at point B is vertical [tex]\rm (\( v_{b_x} = 0 \))[/tex] and directed upward [tex]\rm (\( v_{b_y} = 1.8 \, \text{ft/s} \))[/tex], we can calculate the angular velocity [tex]\rm (\( \omega \))[/tex] of the door using the relative velocity formula:

[tex]\rm \[ \omega = \frac{{v_b}}{{R}} \][/tex]

Where [tex]\rm \( R \)[/tex] is the distance from point B to the axis of rotation.

Next, to calculate the velocity of end D, we use the following relationship:

[tex]\rm \[ v_d = v_b + \omega \times \vec{r} \][/tex]

Where [tex]\rm \( \vec{r} \)[/tex] is the position vector from point B to point D.

Since [tex]\rm \( \theta = 40^\circ \)[/tex], we can express [tex]\rm \( \vec{r} \)[/tex] as:

[tex]\rm \[ \vec{r} = r \cos(\theta) \hat{i} + r \sin(\theta) \hat{j} \][/tex]

Substituting the values and calculating:

[tex]\rm \[ R = r \cos(\theta) \]\\\\rm \omega = \frac{{v_b}}{{r \cos(\theta)}} \][/tex]

Now, substituting [tex]\rm \( v_b = 1.8 \, \text{ft/s} \), \( \theta = 40^\circ \), and \( r \)[/tex] (distance from B to D) in feet, we can find [tex]\rm \( \omega \)[/tex] and then the velocity [tex]\rm \( v_d \)[/tex].

(Note: Make sure to convert [tex]\rm \( \theta \)[/tex] to radians before plugging it into the equations.)

Let's assume the distance from B to D [tex](\( r \))[/tex] is 5 feet.

[tex]\[ \theta = 40^\circ = \frac{{40}}{{180}} \pi \, \text{radians} \approx 0.698 \pi \, \text{radians} \]\\\ \\R = 5 \cos(0.698 \pi) \approx 2.42 \, \text{ft} \]\\\\ \omega = \frac{{1.8}}{{2.42}} \approx 0.744 \, \text{rad/s} \][/tex]

Now, using [tex]\rm \( \vec{r} = 5 \cos(0.698 \pi) \hat{i} + 5 \sin(0.698 \pi) \hat{j} \)[/tex]:

[tex]\rm \[ v_d = 1.8 \hat{j} + (0.744 \, \text{rad/s}) \times (5 \cos(0.698 \pi) \hat{i} + 5 \sin(0.698 \pi) \hat{j}) \]\\\\\\rm v_d = 1.8 \hat{j} + 0.744 \, \text{rad/s} \times (2.42 \hat{i} + 3.63 \hat{j}) \]\\\ \\\rm v_d = 1.8 \hat{j} + 1.8 \hat{i} + 2.6964 \hat{j} \approx (1.8 + 1.8) \hat{i} + (2.6964) \hat{j} \approx 3.6 \hat{i} + 2.6964 \hat{j} \, \text{ft/s} \][/tex]

So, the angular velocity of the door is [tex]\rm \( 0.744 \, \text{rad/s} \)[/tex], and the velocity of end D is approximately [tex]\rm \( 3.6 \, \text{ft/s} \)[/tex] in the horizontal direction and [tex]\rm \( 2.6964 \, \text{ft/s} \)[/tex] in the upward direction.

Know more about angular velocity:

https://brainly.com/question/32293403

#SPJ4

What scientific term is a well-tested explanation for a set of observations or experimental results?

Answers

Your answer is Theory

Answer:

The correct answer will be- A scientific theory.

Explanation:

A scientific theory is a substantiated idea which provides a deep explanation of any natural event.  A theory is an elaborate form generalized or proposed hypothesis which explains the phenomenon to a limited extent.

A theory is formed by combining many proved hypothesis which provides evidence as well as supports the hypothesis. The theory is accepted only after it has been proved by the experiments of the researcher and fellow scientists.

Thus, A scientific theory is the correct answer.

Which is true of electricity generated both from coal and from nuclear reactions?

Answers

Neither source is a renewable one.

Rank the following kinds of electromagnetic radiation in order of decreasing wavelength?Red Light, Radio Waves, Microwaves, Infrared Light, Ultraviolet Light, X-rays, Gamma Rays, Violet Light

Answers

In order of decreasing wavelength:

Radio Waves

Microwaves

Infrared light

Red light

Violet light

Ultraviolet light

X-rays

Gamma rays

Explanation:

The electromagnetic spectrum is a classification of all the electromagnetic waves depending on their wavelength and their frequency. The waves with longest wavelength are radio waves, which have wavelenght that spans from a few mm up to several km. The waves with shortes wavelength are gamma rays, which have wavelength shorter than 10 picometers.

More or less at the centre of the electromagnetic spectrum light the visible part of the spectrum, which is usually classified into 7 colors: red, orange, yellow, green, blue, indigo and violet (decreasing wavelength). Red light is the color with longer wavelenght (approx. 750 nanometers), while violet light has the shortest wavelength (approx. 380 nanometers).

Electromagnetic radiation can take multiple forms. The electromagnetic radiation with the longest wavelength is of radio while the shortest is of gamma rays.

What is electromagnetic radiation?

Electromagnetic radiation can be defined as the flow of energy at the universal speed of light through a material medium or free space.

Some examples are radio waves, gamma-ray, etc.

What is the rank of the different electromagnetic waves?

The ranking of the following kinds of electromagnetic radiation in order of decreasing wavelength is shown below,

Radio Waves Microwaves Infrared Light Red Light Violet LightUltraviolet Light X-rays Gamma Rays

The topmost is having a low frequency, long wavelength, and low quantum energy, while the radiation at the bottom is having a high frequency, short wavelength, and high quantum energy.

Hence, the electromagnetic radiation with the longest wavelength is of radio while the shortest is of gamma rays.

Learn more about Electromagnetic Radiation:

https://brainly.com/question/11895806

Why are there temperature differences on the moon's surface even though there is no atmosphere present?

Answers

The lack of an atmosphere means convection cannot happen on the moon. Therefore, there is no form of heat dissipation on regions in direct sunlight. In addition, the lack of an atmosphere means there is no greenhouse effect on the moon. This is why regions facing away from sunlight are very cold.  

Final answer:

The moon's low gravity prevents it from retaining an atmosphere, which leads to drastic temperature changes due to the lack of an insulating layer of gases. Moreover the moon's surface's porous nature allows it to cool more rapidly than solid rock, contributing to the temperature extremes.

Explanation:

The primary reason for the large temperature differences on the moon's surface, despite the absence of an atmosphere, is related to the moon's gravity, surface composition, and the radiation from the Sun.

The moon has about one-sixth Earth's surface gravity. This is too low to retain an atmosphere. Gaseous molecules can easily escape from the moon into space, leaving it without an atmosphere. This means that there is no layer of gases to absorb and redistribute the Sun's energy, leading to extreme temperature fluctuations.

The fact that the moon's surface is also predominantly made up of lunar soil (also known as lunar regolith), which is porous and cools more rapidly than solid rock, aids in these temperature extremes. During lunar daytime when the Sun is high in the sky, the temperature can rise above the boiling point of water. However during the long lunar night, the temperature drops dramatically to approximately 100 K (-173 °C).

Learn more about Moon Temperature here:

https://brainly.com/question/30765498

#SPJ3

Other Questions
A cab charges $1.75 for the flat fee and $0.25 for each mile. Write and solve an inequality to determine how many miles Eddie can travel if he has $15 to spend. What do Robert Johnson and Lionel Sosa have in common can someone please help me with #9? (25 points) Choose the best estimate for the length of a paperback book.A.4 in.B.8 in.C.14 in.D.18 in.. What structural formula represents 4 electrons shared between two atomsA.0=0B.S8C.P4D.N=N which verb best completes this sentence? Esta noche, nos _____________ en un albergue juvenil Why did workers form trade unions Your new boss just entered your office, he says "Bonjour Monsieur, comment allez-vous?". How would you answer his question? By saying a va. Et toi? By shake his Hand and saying Salut. Et vous? By saying Bonjour. Et toi? and shaking his hand. By shaking his hand and saying Bonjour. Bien et vous? What is one main principal of capitalism? Employees of ABC company uploaded files on a shared server with unique file naming conventions. However, they faced problems while locating these files. Which file naming convention caused this problem? First woman to win grammy for best rap album Which of the following would be the correct form of the equation 10t - 29t = -10 to be able to solve using the zero product property?t(10t - 29) = -10(2t - 5)(5t - 2) = 0(10t + 5)(t - 2) = 0 Was the court case Tinker v. Des Moines and the Supreme Courts decision a sign of the 1960s what the(y?) became or was the 1960s a sign of the decision that resulted from this court case? Explain your answer.Anyone know what this question is asking or able to word it better? Example 5 suppose that f(0) = 8 and f '(x) 9 for all values of x. how large can f(3) possibly be? solution we are given that f is differentiable (and therefore continuous) everywhere. in particular, we can apply the mean value theorem on the interval [0, 3] . there exists a number c such that f(3) f(0) = f '(c) 0 so f(3) = f(0) + f '(c) = 8 + f '(c). we are given that f '(x) 9 for all x, so in particular we know that f '(c) . multiplying both sides of this inequality by 3, we have 3f '(c) , so f(3) = 8 + f '(c) 8 + = . the largest possible value for f(3) is . How is the framing of the Cold War as freedom vs. Totalitarianism similar to the Manifest Destiny argument? Which is the most sustainable practice? Two fifth of the students in a class are male find the number of male students if there are 50 students in the class Burton (1989a), in a study of basketball skills, found that general goals were just as effective as specific goals goal setting was effective for all tasks short-term goals were more effective than long-term goals goal setting enhanced performance better on low- as compared with high-complexity tasks goal setting improved performance more for the subjects who were told to "do their best" than for those who were told "improve 15% which statement best explains why cells separate and expel waste.1 it releases energy necessary for organisms to survive2 it helps in growth and repair of cells of orgasms 3 it help remove toxins from the body to maintain homeostasis 4 it helps break down glucose into useful energy in plants selma is now 3 times older than joyce . four years ago , selma was 4 times as old as joyce was then . find their present ages Steam Workshop Downloader