What is the oxidation state for a mn atom?

Answers

Answer 1
Final answer:

The oxidation state of a Mn atom in its elemental state is zero. However, in compounds, Mn has multiple potential oxidation states depending on the number of electrons it has lost.

Explanation:

The oxidation state of an atom is typically zero when it is in its elemental state. In the case of a manganese (Mn) atom, this rule applies: the manganese atom has an oxidation state of zero.

However, this can change under certain conditions. For instance, in a chemical reaction, the oxidation state of Mn can vary. Transition metals like Mn usually have multiple oxidation states due to their ability to lose different numbers of d or s orbital electrons.

For example, in a compound such as MnO2, the oxidation state of Mn is +4. Here, Mn has lost four electrons. In another compound such as Mn2+, Mn has lost two electrons, giving it an oxidation state of +2.

Learn more about Oxidation State here:

https://brainly.com/question/31688257

#SPJ12

Answer 2

Final answer:

The oxidation state of Mn in the permanganate ion (MnO₄) is +7. This is calculated using the known oxidation state of oxygen (-2) and balancing it with the overall charge of the permanganate ion (-1).

Explanation:

The oxidation state of manganese (Mn) varies depending on the compound it is in. For instance, in the permanganate ion (MnO₄), the oxidation state of Mn is determined using the known oxidation state of oxygen, which is -2. Since there are four oxygen atoms, their combined oxidation state is -8. The permanganate ion itself carries an overall charge of -1, so when adding up the oxidation states of all atoms in the ion, their sum must equal this charge.

The calculation is as follows: Mn + (-2) × 4 = -1, which simplifies to Mn - 8 = -1. Solving for Mn gives us an oxidation state of +7. Therefore, in MnO₄, manganese has an oxidation state of +7. This demonstrates that manganese can have a high oxidation state and act as a strong oxidizing agent.

In other compounds, such as MnO₂ or Mn₂O₇, Mn may have different oxidation states, such as +4 or +7, respectively. The principle is to always include the charge on the atom, and balance the oxidation states with the overall charge of the compound or ion.


Related Questions

What fraction of a sample is left after exactly 3 half-lives?

Answers

(1/2)^3 is the fraction of a sample after 3 half lives

Assuming equal concentrations and complete dissociation, rank these aqueous solutions by their freezing points.

Li2SO4
NH4I
CoCl3

Answers

Answer:

CoCl₃ > Li₂SO₄ > NH₄I.

Explanation:

Adding solute to water causes depression of the boiling point.The elevation in boiling point (ΔTf) can be calculated using the relation:

ΔTf = i.Kf.m,

where, ΔTf is the depression in freezing point.

i is the van 't Hoff factor.

van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.

Kf is the molal depression constant of water.

m is the molality of the solution.

(1) Li₂SO₄:

i for Li₂SO₄ = no. of particles produced when the substance is dissolved/no. of original particle = 3/1 = 3.

∴ ΔTb for (Li₂SO₄) = i.Kb.m = (3)(Kf)(m) = 3(Kf)(m).

(2) NH₄I:

i for NH₄I = no. of particles produced when the substance is dissolved/no. of original particle = 2/1 = 2.

∴ ΔTb for (NH₄I) = i.Kb.m = (2)(Kf)(m) = 2(Kf)(m).

(3) CoCl₃:

i for CoCl₃ = no. of particles produced when the substance is dissolved/no. of original particle = 4/1 = 4.

∴ ΔTb for (CoCl₃) = i.Kb.m = (4)(Kf)(m) = 4(Kf)(m).

So, the ranking of the freezing point from the highest to the lowest is:

CoCl₃ > Li₂SO₄ > NH₄I.

How many liters of oxygen are required to produce 2 liters of water at stp?

Answers

Answer:

1 liter of oxygen is required to produce 2 liters of water at STP

Explanation:

Water molecule is H₂O, which means that there is one oxygen atom per each water molecule.

The balanced chemical equation that represents this is:

2H₂(g) + O₂(g) → 2H₂O(g)

The stoichiometric coefficents 1 for O₂ (g) and 2 for H₂O (g) means that two molecules of oxygen are required to produce two molecules of water.

STP stands for standard temperature and pressure. Those conditions are 273.15 K (0 °C, 32 °F) and 100 KPa of absolute pressure.

That means that the reaction is carried out at constant temperature and pressure.

Then, since the  ideal gas law states that the at constant pressure and temperature the volume occupied by the gases is proportional to the number of particles (atoms or molecules), the molecular stoichiometric ratio of 1 molecule of O₂ (g) to 2 molecules for H₂O (g) is equivalent to the volumetric ratio 1 liter of O₂ to 2 liters of H₂O:

1 ltier O₂ : 2 liter H₂O

Hence, you conclude that 1 liter of oxygen is required to produce 2 liters of water, at STP.

P-xylene, c8h10, has an enthalpy of fusion of 158.3 j g-1 and its melting point temperature is 13.2°c. how much heat is required to transform 115 g of solid p-xylene at 13.2°c into liquid p-xylene, also at 13.2°c?

Answers

Answer:

[tex]\boxed{\text{18.2 kJ}}[/tex]

Explanation:

The formula for the heat involved is  

[tex]q = m\Delta_{\text{f}}\text{H}[/tex]

Data:

m = 115 g

[tex]\Delta_{\text{f}}\text{H} = \text{158.3 J/g}[/tex]

Calculation:

[tex]q = \text{115 g} \times \dfrac{\text{158.3 J}}{\text{1 g}}\\\\q = \text{18 200 J} = \textbf{18.2 kJ}}\\\\\text{It takes }\boxed{\textbf{18.2 kJ}} \text{ to melt the p-xylene}[/tex]

When calcium and chlorine react to form calcium chloride, which substance is reduced? *

calcium
clhorine
calcium chloride
not enough info

Answers

Answer:-

When the reaction takes place Ca is reduced or is an oxidizing agent.

Reaction:

Ca + 2Cl =CaCl2

Note: There is a +2 charge on Ca(Calcium) and -1 charge on each Cl-atom(Chlorine atom) hence the charges are cancelled. Therefore, the total charge on the whole compound is zero.

Explanation:-

• Reduction: gain of electron/electrons

gain of hydrogen

loss of oxygen

Oxidation: gain of oxygen

loss of hydrogen

loss of electron/electrons.

• Oxidizing agent/reduced

Reducing agent/oxidized

• The molecule that is oxidized loses an electron and the molecule that is reduced gains the electron that was lost by the oxidized molecule.

Answer:

[tex]\boxed{\text{Chlorine}}[/tex]

Explanation:

We must use oxidation numbers to decide which substance is reduced.  

[tex]\rm \stackrel{\hbox{0}}{\hbox{Ca}} + \stackrel{\hbox{0}}{\hbox{ Cl}_{2} }\longrightarrow \stackrel{\hbox{+2}}{\hbox{Ca }}\stackrel{\hbox{-1}}{\hbox{Cl}_{2}}[/tex]

The oxidation number of Ca increases from 0 in Ca to +2 in CaCl₂.

The oxidation number of Cl decreases from 0 in Cl₂ to -1 in CaCl₂.

[tex]\text{A decrease in oxidation number is reduction, so } \boxed{\textbf{Cl$_{2}$ is the substance reduced.}}[/tex]

% composition
What is the percent composition of oxygen in the following compounds:
CO2
dinitrogen pentoxide

Answers

Answer:

1. Percentage composition O in CO₂ is 72.7%

2.Percentage composition of O in N₂O₅ is 74.1%

Explanation:

How to calculate percentage composition

I. Calculate the molar mass of the compound by summing up the atomic masses of the elements that makes up the compound

II. The percentage composition of the element is derieved by dividing the atomic mass of the atoms by the molar mass of the compound

III. Now express this ratio as a percentage.

1. Percentage composition of Oxygen in CO₂:

Molar mass of CO₂

Atomic mass of C = 12gmol⁻¹

Atomic mass of O = 16gmol⁻¹

Note: We have two atoms of Oxygen

Molar mass = [12 + (2x16)]gmol⁻¹

= (12 + 32)gmol⁻¹

= 44gmol⁻¹

Percentage composition O in CO₂

= (2x16)/44 x 100

= 32/44 x 100

= 0.727 x 100

= 72.7%

Percentage composition O in CO₂ is 72.7%

2. The percentage composition of O in N₂O₅

Atomic mass of N = 14gmol⁻¹

Atomic mass of O = 16gmol⁻¹

Molar mass of N₂O₅ = [(2x14) + (5x16)]gmol⁻¹

= (28 + 80)gmol⁻¹

= 108gmol⁻¹

Percentage composition of O in N₂O₅

= (5x16)/108 x 100

= 80/108 x 100

= 0.741 x 100

= 74.1%

Percentage composition of O in N₂O₅ is 74.1%

Note: Percentage composition is expressed as a percentage.

Final answer:

The percent composition of oxygen in CO2 is approximately 72.7%, and in dinitrogen pentoxide, it is approximately 74.1%. This is calculated by dividing the mass of oxygen in each molecule by the total molar mass of the molecule and then multiplying by 100%.

Explanation:

Percent Composition of Oxygen in Compounds

The percent composition of an element in a compound represents the mass percentage of that element in the total mass of the compound. To calculate the percent composition of oxygen in CO2 (carbon dioxide) and dinitrogen pentoxide, we need to look at the molar masses of these compounds and the elements within them.

CO2:

Carbon dioxide is composed of one carbon atom and two oxygen atoms. The molar mass of carbon is 12.01 g/mol and oxygen is 16.00 g/mol. Hence, the molar mass of CO2 equals 44.01 g/mol (12.01 + (16.00 × 2)). The mass of oxygen in CO2 is 32.00 g/mol, which we get from (16.00 × 2). To find the percent composition of oxygen in CO2, we divide the mass of oxygen by the molar mass of CO2 and multiply by 100%.

Percent composition of O in CO2 = (32.00 g/mol / 44.01 g/mol) × 100% ≈ 72.7%

Dinitrogen Pentoxide:

Dinitrogen pentoxide consists of two nitrogen atoms and five oxygen atoms. To calculate the percent composition of oxygen, we first find the molar mass of N2O5, which is 108.01 g/mol (14.01 × 2 + 16.00 × 5). The mass of oxygen in N2O5 is 80.00 g/mol, from (16.00 × 5). The percent composition of oxygen is then calculated as follows:

Percent composition of O in N2O5 = (80.00 g/mol / 108.01 g/mol) × 100% ≈ 74.1%

What is the boiling point of a solution of .1 mole of glucose in 200 ml of water?

Answers

The boiling point of a 0.1 mole glucose in 200 ml water solution is approximately 100.255°C at 1 atm, after calculating the molality as 0.5 m and applying the molal boiling point elevation constant for water of 0.51°C/m.

The question asks: What is the boiling point of a solution of .1 mole of glucose in 200 ml of water? To calculate this, we need to first determine the molality (m) of the glucose solution since we have the molal boiling point elevation constant (Kb) for water, which is 0.51°C/m.

The molality (m) is calculated by the number of moles of solute per kilogram of solvent (water in this case). Given that 0.1 mole of glucose is dissolved in 200 ml (or 0.2 kg) of water, the solution's molality would be 0.5 m (0.1 mole / 0.2 kg). Since the constant Kb is 0.51°C/m, the boiling point elevation would be 0.5 m x 0.51°C/m = 0.255°C.

The normal boiling point of water is 100°C at 1 atm. We add the boiling point elevation to this to get the boiling point of the glucose solution: 100°C + 0.255°C = 100.255°C. Therefore, the boiling point of the given glucose solution would be approximately 100.255°C at 1 atm.

In some areas of the Earth, the crust is squeezed and pushed upward. This is a _______ process in that it directly forms _______. A. destructive; caves B. constructive; canyons C. destructive; soil D. constructive; mountains

Answers

Answer:

D; constructive; mountains

Answer:

D.) Constructive , Mountains

Explanation:

I got it right in study island

At 66.0 ∘c , what is the maximum value of the reaction quotient, q, needed to produce a non-negative e value for the reaction so42−(aq)+4h+(aq)+2br−(aq)⇌br2(aq)+so2(g)+2h2o(l) in other words, what is q when e=0 at this temperature?

Answers

The value of q when e = 0 at the given temperature in the question is :

Q =  1.3 * 10⁻²⁶

Determine the value of q when e = 0

Given that

E = 0,  ΔG = -nFE,

therefore ΔG = 0

Also

Given that

ΔG = ΔG° + RTIn q

ΔG° = -  RTIn q

Hence ; Q = e^ (nFE°cell / RT) -- ( 1 )

where : n = 2, F = 96500, E°cell = -0.87 volt, R = 8.314, T = 339 k

insert  values into equation ( 1 )

Q =  1.3 * 10⁻²⁶

Note :  E°cell = reduction half reaction + oxidation half reaction

          = 0.20 volt - 1.07 volt  = -0.87 volt.

Hence we can conclude that The value of q when e = 0 at the given temperature in the question is : Q =  1.3 * 10⁻²⁶

Learn more about reaction quotient : https://brainly.com/question/26712920

how many moles of water would form the reaction of exactly 58.3 grams of magnesium hydroxide

Answers

Answer:

[tex]\boxed{\text{2.00 mol}}[/tex]

Explanation:

We know we will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.

You don't tell us what the reaction is, but we can solve the problem so long as we balance the OH.

M_r:      58.32

          Mg(OH)₂ + … ⟶ … + 2HOH

m/g:       58.3

(a) Moles of Mg(OH)₂

[tex]\text{Moles of Mg(OH)$_{2}$} =\text{58.3 g Mg(OH)$_{2}$} \times \dfrac{\text{1 mol Mg(OH)$_{2}$}}{\text{58.32 g Mg(OH)$_{2}$}}\\\\=\text{0.9997 mol Mg(OH)$_{2}$}[/tex]

(b) Moles of H₂O

The molar ratio is 2 mol H₂O = 1 mol Mg(OH)₂.

[tex]\text{Moles of H$_{2}$O}= \text{0.9995 mol Mg(OH)$_{2}$} \times \dfrac{\text{2 mol {H$_{2}$O}}}{ \text{1 mol Mg(OH)$_{2}$}}\\\\= \textbf{2.00 mol H$_{2}$O}[/tex]

The reaction will form [tex]\boxed{\textbf{2.00 mol}}[/tex] of water.

Final answer:

When 58.3 grams of magnesium hydroxide react, it forms 2 moles of water. This is determined through the conversion of grams to moles and using the stoichiometry of the reaction.

Explanation:

To find out how many moles of water would form the reaction of exactly 58.3 grams of magnesium hydroxide, we need to convert grams of Mg(OH)2 to moles and then use stoichiometry to find out the number of moles of H2O produced.

The molecular weight of Mg(OH)2 is 58.3197 g/mol. Therefore, the number of moles of Mg(OH)2 is given by:

Mass (g) / Molecular weight (g/mol) = 58.3g / 58.3197g/mol = 1 mole Mg(OH)₂

According to the reaction Mg(OH)2 -> Mg²⁺ + 2OH⁻, 1 mole of magnesium hydroxide decomposes to form 1 mole of magnesium ions and 2 moles of hydroxide ions. Therefore, 1 mole of Mg(OH)₂ reacts to form 2 moles of water.

So, 1 mole of Mg(OH)2 would result in the formation of 2 moles of water. Hence, 58.3 grams (which correspond to 1 mole) of Mg(OH)2 would form 2 moles of water.

Learn more about Stoichiometry here:

https://brainly.com/question/30218216

#SPJ3

Explain two ways that voltaic cells and electrolytic cells are similar AND two ways that they differ.

Answers

Similarities:
•They both have cathode and anode charges.
•Cathode facilitates oxidation and the anode facilitates reduction.

Differences:
•Voltaic cells “work” autonomously, while electrolytic cells need an outside source of energy to work.
•While the voltaic cells’ redox reaction is uncalled-for, the electrolytic cells happen at a set time.

I hope I helped!
Chemistry is pretty hard to explain, so feel free to message me or leave a comment below if you need me to elaborate on my response. :)

What is the name of the functional group in the following compound?CH3-O-C-CH2-CH3

Answers

It is an ester functional group

T/F. When a molecule contains three bonds and a single lone pair attached to the central atom, the molecular geometry is trigonal planar.

Answers

Answer:

False

Explanation:

In chemistry, trigonal planar is a molecular geometry model with one atom at the center and three atoms at the corners of an equilateral triangle, called peripheral atoms, all in one plane. In an ideal trigonal planar species, all three ligands are identical and all bond angles are 120°.

Meaning there shouldn't be any lone pair.

Look up "Structure of a trigonal planar molecule" for a visual

So it is false.

The following reaction has an activation energy of 262 kJ/mol.
C4H8(g) ---> 2C2H4(g)
At 600.0 K the rate constant is 6.1*10^-8s^-1. What is the value of the rate constant at 750.0 K?

Answers

Answer: i really       dont know srry

Explanation:

If the pressure of a gas sample is quadrupled and the absolute temperature is doubled, by what factor does the volume of the sample change?


A) 2

B) 1/4

C) 1/8

D) 1/2

Answers

Answer:

D) 1/2

Explanation:

Using Ideal gas equation for same mole of gas as

[tex] \frac {{P_1}\times {V_1}}{T_1}=\frac {{P_2}\times {V_2}}{T_2}[/tex]

Given,

P₂ = 4P₁

T₂ = 2T₁

Using above equation as:

[tex] \frac {{P_1}\times {V_1}}{T_1}=\frac {{P_2}\times {V_2}}{T_2}[/tex]

[tex] \frac {{P_1}\times {V_1}}{T_1}=\frac {{4\times P_1}\times {V_2}}{2\times T_1}[/tex]

[tex]V_2=\frac{1}{2}\times V_1[/tex]

The volume change by half of the original.

¹/₂

Further explanation

Given:

P₂ = 4P₁T₂ = 2T₁

Question:

By what factor does the volume of the sample change?

The Process:

We use an equation of state for an ideal gas:  

[tex]\boxed{\boxed{ \ \frac{pV}{T} = constant \ }}[/tex]

p = pressure (in Pa) V = volume (in m³) T = temperature (in Kelvin)

For the same amount of substances in two states, the equations for state-1 and state-2 are as follows:

[tex]\boxed{ \ \frac{p_2V_2}{T_2} = \frac{p_1V_1}{T_1} \ }[/tex]

Let us use the equation above to see the relationship between volumes. Enter all the information in the equation.

[tex]\boxed{ \ \frac{4p_1V_2}{2T_1} = \frac{p_1V_1}{T_1} \ }[/tex]

[tex]\boxed{ \ \frac{4V_2}{2} = V_1} \ }[/tex]

[tex]\boxed{ \ 2V_2 = V_1} \ }[/tex]

[tex]\boxed{ \ V_2 = \frac{1}{2}V_1} \ }[/tex]

Thus by factor ¹/₂, the volume of the sample will change.

- - - - - - - - - -

Notes

[tex]\boxed{ \ \frac{pV}{nT} = R \ } \rightarrow \boxed{ \ pV = nRT \ }[/tex]

n = moles of ideal gas

R = the molar gas constant (in J mol⁻¹ K⁻¹)

Learn more To what temperature would you need to heat the gas to double its pressure?  https://brainly.com/question/1615346# The volume of Kr (in liters) https://brainly.com/question/6043528The energy density of the stored energy https://brainly.com/question/9617400  

Keywords: the pressure of a gas sample, an ideal gas, volume, constant, moles, equation of state , quadrupled, the absolute temperature, doubled, by what factor, change

The innermost electron shell of an atom can hold up to _____ electrons.

Answers

Answer:

The innermost electron shell of an atom can hold up to 2 electrons.

Explanation:

The innermost electron shell is the lowest principal energy level, i.e n = 1.

For n = 1 there is only one orbital, the 1s orbital.

As stated by the Pauli's exculsion principle an orbital may have a maximum of two electrons, and they have opposed spins.

Then, the innermost electron shell has just one orbital and, in consequence, can hold up to 2 elecrons.

Final answer:

The innermost electron shell of an atom can hold up to two electrons.

Explanation:

The innermost electron shell of an atom, also known as the first shell or K-shell, can indeed hold a maximum of 2 electrons. This is often based on the quantum mechanical model of the atom, where the electrons are organized into various shells and subshells.

In addition to this, the first shell consists of only one subshell, called the 1s subshell, which accommodates a maximum of 2 electrons. The distribution of electrons in shells and subshells is a fundamental aspect of atomic structure and determines the chemical properties of elements, as well as their interactions in chemical reactions and bonding.

The reactant that controls the amount of product formed in a chemical reaction is called the?

Answers

Limiting reactant is the answer

More than DOUBLE POINTS!! Please help ASAP!! 1 hour left !!
Describe the structure of the water molecule and indicate how the structure is responsible for many of the unique properties of this vital compound.
Everything helps !! Giving BRAINLIEST to the most DETAILED answer!! Thanks in advance!! :)

Answers

A water molecule consists of two hydrogen atoms bonded to an oxygen atom, and its overall structureis bent. This is because the oxygen atom, in addition to forming bonds with the hydrogen atoms, also carries two pairs of unshared electrons.

Answer:

Explanation:

The structure of water molecule is very simple . it's has a central oxygen atom ( which has a valency of two ) . Since it's valency is two , it can two hydrogen atoms to both of it's sides ( which have a valency of one )

Structure :

H-O-H

Water is known as amphoteric substance , as it has the ability to act as either a base or an acid ( depending upon the substance it's reacting with ) . On top of that a very electro negative oxygen atom reacts with an electro positive hydrogen gives the molecule a strong bonding force ( which results in a molecule that is held by hydrogen bonding , which is a very strong attraction) . And when its bonded with some strong electro forces of attraction , Guess what happens ? It's boiling point increases !!!! ( It means you have to heat it up more to boil water ) . Which also means it has high heat of vaporization ( to get water into it's vapour state ) .all of that just because it has high forces if attraction between one another ...

What change in the mass number of a nucleus occurs when the nucleus emits an alpha particle? 1. The mass number decreases by 2. The mass number decreases by 4. The mass number increases by 4 The mass number increases by 2.

Answers

Alpha particles are respective to the helium-4 ion. Therefore it has a mass of four and a positive charge of two. The correct answer is the mass number increases by 4.

If a nucleus emits an alpha particle, the mass number decreases by 4

What is an alpha particle?

An alpha particle is essentially identical to a helium nucleus. An alpha particle has a mass of four units and a positive charge of two units just as the helium nucleus.

Hence, if a nucleus emits an alpha particle, the mass number decreases by 4 while the atomic number decreases by two.

Learn more about alpha particle:  https://brainly.com/question/12034258

How old is the moon? much older than Earth about the same age as Earth older than the sun much younger than Earth

Answers

Answer:

Much younger than Earth

Explanation:

The moon is believed to be much more younger than the earth.

The moon is earth's only natural satellite.

It is hypothesised that a planetary body as big as Mars collided with earth. The impact causes vapourization and hauling of materials from the earth crust and mantle.

The blasted particles and the matter were pulled together by gravity. These ones formed our satellite, the moon.

Some of the matter fell back to the earth surface.

The moon was formed after earth was formed and it is much younger than our blue planet.

The Moon is about the same age as Earth, approximately 4.5 billion years old, with lunar rock samples dating between 3.3 and 4.4 billion years, indicating a shared origin in the solar system.

The age of the Moon is a subject of geologic interest and has been determined through scientific investigation, particularly through the analysis of lunar rocks retrieved during the Apollo missions. Studies have revealed that the Moon and Earth have approximately the same age, which is in the vicinity of 4.5 billion years old. Radiometric age-dating of the lunar rocks has shown that the samples solidified between about 3.3 and 4.4 billion years ago, which are substantially older than most of the rocks found on Earth.

Therefore, when answering the student's question about the Moon's age, the best choice is 'about the same age as Earth'. While there are lunar rocks that are older than most of Earth's rocks, both Earth and Moon formed together in the same time frame, in the earlier days of the solar system.

When 10 g of diethyl ether is converted to vapor at its boiling point, about how much heat is absorbed? (c4h10o, δhvap = 15.7 kj/mol, boiling point: 34.6°c) 0.2 kj 3 kj .01 kj 2 j?

Answers

Final answer:

When 10 g of diethyl ether is converted to vapor at its boiling point, approximately 2.12 kJ of heat is absorbed. This is calculated by first determining the number of moles in 10g of diethyl ether and then multiplying that by the given heat of vaporization.

Explanation:

To calculate the heat absorbed during the vaporization of diethyl ether, we first need to know the number of moles of diethyl ether. The molar mass of diethyl ether (C4H10O) is approximately 74 g/mol. So, 10 g of diethyl ether equates to roughly 0.135 moles (10g / 74g/mol).

Given that the heat of vaporization (δHvap) for diethyl ether is 15.7 kJ/mol, the total heat absorbed can be calculated by multiplying the number of moles by the heat of vaporization. Therefore, total heat absorbed would be approximately 2.12 kJ (0.135 moles * 15.7 kJ/mol).

So, when 10 g of diethyl ether is converted to vapor at its boiling point, approximately 2.12 kJ of heat is absorbed.

Learn more about Heat of Vaporization here:

https://brainly.com/question/33393699

#SPJ3

To vaporize 10 g of diethyl ether at its boiling point, approximately 2.12 kJ of heat is absorbed. Thus, option C is correct answer.

To find the amount of heat absorbed when 10 g of diethyl ether (C₄H₁₀O) is vaporized, we need to use the enthalpy of vaporization ([tex]\Delta H_{vap}[/tex]) and the molar mass of diethyl ether.

First, calculate the molar mass of diethyl ether (C₄H₁₀O):

C: 12.01 g/mol × 4 = 48.04 g/molH: 1.008 g/mol × 10 = 10.08 g/molO: 16.00 g/mol × 1 = 16.00 g/molTotal = 48.04 + 10.08 + 16.00 = 74.12 g/mol

Next, determine the number of moles of diethyl ether in 10 g:

Number of moles = Mass / Molar mass = 10 g / 74.12 g/mol ≈ 0.135 moles

Given the enthalpy of vaporization, [tex]\Delta H_{vap}[/tex], is 15.7 kJ/mol, calculate the total heat absorbed using the formula:

Heat absorbed = Number of moles × [tex]\Delta H_{vap}[/tex] = 0.135 moles × 15.7 kJ/mol ≈ 2.12 kJ

Therefore, option c) about 2.12 kJ of heat is absorbed when 10 g of diethyl ether is vaporized at its boiling point of 34.6°C.

The complete question is as follows:

When 10 g of diethyl ether is converted to vapor at its boiling point, how much heat is absorbed? (C₄H₁₀O, [tex]\Delta H_{vap}[/tex] = 15.7 kJ/mol, boiling point: 34.6°C)

A. 20 KJ

B. 0.2 KJ

С. 2.12 kJ

D. 200 KJ

Which of the following best describes what happens in radioactive decay?

a.The nucleus emits particles and/or energy.

b.The electron cloud emits particles and/or energy.

c.The nucleus transfers particles and/or energy to the electron cloud.

d.The electron cloud transfers energy to the nucleus.

Answers

A the nucleus emits partials and or energy

Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is

Answers

Answer:

S₂(s) + C(s) → CS₂(s).

Explanation:

Carbon disulfide is prepared by heating sulfur and charcoal. The chemical equation is:

S₂(s) + C(s) → CS₂(s).

1 mol of S₂(s) reacts with 1 mol of charcoal (C(s)) to produce 1 mol of CS₂(s).

One benefit of nuclear fission reactions is

Answers

Answer:

Produces energy that are useful in nuclear power plants

Explanation:

Nuclear fission is a the radioactive disintegration of a heavy nucleus into simpler ones. The fission process which initiates a chain reaction releases a lot of neutrons and a large amount of energy.

The energy released in a fission process is very useful in nuclear power plants for producing electricity.

On the basis of molecular structure and bond polarity, which of the following compounds is most likely to have the greatest solubility in water and why?
a)CH4
b)CCL4
c)NH3
d)PH3

Answers

Answer:

[tex]\boxed{\text{c) NH$_{3}$; hydrogen bonding}}[/tex]

Explanation:

For each of these molecules, you must determine their VSEPR structure and then identify the strongest intermolecular forces.

Remember that water is a highly polar molecule.

a) CH₄

  Electron geometry: tetrahedral

Molecular geometry: tetrahedral

          Bond polarity: C-H bond nonpolar

  Molecular polarity: nonpolar

        Strongest IMF: London dispersion forces

 Solubility in water: low

A nonpolar molecule is insoluble in a polar solvent.

b) CCl₄

  Electron geometry: tetrahedral

Molecular geometry: tetrahedral

          Bond polarity: C-Cl bond nonpolar

  Molecular polarity: nonpolar (symmetrical molecule. All bond dipoles cancel)

        Strongest IMF: London dispersion forces

 Solubility in water: low

A nonpolar molecule is insoluble in a polar solvent.

d) PH₃

  Electron geometry: tetrahedral

Molecular geometry: trigonal pyramidal

          Bond polarity: P-H bonds are polar

  Molecular polarity: polar (all P-H bond dipoles point towards P)

         Strongest IMF: dipole-dipole

  Solubility in water: soluble

A polar molecule is soluble in a polar solvent.

c) NH₃

  Electron geometry: tetrahedral

Molecular geometry: trigonal pyramidal

          Bond polarity: N-H bonds are highly polar

  Molecular polarity:  highly polar (all N-H bond dipoles point towards N)

         Strongest IMF: hydrogen bonding

  Solubility in water: highly soluble

NH₃ is so polar that it can form hydrogen bonds with water.

[tex]\boxed{\textbf{The compound with the greatest solubility in water is NH$_{3}$}}[/tex]

Answer:

The correct answer is  [tex]NH_{3}[/tex].

Explanation:

The electron geometry of the [tex]NH_{3}[/tex] is tetrahedral and the molecular geometry is a trigonal pyramid.

The [tex]NH_{3}[/tex] has the strongest intramolecular hydrogen bond, which makes them a highly polar molecule.

The polarity is directly proportional to the solubility of the compound in the water.

Therefore,[tex]NH_{3}[/tex]  has the greatest solubility.

For more information, refer to the link:-

https://brainly.com/question/16461135?referrer=searchResults

Aluminum metal reacts with aqueous iron(II) chloride to form aqueous aluminum chloride and iron metal. What is the stoichiometric coefficient for aluminum when the chemical equation is balanced using the lowest, whole-number stoichiometric coefficients? Aluminum metal reacts with aqueous iron(II) chloride to form aqueous aluminum chloride and iron metal. What is the stoichiometric coefficient for aluminum when the chemical equation is balanced using the lowest, whole-number stoichiometric coefficients? 3. 1. 4. 2.

Answers

Answer:

2.

Explanation:

The balanced chemical equation for the reaction of aluminum metal reacts with aqueous iron(II) chloride to form aqueous aluminum chloride and iron metal is:

2Al(s) + 3FeCl₂(aq) → 2AlCl₃(aq) + 3Fe(s).

It is clear that 2 mol of Al react with 3 mol of FeCl₂ to produce 2 mol of AlCl₃ and 3 mol of Fe.

So, the the stoichiometric coefficient for aluminum when the chemical equation is balanced is 2.

The stoichiometric coefficient for aluminum, Al when the chemical equation is balanced is 2.

To obtain the stoichiometric coefficient for aluminum, we shall write and balance the equation for the reaction. This is illustrated below:

Aluminum => Al

Iron (II) chloride => FeCl₂

Aluminum chloride => AlCl₃

Iron => Fe

Aluminum + Iron (II) chloride —> Aluminum chloride + Iron

Al + FeCl₂ –> AlCl₃ + Fe

There are 3 atoms of Cl on the right side and 2 atoms on the left side. It can be balance by writing 3 before FeCl₂ and 2 before AlCl₃ as shown below:

Al + 3FeCl₂ –> 2AlCl₃ + Fe

There are 2 atoms of Al on the right side and 1 atom on the left. It can be balance by writing 2 before Al as shown below:

2Al + 3FeCl₂ –> 2AlCl₃ + Fe

There are 3 atoms of Fe on the left side and 1 atom on the right side. It can be balance by writing 3 before Fe as shown below:

2Al + 3FeCl₂ –> 2AlCl₃ + 3Fe

Now, the equation is balanced.

The coefficient of Aluminum, Al in the balanced equation is 2.

Learn more about balancing equation:

https://brainly.com/question/2399130

Which BEST describes the illustration below?

A pure substance made of a compound

A pure substance made of an element

A mixture made up of different compounds

A mixture made up of different elements

Answers

Answer:

KIKOKEN

Explanation:

How many moles of nitrogen we have at a temperature of 30 ?C, a pressure of 4.0 atm, and a volume of 4000.ML?

Answers

Answer:

0.643 mol.

Explanation:

We can use the general law of ideal gas: PV = nRT.

where, P is the pressure of the gas in atm (P = 4.0 atm).  

V is the volume of the gas in L (V = 4000 mL = 4.0 L).  

n is the no. of moles of the gas in mol (n = ??? mol).

R is the general gas constant (R = 0.0821 L.atm/mol.K),  

T is the temperature of the gas in K (T = 30ºC + 273 = 303 K).

∴ n = PV/RT = (4.0 atm)(4.0 L)/(0.0821 L.atm/mol.K)(303 K) = 0.643 mol.

What is the first step in most stoichiometry problems?

Answers

Answer:

The first step in most stoichiometry problems is to balance the chemical equation.

Explanation:

Stoichiometry is the cuantitative study of the chemical reactions.

It is like algebra applied to chemical equations.

The cuantitative relations between the amount of reactants and products is determined by the law of conservation of mass: the number of each kind of atoms in the reactants must equal the number of the same kind of atoms in the products.

Once that relation has been established, as mole ratios, then it can be determined the amount of reactant neeed to obtain a certain amount of product, or vice versa, determine the amount of product that can be obtained from a given amount of reactants.

That is why, after you know the reactants and products in a chemical equation you must balance to assure that the relative amounts are properly established.

Final answer:

The first step in most stoichiometry problems is to plan the problem by writing and balancing the chemical equation correctly, which is foundational for accurate stoichiometry calculations.

Explanation:

The first step in most stoichiometry problems is to plan the problem. This typically involves writing and balancing the chemical equation. Ensuring that all formulas are correct and balanced is crucial as it lays the foundation for all subsequent calculations in the stoichiometry process. Once the equation is balanced, you can proceed to write the ionic and net ionic equations if necessary, assign oxidation numbers, or derive stoichiometric factors to relate the amounts of substances involved. It is also important to identify the 'given' information and what the problem is asking you to 'find,' as well as list other known quantities.

Select the true statement for the following reaction: N2 + 3 H2 → 2 NH3 1. Each N atom is reduced from 0 to +3. Each H atom is oxidized from 0 to −1. 2. Each N atom is reduced from 0 to −3. Each H atom is oxidized from 0 to +1. 3. Each N atom is oxidized from 0 to +3. Each H atom is reduced from 0 to −1. 4. Each N atom is oxidized from 0 to −3. Each H atom is reduced from 0 to +1. 5. Each N atom is reduced from +1 to −3. Each H atom is oxidized from +1 to 0. 6. Each N atom is oxidized from +1 to +3. Each H atom is reduced from +1 to 0. 7. Each N atom is oxidized from 0 to −6. Each H atom is reduced from 0 to +2. 8. Each N atom is reduced from 0 to −6

Answers

Final answer:

In the reaction N2 + 3 H2 → 2 NH3, each nitrogen atom is reduced from 0 to -3, and each hydrogen atom is oxidized from 0 to +1. This is an oxidation-reduction reaction where nitrogen gains electrons (reduction), and hydrogen loses electrons (oxidation).

Explanation:

The correct statement for the provided reaction N2 + 3 H2 → 2 NH3 is: 'Each N atom is reduced from 0 to -3. Each H atom is oxidized from 0 to +1.' This reaction is an oxidation-reduction reaction, wherein the nitrogen atom is reduced (its oxidation number decreases from 0 to -3), and each hydrogen atom is oxidized (its oxidation number increases from 0 to +1).

In the process, nitrogen is gaining electrons, thus being reduced. On the other hand, hydrogen is losing electrons, thus being oxidized. This principle is aligned with the redox reactions wherein one element loses electrons (oxidation) and another element gains electrons (reduction). The reaction equation also follows the law of conservation of mass stating that matter cannot be created or destroyed.

Learn more about Oxidation-Reduction Reaction here:

https://brainly.com/question/19528268

#SPJ12

Other Questions
Reese and Janelle own a boutique in the United States. Recently they took a trip to China and while there, the couple purchased a large quantity of name-brand handbags for a cost significantly lower than what the manufacturer charges for the same product in the United States. Upon their return, the couple sold the handbags in their store for less than any other store in the area. This is an example of what takes place in a(n) _______ market. Which distribution is likely to have a mean higher than the median? 85% expressed as a fraction in simplest form is Need help on this ASAP !!!! Dayton has 3 bags of frozen vegetables. Each bag has 5/8 pound of vegetables. He plans to make vegetable soup. Each pot of soup takes 1 pound of vegetables For the function f(x) = x^2, what effect will multiplying f(x) by 1/4 have on thegraph? Choose the correct conjugation of the verb between parenthesis in passe compose. Elles (marcher) toute la journee.* sont marchees* ont marche* ont marches* ont marcheesChoose the correct conjugation of the verb between parenthesis in passe compose. Il (monter) dans le train. * amonte* est montee* est monte* est monti 60 points Please help answer, and If possible explain the questions. Thank you!2. Which expression is not a polynomial? A. X - 1B. 4 + PC. 5X^2 - XD. 8x - z^33. What is the degree of the polynomial? 3pq^4 - 2p^2q + q3A.1B.2C.4D.54. How many terms does the polynomial have? p^3-4pq^2+q^2-3qA.1B.2C.3D.45. Which polynomial is written in standard form for the polynomial below? -7x^2 - x^3 + x^5 +2A. x^5+X^3+X^5+2B. x^5 - x^3 + 7x^2+2C. -7x^2 - x^3 + x^5+2D. 7x^2 + x^3 + x^5+2 Wladimir Kppens climate system was developed _____.before 1850around 1900about 1950after 1990 When solving the equation 12x^2 - 7x = 6-2(x^2 - 1). Evan wrote 12x^2 - 7x = 6 - 2x^2 + 2 as his first step. Which propertyjustifies this step?a. subtraction property of equalityb. multiplication property of equalityc. associative property of multiplicationd. distributive property of multiplication over subtraction if A/B and C/D are rational expressions, then which of the following is true? i'm gonna need help with this one In 1965, as the conflict in Vietnam intensified, the United Statesdeclared war against North Vietnam.decreased the number of US troops in Vietnam.escalated its troop commitment to the conflict.began defending North Vietnam against the Viet Cong. What are 5 ways that graph can be misleading ? How many quarts of pure antifreeze must be added to 5 quarts of a 20% antifreeze solution to obtain a 30% antifreeze solution? Read these sentences. Randall opened his eyes somehow he had slept through his alarm. Which of the following combines these two sentences correctly? Can I get help on this also plz? I need a step by step explanation. Thank you so much! Which equation shows how (10, 8) can be used to write the equation of this line in point-slope form? In the United States, birth weights of newborn babies are approximately normally distributed with a mean of = 3,500 g and a standard deviation of = 500 g. What percent of babies born in the United States are classified as having a low birth weight (< 2,500 g)? Explain how you got your answer. Match each Enlightenment philosopher to the book that he wrote.John LockeThomas HobbesWilliam BlackstoneJean Jacques RousseauLeviathanarrowRightSecond Treatise on GovernmentarrowRightThe Social ContractarrowRightCommentaries on the Laws of EnglandarrowRight Steam Workshop Downloader