Answer:
-[tex]\frac{2}{3}[/tex]
Step-by-step explanation:
For linear equations that have been written in the form
y = mx + b,
m represents the slope
hence by comparing this equation to what you have in your question,
slope = m = -[tex]\frac{2}{3}[/tex]
All lines that are parallel to this line will have the same slope of m = -[tex]\frac{2}{3}[/tex]
Tara is planning a baby shower for her sister. The restaurant charges $450 for the first 25 people plus $15 for each additional guest If Tara can spend at most $700, find the greatest number of people who can attend the shower.
Answer with Step-by-step explanation:
Tara can spend at most $700
Restaurant charges $450 for the first 25 people and $15 for each additional guest
Let x be the number of additional guest
⇒ 450+15x<700
⇒ 15x<250
⇒ x<250/15
⇒ x<16.67
Hence, Maximum additional guest can be 16
25+16=41
Hence, the greatest number of people who can attend the shower is:
41
Let set A = {odd numbers between 0 and 100} and set B = {numbers between 50 and 150 that are evenly divisible by 5}. What is A ∩ B?
[tex]A=\{1,3,5,\ldots,99\}\\B=\{50,55,\ldots,150\}\\\\A\cap B=\{55,65,75,85,95\}[/tex]
Answer:
[tex]A\bigcap B=\left \{ 55,65,75,85,95 \right \}[/tex]
Step-by-step explanation:
Set A contains odd numbers between 0 and 100.
So, the elements in set A are as, Set A[tex]=\left \{ 1,3,5,7,9,11,13,15,...99 \right \}[/tex]
Set B contains the numbers between 50 and 150, that are evenly divisible by 5.
So, the elements in set B are are as, Set B
[tex]=\left \{ 55,60,65,70,75,80,85,90,... 145\right \}[/tex]
Now, we need to find [tex]A\bigcap B[/tex]
To find [tex]A\bigcap B[/tex] , we need to find the common elements in Set A and Set B.
The common elements in Set A and Set B is [tex]\left \{ 55,65,75,85,95 \right \}[/tex]
So, [tex]A\bigcap B=\left \{ 55,65,75,85,95 \right \}[/tex]
TIMING TEST!!!!!!!!!!!!!!!!!!
The graph of f(x) = |x| is reflected across the x-axis and translated to the right 6 units. Which statement about the domain and range of each function is correct?
a)Both the domain and range of the transformed function are the same as those of the parent function.
b) Neither the domain nor the range of the transformed function are the same as those of the parent function.
c)The range but not the domain of the transformed function is the same as that of the parent function.
d)The domain but not the range of the transformed function is the same as that of the parent function
Answer:
Domain is 2 and range is 4
Step-by-step explanation:
Find the distance between the points (– 4, 7, – 3) and (4, – 1, – 2).
Answer:
√129
Step-by-step explanation:
The distance formula between two points is:
d² = (x₂ − x₁)² + (y₂ − y₁)² + (z₂ − z₁)²
Plugging in:
d² = (4 − (-4))² + (-1 − 7)² + (-2 − (-3))²
d² = 8² + 8² + 1²
d² = 129
d = √129
Simplify: squareroot 64r^8 8r2 8r4 32r2 32r4
Answer:
8r^4
Step-by-step explanation:
√(64r^8) = √((8r^4)^2) = 8r^4
_____
You can make use of either or both of these rules of exponents:
(a^b)^c = a^(b·c) . . . . . used above
[tex]\sqrt[n]{a}=a^{\frac{1}{n}}[/tex]
Using the second rule, you can write the expression as ...
[tex]\sqrt{64r^8}=\sqrt{64}\cdot r^{8\cdot\frac{1}{2}}=8r^4[/tex]
Answer:
B
Step-by-step explanation:
edg21
a train has 1 first class carriage and 6 standard carriages.
the first class carriage has 64 seats, 3/8 are being used.
each standard carriage has 78 seats, 7/13 are being used.
Are more than half the seats on the train being used?
Answer:
Yes
Step-by-step explanation:
(3/8)·64 = 24 seats in the first class carriage are being used.
(7/13)·(78)·3 = 126 seats in the standard carriages are being used, for a total of ...
24 + 126 = 150 . . . occupied seats
The number of available seats is ...
64 +3·78 = 298
so half the seats on the train will be 298/2 = 149 seats.
150 > 149, so more than half the seats on the train are being used.
A museum is building a scale model of Sue, the largest Tyrannosaurus rex skeleton ever found. Sue was 13 feet tall and 40 feet long, and her skull had a length of 5 feet. If the length of the museum's scale model skull is 3 feet, 1.5 inches, what is the difference between the scale model's length and its height?
A) 8 feet, 1.5 inches
B) 16 feet, 10.5 inches
C) 22 feet, 6.5 inches
D) 27 feet, 4 inches
Answer:
B) 16 ft, 10.5 in
Step-by-step explanation:
There are a few different ways you can work this. Since we want to know the difference between length and heigh of the model and we are given skull length of the model, it makes a certain amount of sense to find the corresponding measurements of the actual skeleton.
The actual skeleton's length was 40 ft and its height was 13 ft, so the difference between these dimensions is ...
40 ft - 13 ft = 27 ft
The actual skull is 5 ft long, so the difference is ...
(27 ft)/(5 ft) = 5.4
times the length of the skull.
The same ratio will apply to the model, so the difference between the model height and model length is 5.4 times the length of the model skull:
desired difference = 5.4 × 3 ft 1.5 in = 16.2 ft + 8.1 in
= 16 ft 10.5 in
A customer's stock value seems to be rising exponentially. The equation for
the linearized regression line that models this situation is log(y) = 0.30X +0.296
where x represents number of weeks. Which of the following is the best
approximation of the number of weeks that will pass before the value of the
stock reaches $600?
The answer is:
The correct option is A. 8.3.
Why?To calculate the number of weeks that will pass, we need to use the given information.From the statement we know that we need to use the value of $600 substituting it as "y", and then, isolate "x", so, calculating we have:
[tex]log(y)=0.30x+0.296\\\\log(600)=0.30x+0.296\\\\2.78=0.30x+0.296\\\\2.78-0.296=0.30x\\\\x=\frac{2.78-0.296}{0.30}=8.28=8.3[/tex]
Hence, the correct option is A. 8.3.
Have a nice day!
In a geometric sequence, the common ratio is -5. The sum of the first 3 terms is 147. What is the value of the first term of the sequence?
[tex]\bf \qquad \qquad \textit{sum of a finite geometric sequence} \\\\ \displaystyle S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases} n=\textit{last term's}\\ \qquad position\\ a_1=\textit{first term}\\ r=\textit{common ratio} \end{cases} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf \begin{cases} r=-5\\ n=3\\ S_3=147 \end{cases} \implies 147=a_1\left( \cfrac{1-(-5)^3}{1-(-5)} \right)\implies 147=a_1\left( \cfrac{1-(-125)}{1+5} \right) \\\\\\ 147=a_1\cdot \cfrac{126}{6}\implies 147=21a_1\implies \cfrac{147}{21}=a_1\implies 7=a_1[/tex]
The first term of the geometric sequence with a common ratio of -5 and the sum of the first 3 terms being 147 is 7.
The first term of a geometric sequence where the common ratio is -5 and the sum of the first 3 terms is 147. A geometric sequence is denoted by a, ax, ax2, ax3, ..., where 'a' is the first term and 'x' is the common ratio.
Given the common ratio (x) is -5, we can express the first three terms of this geometric sequence as:
First term: a
Second term: a(-5) = -5a
Third term: a(-5)2 = 25a
The sum of these three terms equals 147:
a - 5a + 25a = 147
Combining like terms we get:
21a = 147
Now, dividing both sides by 21 to isolate 'a', we find:
a = 7
Therefore, the value of the first term of the sequence is 7.
What is the surface area of a cube that has a side length of 8 mm? Use the formula is SA=6^2, where SA is the surface area of the cube and s is the length of each side.
48mm^2
96mm^2
384mm^2
2,304mm^2
Answer:
The surface area is [tex]SA=384\ mm^{2}[/tex]
Step-by-step explanation:
we know that
The surface area of the cube is equal to
[tex]SA=6s^{2}[/tex]
we have
[tex]s=8\ mm[/tex]
substitute
[tex]SA=6(8)^{2}[/tex]
[tex]SA=384\ mm^{2}[/tex]
What is the shape of the cross section of the cylinder in each situation?
Drag and drop the answer into the box to match each situation.
Answer: The first box is circle and second box is rectangle.
Step-by-step explanation:
If you are asking about the shape of the cross section for a right circular cylinder, that is the case. A parabola or triangle can't be sliced so the cross section is parallel or perpendicular to the base.
If the cross section is parallel to the base, it is a circle.
If the cross section is perpendicular to the base, it is a rectangle.
NEED HELP WITH A MATH QUESTION
Answer:
56.3 cm
Step-by-step explanation:
(sinA)/(27) = (sinC)/c
(sin28°)/(27) = (sin102°)/c
For this case we have that by definition, the sum of the internal angles of a triangle is 180 degrees.
Then we look for the measure of the third angle:
[tex]102 + 28 + x = 180\\x = 180-102-28\\x = 50[/tex]
According to the Law of sines:
[tex]\frac {sin (50)} {a} = \frac {Sin (28)} {27}\\a = \frac {27 * sin (50)} {sin (28)}\\a = \frac {0.76604444 * 27} {0.46947156}\\a = 44.06[/tex]
Answer:
[tex]a = 44.1[/tex]
A robot's height is 1 meter 20 centimeters. how tall is the robot in millimeters?
Answer: The height of the robot is 200 millimeters
Step-by-step explanation:
Answer:
It is 1,200
Step-by-step explanation:
Solve the equation. 2(4 - 2x) - 3 = 5(2x + 3)
A. 3/5
B. 2/3
C. 3/2
D. 7/2
Answer:
x= -5/7
Step-by-step explanation:
The equation involves only one variable x.
so, we have to isolate the variable to get the solution of the equation
Given
[tex]2(4 - 2x) - 3 = 5(2x + 3)\\8-4x -3 = 10x+15\\5-4x = 10x+15\\-4x = 10x +15 -5\\-4x-10x=10\\-14x = 10\\x = \frac{10}{-14}\\ x = -\frac{x=5}{7}[/tex]
Hence the value of x or solution is
x= -5/7
#10 Please help me :)
Answer:
The third choice is the one you want.
Step-by-step explanation:
The formula for an arithmetic sequence is as follows:
[tex]a_{n}=a_{1}+d(n-1)[/tex]
Our first number is 8, so a1 = 8. If the second term is 5, then d = -3. Filling in our formula gives us this:
[tex]a_{n}=8-3(n-1)[/tex]
Now we need domain. Our choices are n ≥ 1 and n ≥ 0 so let's try both. Replace n in the formula with each one, one at a time, and see what the result is.
If n ≥ 0:
[tex]a_{0}=8-3(0-1)[/tex] so [tex]a_{0}=8-(-3)[/tex] which gives you that the first term, defined by [tex]a_{0}[/tex] is 11. That's not correct. Let's check n ≥ 1[tex]a_{1}=8-3(1-1)[/tex]
and [tex]a_{1}=8-0[/tex] which is 8, the first term.
Need help with math question
Answer:
(-7,4)
Step-by-step explanation:
goal: (y-k)^2=4p(x-h)
y^2-8y=4x+12 Rearranged and added 4x and 12 on both sides
y^2-8y+(-8/2)^2=4x+12+(-8/2)^2 complete square time (add same thing on both sides)
y^2-8y+(-4)^2=4x+12+(-4)^2 (simplify inside the squares)
(y-4)^2=4x+12+16 (now write the left hand side as a square)
(y-4)^2=4x+28
(y-4)^2=4(x+7) factored...
vertex is (-7,4)
Answer:
(-7,4)
Step-by-step explanation:
Find the derivative of f(x) = 12x2 + 8x at x = 9.
256
-243
288
224
I answer questions for you but no one ever answers my questions. You're all are so ungrateful. I've been trying to find the answer for several hours and nothing. Yes I did try to teach myself but I just cant understand it.
Answer:
It's 224.
Step-by-step explanation:
We use the power rule for a derivative.
If f(x) = ax^n then the derivative f'(x) = anx^(n-1).
So the derivative of 12x^2 + 8x
= 2*12 x^(2-1) + 8x^(1-1)
= 24x + 8x^0
= 24x + 8.
When x = 9 the derivative = 24(9) + 8
= 224.
The value of first order derivative with x=9 is 224. Therefore, option D is the correct answer.
What is the differentiation?The process of finding derivatives of a function is called differentiation in calculus. A derivative is the rate of change of a function with respect to another quantity.
The given function is f(x)=12x²+8x at x=9.
Here, first order derivative is
f'(x)=24x+8
= 24×9+8
= 224
Therefore, option D is the correct answer.
To learn more about the differentiation of an equations visit:
https://brainly.com/question/25731911.
#SPJ3
The quadratic model f(x) = –5x2 + 200 represents the approximate height, in meters, of a ball x seconds after being dropped. The ball is 50 meters from the ground after about how many seconds? 2.45 3.16 5.48 7.07
Answer:
t = 5.48
Step-by-step explanation:
f(x) = -5x² + 200
given f(t) = 50 when x = time(t)
Hence,
50 = -5t² + 200
5t² = 200 - 50
5t² = 150
t² = 30
t = √30 = 5.48
The number of seconds are 5.48, the correct option is C.
What is a quadratic equation?A quadratic equation is the second-order degree algebraic expression in a variable. the standard form of this expression is ax² + bx + c = 0 where a. b are coefficients and x is the variable and c is a constant.
We are given that;
f(x) = –5x2 + 200
Now,
To find the time when the ball is 50 meters from the ground, we need to solve the equation:
f(x) = 50
Substituting f(x) with -5x^2 + 200 and simplifying, we get:
-5x^2 + 200 = 50
-5x^2 = -150
x^2 = 30
x = ±√30
Since x represents time, we only consider the positive value of x. Therefore,
x ≈ 5.48
Therefore, by the quadratic equations the answer will be 5.48
Learn more about quadratic equations;
https://brainly.com/question/17177510
#SPJ7
HELP PLZZ will give brainliest <3
Given the measures a = 10, b = 40, and
A = 30°, how many triangles can possibly be formed?
Given the measures b = 10, c = 8.9, and
B = 63°, how many triangles can possibly be formed?
Answer:
0
1
Step-by-step explanation:
First question:
You are given a side, a, and its opposite angle, A. You are also given side b. Use that in the law of sines and solve for the other angle, B.
[tex] \dfrac{a}{\sin A} = \dfrac{b}{\sin B} [/tex]
[tex] \dfrac{10}{\sin 30^\circ} = \dfrac{40}{\sin B} [/tex]
[tex] \dfrac{1}{0.5} = \dfrac{4}{\sin B} [/tex]
[tex] \sin B = 2 [/tex]
The sine function can never equal 2, so there is no triangle in this case.
Answer: no triangle
Second question:
You are given a side, b, and its opposite angle, B. You are also given side c. Use that in the law of sines and solve for the other angle, C.
[tex] \dfrac{b}{\sin B} = \dfrac{c}{\sin C} [/tex]
[tex] \dfrac{10}{\sin 63^\circ} = \dfrac{}{\sin C} [/tex]
[tex] \sin C = \dfrac{8.9\sin 63^\circ}{10} [/tex]
[tex] C = \sin^{-1} \dfrac{8.9\sin 63^\circ}{10} [/tex]
[tex] C \approx 52.5^\circ [/tex]
One triangle exists for sure. Now we see if there is a second one.
Now we look at the supplement of angle C.
m<C = 52.5°
supplement of angle C: m<C' = 180° - 52.5° = 127.5°
We add the measures of angles B and the supplement of angle C:
m<B + m<C' = 63° + 127.5° = 190.5°
Since the sum of the measures of these two angles is already more than 180°, the supplement of angle C cannot be an angle of the triangle.
Answer: one triangle
In the first case with measures a=10, b=40, A=30°, no triangle can be formed as a is smaller than b sin(A). In the second case with measures b=10, c=8.9, B=63°, one triangle can be formed because b is greater than c.
Explanation:In the context of the Ambiguous Case of the Law of Sines, we can find the number of triangles formed given the measures. For the first case, a = 10, b = 40, and A = 30°, no triangle can be formed because a is less than b sin(A), which means the given side (a) is too short to reach the other side (b).
For the second case, b = 10, c = 8.9, and B = 63°, one triangle can be formed. Here, b is greater than c and therefore capable of forming one valid triangle as per the Ambiguous Case of the Law of Sines.
Learn more about Law of Sines here:https://brainly.com/question/31921882
#SPJ11
Drag each symbol and number to the correct location on the inequality. Not all symbols and numbers will be used. Sam initially invested $4,500 into a savings account that offers an interest rate of 3% each year. He wants to determine the number of years, x, for which the account will have less than or equal to $7,020. Determine the solution set to the inequality that represents this situation.
The inequality that represents Sam's situation is: x <= 18.67
To determine the inequality that represents Sam's situation, we can use the following formula for compound interest:
A = P(1 + r/n)^(nt)
where:
A is the final amount
P is the principal amount
r is the interest rate
n is the number of compounding periods per year
t is the number of years
We know that Sam initially invested $4,500 (P = 4500) and that the interest rate is 3% (r = 0.03). We also know that Sam wants to determine the number of years, x (t = x), for which the account will have less than or equal to $7,020 (A = 7020).
Substituting these values into the formula, we get the following inequality:
7020 <= 4500(1 + 0.03/1)^(1x)
Solving for x, we get:
x <= log(7020/4500) / (0.03/1)
x <= 18.67
Therefore, the inequality that represents Sam's situation is:
x <= 18.67
For such more question on inequality
https://brainly.com/question/30238989
#SPJ6
Myron put $5000 in a 2-year CD playing 3% interest, compounded monthly. After 2 years, he withrew all his money. What was the amount of the withdrawal?
Answer:
$5308.79
Step-by-step explanation:
The future value can be computed from ...
FV = P(1 +r/n)^(nt)
where P is the principal invested, r is the annual interest rate, n is the number of times per year it is compounded, and t is the number of years.
Filling in the given numbers, we have ...
FV = $5000(1 +.03/12)^(12·2) ≈ $5308.79
Myron's withdrawal will be in the amount of $5308.79.
16.
The circumference of a circle is 55/7.
What is the diameter of the circle?
(Hint: Circumference = xD)
*Use 22/7 for pie
Answer:
D=5/2
Step-by-step explanation:
Circumference of a circle = πD where D is the diameter of the circle.
In the question Circumference is =55/7 and π provided =22/7
55/7 = (22/7)D
We multiply both sides with the reciprocal f 22/7
D = (55/7) (7/22)
D = 5/2
Jillian’s school is selling tickets for a play. The tickets cost $10.50 for adults and $3.75 for students. The ticket sales for opening night totaled $2071.50. The equation 10.50a+3.75b=2071.50, where a is the number of adult tickets sold and b is the number of student tickets sold, can be used to find the number of adult and student tickets. If 82 students attended, how may adult tickets were sold?]
Answer:
168
Step-by-step explanation:
The first equation given as [tex]10.50a+3.75b=2071.50[/tex]
Where a is the number of adults and b is the number of students
Since, the number of students are given as 82, we can plug 82 into b and then do algebra and solve for a (shown below):
[tex]10.50a+3.75b=2071.50\\10.50a+3.75(82)=2071.50\\10.50a+307.5=2071.50\\10.50a=2071.50-307.5\\10.50a=1764\\a=\frac{1764}{10.50}\\a=168[/tex]
Thus, 168 adult tickets were sold
Write an equation that fits this:
The new car decreased in value at a rate of 7% each year. the initial value of the car was was $8227
[tex]\bf \qquad \textit{Amount for Exponential Decay} \\\\ A=P(1 - r)^t\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{initial amount}\dotfill &8227\\ r=rate\to 7\%\to \frac{7}{100}\dotfill &0.07\\ t=\textit{elapsed time}\ \end{cases} \\\\\\ A=8227(1-0.07)^t\implies A=8227(0.93)^t[/tex]
Final answer:
An exponential decay model represents the car's value decreasing each year by 7%, with the equation V = 8227 x (1 - 0.07)^t, where V is the car's value and t is the time in years.
Explanation:
The student is dealing with a depreciation problem in which a car decreases in value by a fixed percentage each year. To express this situation mathematically, we can use an exponential decay model. With an initial value of $8227 and an annual decrease rate of 7%, the equation to represent the car's value V at any time t in years can be written as:
V = 8227 times (1 - 0.07)^t
This equation models the car's value as it depreciates 7% per year from its initial value. When t is 0 (at the time of purchase), V will be $8227, indicating the initial value.
Which mathematicians first used the symbol pi Why?
William Jones
Step-by-step explanation:The number pi (π) is a platonic concept and has been used for 4000 years. The number pi can be approached but never reached. In general, this number means the constant ratio of the circumference to the diameter of any circle. Ancient Babylonians, Egyptians, and even Archimedes, one of the greatest mathematicians of the ancient world tried to approximate the value of pi, but in the 1700s, mathematicians began using the Greek letter π that was introduced by William Jones, in his second book Synopsis Palmariorum Matheseos or A New Introduction to the Mathematics base. Then, this symbol was popularized and adopted in 1737 by the greatest mathematician Leonhard Euler.
PLEASE HELP ME WITH THIS MATH QUESTION
Answer: 24%
Step-by-step explanation:
2610+8120 = The undergraduates and graduates combined.
That is 10730. You are figuring out the probability the student is a graduate when those two graduates are combined, because that is all the data given. So you would do 2610/10730 in your calculator, resulting in 24.324324324%. As it says rounded to the nearest percent in parentheses, it has to round to the whole number, 24%, and .3 rounds down.
Given the following linear function, sketch the graph of the function and find the domain and range.
f(x) = 2/3x - 3
1. To sketch the function f(x) = (2/3)x - 3, we first need to find two points that we can later join to sketch the line, for example the x- and y-intercepts.
a) The x-intercept occurs when f(x) = 0, so if f(x) = 0, then:
f(x) = (2/3)x - 3
0 = (2/3)x - 3
3 = (2/3)x (Add three to both sides)
3*(3/2) = x (Multiply both sides by 3/2)
9/2 = x
We have now found the x-intercept at (9/2, 0)
b) The y-intercept occurs when x = 0, so:
f(x) = (2/3)x - 3
f(0) = (2/3)*0 - 3
f(0) = -3
Now we know that the y-intercept is at (0, -3)
c) All that's left is to sketch the graph axes and label them, plot the two points, join them together using a ruler and label their coordinates.
2. The Domain is the range of x-values for which the function exists, and the Range is the range of y-values for which the function exists.
Since there haven't been any constraints specified, we can say that both the Domain and Range are (-∞, ∞), since the graph continues forever both along the x- and y-axis.
(Note that this isn't always the case and would change if, for example, the question stipulated that there was a domain of [0, 5] and you had to find the range. Then, you would calculate the value of y at each end of the domain (if x = 0, y = -3 and if x = 5, y = 1/3) - in my example, the range would thus be [-3, 1/3].)
What is the missing constant term in the perfect square that starts with x^2+2x
Answer:
1
Step-by-step explanation:
The constant term in a perfect square trinomial with leading coefficient 1 is the square of half the coefficient of the linear term.
(2/2)² = 1
The missing constant term is 1.
Answer: The correct answer is: " 1 " .
_____________________________________________________
→ " x² + 2x + 1 = (x + 1)² " .
_____________________________________________________
_____________________________________________________
Step-by-step explanation:
_____________________________________________________
Let us assume that the question asks us to solve for the "missing constant term in the following equation:
→ " x² + 2x + b = 0 " ;
→ in which: " b " is the "missing constant term" for which we shall solve.
_____________________________________________________
The form of an equation in the perfect square would be:
→ (x + b) ² = x² + 2bx + b² ;
→ In our case, "b" ; refer to the "missing constant term" for which we shall solve.
_____________________________________________________
→ " x² + 2x + b = 0 " ;
Note that the term in the equation with the highest degree (highest exponent) is:
→ " x² " ; with an "implied coefficient" of: " 1 " (one) ;
→ {since "any value" , multiplied by " 1 " , results in that same initial value.}.
→ Since the term with the highest degree has a "co-efficient" of " 1 " ;
we can solve the problem; i.e. "Solve for "b" ; accordingly:
_____________________________________________________
→ " x² + 2x + b = 0 " ;
Subtract "b" from each side of the equation:
→ " x² + 2x + b - b = 0 - b " ;
→ to get:
→ x² + 2x = - b
Now we want to complete x² + 2x into a perfect square.
To do so, we take the: "2" (from the: "+2x" );
→ and we divide that value {in our case, "2"}; by "2" ;
to get: "[2/2]" ; and then we "square" that value;
→ to get: " [2/2]² " .
_____________________________________________________
Now, we add this "squared value" to: " x² + 2x " ; as follows:
→ " x² + 2x + [2/2]² " ; and simply: " [2/2]² = [1]² = 1 ."
_____________________________________________________
x² + 2x + (2/2)² = x² + 2x + 1 ;
= (x + 1)² ;
_____________________________________________________
Now: " x² + 2x = - b " ;
We add "(2/2)² " ; to each side of the equation;
→ In our case, " [2/2]² = [1]² = 1 " ;
→ As such, we add: " 1 " ; to each side of the equation:
→ x² + 2x + (2/2)² = - b + (2/2)² ;
→ Rewrite; substituting " 1 " [for: " (2/2)² "] :
→ x² + 2x + 1 = 1 - b ;
→ x² + 2x + 1 = 1 - b ;
_____________________________________________________
And assume "b" would equal "1" ;
since assuming the question refers to the equation:
"x² + 2x ± b = 0 " ; solve for "b" ;
And: "b = 1 " ;
Then: " x² + 2x + 1 = ? 1 - b ??
→ then: " 1 - b = 0 " ; Solve for "b" ;
→ Add "b" to each side of the equation:
" 1 - b + b = 0 + b " ;
→ to get: " 1 = b " ; ↔ " b = 1 " ; Yes!
___________________________________________________
Also, to check our work:
_____________________________________________________
Remember, from above:
_____________________________________________________
" The form of an equation in the perfect square would be:
→ (x + b)² = x² + 2bx + b² " ; _____________________________________________________
→ Let us substitute "1" for all values of "b" :
→ " (x + 1) ² = x² + 2*(b)*(1) + 1² " ;
→ " (x + 1)² = x² + (2*1*1) + (1*1) " ;
→ " (x + 1)² = ? x² + 2 + 1 " ?? ; Yes!
→ However, let us check for sure!
_____________________________________________________
→ Expand: " (x + 1)² " ;
→ " (x + 1)² = (x + 1)(x + 1) " ;
_____________________________________________________
→ " (x + 1)(x + 1) " ;
_____________________________________________________
Note the following property of multiplication:
_____________________________________________________
→ " (a + b)(c + d) = ac + ad + bc + bd " ;
_____________________________________________________
As such:
_____________________________________________________
→ " (x + 1)(x + 1) " ;
= (x*x) + (1x) + (1x) + (1*1) ;
= x² + 1x + 1x + 1 ;
→ Combine the "like terms" :
+ 1x + 1x = + 2x ;
And rewrite:
= x² + 2x + 1 .
_____________________________________________________
" (x + 1)² = ? x² + 2 + 1 " ?? ; Yes!
_____________________________________________________
→ So: The answer is: " 1 " .
_____________________________________________________
→ " x² + 2x + 1 = (x + 1)² " .
_____________________________________________________
Hope this answer helped!
Best wishes to you in your academic endeavors
— and within the "Brainly" community!
_____________________________________________________
Colton bought a CD for $760 that earns a 3.8% APR and is compounded monthly. The CD matures in 3 years. How much will this CD be worth at maturity
Answer:
$851.62
Step-by-step explanation:
The value multiplier wll be ...
(1 +r/n)^(nt)
where r is the annual interest rate (3.8%), n is the number of compoundings per year (12), and t is the number of years (3). Filling in these numbers, we see the ending value will be ...
A = $760(1 +.038/12)^(12·3) = $760(1.0031667^36) = $851.62
Answer:
$851.62
Step-by-step explanation:
At a competition with 6 runners, 6 medals are awarded for first place through
sixth place. Each medal is different. How many ways are there to award the
medals?
Decide if the situation involves a permutation or a combination, and then find
the number of ways to award the medals.
O
A. Permutation; number of ways = 720
O
B. Combination; number of ways = 720
O
c. Combination; number of ways = 1
O
D. Permutation; number of ways = 1
Answer:
A. Permutation; number of ways = 720
Step-by-step explanation:
For the first medal, we have 6 runners that can earn it.
For the second medal, we have 5 runners because there's one who won the first one.
For the third, we have 4 runners.
And so on up to the 6th medal where we have just one runner left.
As this happens all at the same time, we have to multiply them.
Ways to award the medals = 6*5*4*3*2*1 = 6! = 720
Remember that a permutation is a combination where the order matters. So, in this case, is a permutation because each medal is different.
Answer:
a) Permutation; number of ways = 720
Step-by-step explanation: