What is the equation for the translation of x2 + y2 = 16 seven units to the right and five units up?
(x + 7)2 + (y – 5)2 = 16
(x - 7)2 + (y + 5)2 = 16
(x + 7)2 + (y + 5)2 - 16
(x - 72 + (y – 5)2 = 16

Answers

Answer 1

Answer:

[tex](x-7)^2+(y-5)^2=16[/tex].

Step-by-step explanation:

The given circle has equation [tex]x^2+y^2=16[/tex].

This is the equation that has its center at the origin with radius 4 units.

When this circle is translated seven units to the right and five units up, then the center of the circle will now be at (7,5).

The equation of a circle with center (h,k) and radius r units is [tex](x-h)^2+(y-k)^2=r^2[/tex].

This implies that, the translated circle will now have equation.

[tex](x-7)^2+(y-5)^2=4^2[/tex].

[tex](x-7)^2+(y-5)^2=16[/tex].

Answer 2

The correct equation for translating the circle x² + y² = 16 seven units to the right and five units up is (x - 7)² + (y - 5)² = 16. Therefore, option D is the correct answer.

The original equation for a circle with a radius of 4 units is x² + y² = 16. A translation of the circle seven units to the right and five units up would involve shifting the x-coordinate by +7 and the y-coordinate by +5. Therefore, the new equation would be (x - 7)² + (y - 5)² = 16.

This is due to the fact that a translation of a geometric figure does not alter its size, shape, or orientation; it simply shifts the figure in the plane. Keeping the radius the same, applying the translation to the circle's center (0,0) results in a new center at (7,5), which translates to the equation above.


Related Questions

The equation h(t)=−16t2+19t+110 gives the height of a rock, in feet, t seconds after it is thrown from a cliff.

What is the initial velocity when the rock is thrown?

Answers

[tex]\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ h(t)=-16t^2+\stackrel{\stackrel{v_o}{\downarrow }}{19}t+110~\hspace{10em}19~\frac{ft}{sec}[/tex]

The initial velocity of the rock when thrown from the cliff is represented by the coefficient of the t term in the quadratic equation, which is 19 feet per second.

The equation h(t) = -16t² + 19t + 110 describes the height of a rock in feet, as a function of time in seconds after it is thrown from a cliff. To find the initial velocity of the rock when it is thrown, we look at the coefficient of the linear term in this equation, which represents the initial velocity in feet per second (since the equation is quadratic and the coefficient of the t2 term corresponds to half the acceleration due to gravity in feet per second squared).

The initial velocity of the rock is given by the coefficient of the t term, which is 19 feet per second.

PLEASE HELP 70 POINTS
4a. An experiment had the following result for 20 flips of a coin: P(Tails) 12/20 P(Heads) = 8/20. If you flip 90 more times, how many would be tails?

4b. Explain how many flips would be tails if you flip 100 more times.

Answers

Answer:

4a. About 54 times NOT INCLUDING THE FIRST TRIAL

4b. About 60 times NOT INCLUDING THE FIRST TRIAL

Step-by-step explanation:

I say about because we don't know if it's ALWAYS going to be the same results.

4a. Also 12*4 because it's 20 times so 20*4=80 then you add half of it to become 90 and you get 54

4b. 12*5 because 100/5=20 for the 20 trials of them

*algebra* What is (f−g)(x)?

Answers

Answer:

x^3 -6x^2 +18x-10

Step-by-step explanation:

f-g (x) = f(x) -g(x)

f(x) = x^3 -2x^2 +12x-6

g(x)  =4x^2 -6x +4

f(x) -g(x) =x^3 -2x^2 +12x-6 - (4x^2 -6x +4)

Distribute the minus sign

            x^3 -2x^2 +12x-6 - 4x^2 +6x -4

Combine like terms

           x^3 -2x^2- 4x^2 +12x+6x-6  -4

            x^3 -6x^2 +18x-10

what is the discriminant of the polynomial below 4x^2-20x +25

Answers

Answer:

The discriminant D=0

Step-by-step explanation:

For the duadratic polynomial [tex]ax^2+bx+c[/tex] the discriminant is

[tex]D=b^2-4ac.[/tex]

In your case, for the polynomial [tex]4x^2-20x+25,[/tex]

[tex]a=4;[/tex][tex]b=-20;[/tex][tex]c=25;[/tex][tex]D=(-20)^2-4\cdot 4\cdot 25=400-400=0.[/tex]

Answer:

The answer is 0 D

GEOMETRY!!! 15 PTSSSSS

Answers

Answer:

23) option c

    JL ≈ 9.3

25) option c

      y ≈ 9.6

Step-by-step explanation:

25)

Given in the question that,

cos(21°) = 9 / y

y = 9/cos(21°)

y = 9.64

y ≈ 9.6(nearest tenth)

23)

Given in the question that the hypotenuse of right angle triangle = 12

To find,

height of the right angle triangle

angle k = 39°

so by using trigonometry identity

cos(39) = opp/hypo

cos(39) = JL / KL

JL = cos(39)(12)

JL = 9.32

JL ≈ 9.3

Answer:

Q 23.  Last option 7.6

Q 25 Third option

Step-by-step explanation:

To solve Q 23

From the figure we can write,

Sin 39 = Opposite side/Adjacent side

 = JL/KL

 = JL/12

JL= 12 * Sin 39

 = 12 * 0.629  = 7.55

 = 7.6

To solve Q 25

Cos 21 = 9/y

y = 9/Cos 21 = 9/0.9335

= 9.64

 = 9.6

A circle with radius r is inscribed into a right triangle. Find the perimeter of the triangle if:the length of the hypotenuse is 24 cm, and r=4 cm;

Answers

Answer:

56 cm

Step-by-step explanation:

The tangents from the 90° angle will form a square with the radii that has a side length of 4. If we call the length of the short side of the right triangle "x", then the tangent lengths are ...

on the short side of the triangle: 4, x-4

on the hypotenuse side of the triangle: x-4, 24-(x-4) = 28-x

on the long side of the triangle: 4, 28-x

The perimeter is twice the sum of the unique tangent lengths:

P = 2(4 + (x-4) + (28-x)) = 2·28

P = 56 . . . . . the perimeter is 56 cm.

_____

Using the Pythagorean theorem on side lengths x and 32-x and hypotenuse 24, we find x = 16-4√2 ≈ 10.34, the length of the short side (in cm).

Mrs. Robinson, an insurance agent, earns a salary of $4,800 per year plus a 3% commission on her sales. The average price of a policy she sells is $6,100.


Write an inequality to find how many policies Mrs. Robinson must sell to make an annual income of at least $8,000.

4800+183x<(line under the arrow)=8000
4800+183x=8000
4800+183x>=8000
4800+186>(ine under the arrow)=8000

Answers

Answer:

[tex]4800+183x\geq 8000[/tex]

She must sell at least 18 policies to make an annual income of at least $8,000

Step-by-step explanation:

Let [tex]x[/tex] be the number of policies Mrs. Robinson must sell

We know that Mrs. Robins makes 3% on commission for each policy sold. We also know that the average price of a policy is $6,100, so she makes 3% of $6,100 per policy sold. To find the 3% of $6,100 we just need to multiply 3% and $6,100; then dive the result by 100%:

[tex]\frac{3*6,100}{100} =183[/tex]

Now we know that she makes $183 per policy sold. Since [tex]x[/tex] is the number of policies sold, [tex]183x[/tex] is her total commission for selling [tex]x[/tex] policies.

We also know that She makes $4,800 per year, so her total annual income is her salary plus her commissions, in other words:

[tex]4800+183x[/tex]

Finally, we know that she wants to make at least $8,000, so her salary plus her commissions must be greater or equal than $8,000:

[tex]4800+183x\geq 8000[/tex]

Let's solve the inequality:

1. Subtract 4800 from both sides

[tex]4800-4800+183x\geq 8000-4800[/tex]

[tex]183x\geq 3200[/tex]

2. Divide both sides by 183

[tex]\frac{183x}{183} \geq \frac{3200}{183}[/tex]

[tex]x\geq 17.48[/tex]

Since she can't sell a fraction of a policy, we must round the result to the next integer:

[tex]x\geq 18[/tex]

We can conclude that she must sell 18 policies to make an annual income of at least $8,000.

a home building contractor bought 4 2/8 acres for $165,000. What was the cost of each acre? (round to nearest dollar.)

Answers

Answer:

$ 38,824

Step-by-step explanation:

Total Area of land that was bought = [tex]4\frac{2}{8}[/tex] acres

Total Cost of this area = $ 165,000

We have to find the cost of 1 acre of land.

Cost of [tex]4\frac{2}{8}[/tex] acres of land = $ 165,000

Dividing both sides by [tex]4\frac{2}{8}[/tex], we get:

Cost of 1 acre of land = $ 165,000 ÷ [tex]4\frac{2}{8}[/tex]

= $ 38,824

Thus the cost of each acre of land  is $ 38,824 (rounded to nearest dollar)

Answer: $38,824

Step-by-step explanation:

Convert the mixed number [tex]4\ \frac{2}{8}[/tex] as a decimal number.

Divide the numerator by the denominator and add it to the whole number 4. Then:

[tex]4+0.25=4.25acres[/tex]

Then, knowing that 4.25 acres cost $165,000 , divide this amount by 4.25 acres to find the cost of each acre.

Therefore, you get that the cost of each acre rounded to nearest dollar is:

[tex]cost=\frac{\$165,000}{4.25}\\cost=\$38,824[/tex]

I need help on this

Answers

Answer:

  none of the above

Step-by-step explanation:

The transformation ...

  g(x) = k·f(x -a) +b

vertically stretches the function f(x) by a factor of "k", translates it to the right by "a" units and up by "b" units. There won't be any reflection across the x-axis unless the stretch factor (k) is negative.

You have k=2, a=2, b=-2, so the function is stretched by a factor of 2, then translated to the right and down by 2 units each.

_____

The stretch is done first. If it is done last, then the translation factor(s) are also stretched. All the answer choices given in your problem statement list the stretch last, so none is correct. (You are probably expected to choose d.)

What is the x-intercept and the y-intercept of the line in the graph

Answers

Answer:

x intercept= 3

y=-2

Step-by-step explanation:

the intercept is the point when the line crosses the axis

if g(x)= 2x -1 then g(4)=​

Answers

g(4)=2×4_1

8-1

=9

hence the answer is 9

hope it helps you!!!!!!!!!

Answer:

g(4) = 7

Step-by-step explanation:

To evaluate g(4) substitute x = 4 into g(x), that is

g(4) = (2 × 4) - 1 = 8 - 1 = 7

What is the length of the third side of the window frame below?

(Figure is not drawn to scale.)

A picture of a right triangular window frame is shown. The longest side has length labeled as 39 inches. The height of the frame is labeled as 36 inches.

15 inches
27 inches
25 inches
32 inches

Answers

Answer:

15 inches

Step-by-step explanation:

The longest side of the right triangular window frame is 39 inches

The height is 36 inches

Let the base of the window frame be x inches

So according to Pythagoras theorem,

x² + 36² = 39²

x² = 39² - 36² = 225

x = [tex]\sqrt{225}[/tex] = 15 inches

The third side of the window frame is therefore equal to 15 inches.

The length of the third side of the window frame will be 15 inches. Then the correct option is A.

What is a Pythagoras theorem?

The Pythagoras theorem states that the sum of two squares equals the squared of the longest side.

The Pythagoras theorem formula is given as

H² = P² + B²

The longest side has a length labeled as 39 inches. The height of the frame is labeled as 36 inches.

Let x be the length of the third side of the window frame. Then we have

39² = x² + 36²

 x² = 39² - 36²

 x² = 1521 - 1296

 x² = 225

  x = 15 inches

Then the correct option is A.

More about the Pythagoras theorem link is given below.

https://brainly.com/question/343682

#SPJ2

What is the domain and range of the function shown

Answers

Answer:

• domain: x ≥ 0

• range: y ≥ 0

Step-by-step explanation:

The graph shows a ray that starts at the origin and extends to infinity in both the +x and +y directions. The domain (horizontal extent) is [0, ∞), as is the range (vertical extent).

Help Please..

Use the point-slope formula to find the equation of a line that goes through point (10, 32)
and has a slope of 3

Answers

Answer:

The equation of the line into point slope form is [tex]y-32=3(x-10)[/tex]

Step-by-step explanation:

we know that

The equation of the line into point slope form is equal to

[tex]y-y1=m(x-x1)[/tex]

In this problem we have

[tex]m=3[/tex]

[tex](x1,y1)=(10,32)[/tex]

substitute

[tex]y-32=3(x-10)[/tex] ---> equation of the line into point slope form

[tex]y=3x-30+32[/tex]

[tex]y=3x+2[/tex] ---> equation of the line into slope intercept form

What is the point of maximum growth rate? Round to the nearest tenth.

Answers

Answer:

  (x, f(x)) ≈ (5.5, 4)

Step-by-step explanation:

You can go to the trouble to find the point where the second derivative is zero (the derivative has a maximum), or you can realize the function is symmetrical about y=4, which is where the point of inflection is. The x-value there is ...

  4 = 8/(1 +3e^(-0.2x))

  1 +3e^(-0.2x) = 8/4 = 2

  e^(-0.2x) = 1/3

  x = ln(1/3)/-0.2 = 5ln(3) ≈ 5.493 ≈ 5.5

We already know the value of f(x) is 4 there.

The point of maximum growth is about (5.5, 4).

the club's total number of members will grow exponentially each month. She uses the given expression to model the number of club members, in hundreds, after advertising for t months.

1.8(1.02)^12t

What does the value 1.8 represent?

Answers

Answer:

1.8 represents the initial number of the club members in hundreds.

Step-by-step explanation:

* Lets revise the exponential grows

- If a quantity grows by a fixed percent at regular intervals,

 the pattern can be depicted by this function.

- The function of the exponential growth is:

  y = a(1 + r)^x

# a = initial value (the amount before measuring growth)

# r = growth rate (most often represented as a percentage and

  expressed as a decimal)

# x = number of time intervals that have passed

* Now Lets study the problem to solve it

- The club's total number of members will grow exponentially

  each month

- The expression to model the number of club members, in

  hundreds, after advertising for t months is

  1.8(1.02)^12t

* Lets compare between this model and the function above

# a = 1.8 ⇒ initial number of members in hundreds

# r = 1.02 - 1 = 0.02 ⇒ growth rate

# x = 12t ⇒ number of time intervals

* 1.8 represents the initial number of the club members in hundreds.

an athlete collected information on different brands of nutrition bars

Answers

Answer:

A and C are correct because the farther its is to 1 the stronger it is

Answer:

The answer is A and C

Step-by-step explanation:

If the distance covered by an object in time t is given by s(t)=t^2+5t , where s(t) is in meters and t is in seconds, what is the distance covered in the interval between 1 second and 5 seconds?
A. 24 meters
B. 30 meters
C. 40 meters
D. 42 meters
E. 44 meters

Answers

Answer:

E. 44 meters

Step-by-step explanation:

The function that models the distance covered by the object is

[tex]s(t)=t^2+5t[/tex]

where s(t) is in meters and t is in seconds.

The distance covered by the object after 1 second is

[tex]s(1)=1^2+5(1)=6m[/tex]

The distance covered by the object after 1 second is

[tex]s(1)=5^2+5(5)=50m[/tex]

The distance covered between 1 second and 5 seconds is

50-6=44m

Answer:

person above is right

Step-by-step explanation:

right on plato

MATH GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Answers

Answer:

Option C is correct.

Step-by-step explanation:

The equation used to represent the slop-intercept form is

y= mx + b

where m is the slope

and b is the y-intercept.

So, in the given question y-intercept = (0,8)

b= 8 and

slope =m= 1/2

the equation will be:

y = mx + b

y= (1/2)x + 8

So, Option C is correct.

Please help me on this please

Answers

Answer:

㏒3(14) = 2.402 ⇒ 3rd answer

Step-by-step explanation:

* Lets revise some rules of the logarithmic functions

- log(a^n) = n log(a)

-  log(a) + log(b) = log(ab) ⇒ vice versa

- log(a) - log(b) = log(a/b)  ⇒ vice versa

* Lets solve the problem

- We have the value of ㏒3(2) and ㏒3(7)

- We must change the problem to these logarithm to solve

∵ 14 = 2 × 7

∴ We can write ㏒3(14) as ㏒3(2 × 7)

∴ ㏒3(14) = ㏒3(2 × 7)

* Now lets use the rules above

∵  log(ab) = log(a) + log(b)

∴ ㏒3(2 × 7) = ㏒3(2) + ㏒3(7)

∵ ㏒3(2) = 0.631 and ㏒3(7) = 1.771

∴ ㏒3(2 × 7) = 0.631 + 1.771 = 2.402

* ㏒3(14) = 2.402

Find the solution set for the equation, given the replacement set.

5x + 2y = –3; {(–2, 9.5), (–3, 11.5), (–4, 8.5), (–5, 6.5)}
a.
{(–2, 9.5), (–3, 11.5)}
c.
{(–4, 8.5)}
b.
{(–3, 11.5)}
d.
{(–4, 8.5), (–5, 6.5)}

Answers

Answer:

   c.  {(–4, 8.5)}

Step-by-step explanation:

A plot of the equation and the offered points is attached.

__

It might be helpful to put the equation into slope-intercept form.

  2y = -5x -3

  y = -5/2x -3/2

This shows you that y will be an odd multiple of 1/2 only for even values of x. So, we only need to check the points (-2, 9.5) and (-4, 8.5).

At x=-2, y = -5/2(-2) -3/2 = 5 -3/2 < 9.5 . . . . . (-2, 9.5) is not a solution

At x=-4, y = -5/2(-4) -3/2 = 10 -3/2 = 8.5 . . . . (-4, 8.5) is a solution

Of the offered choices, the only one in the solution set is (-4, 8.5).

Use substitution to solve each system of equations.
x – 5y = –3
–7x + 8y = –33

A(2, 7)

B(–5, 1)

C(7, 2)

D(1, –5)

Answers

I think it’s C sorry if I’m wrong

For this case we have a system of sos equations with two unknowns:

[tex]x-5y = -3\\-7x + 8y = -33[/tex]

We clear "x" from the first equation:

[tex]x = -3 + 5y[/tex]

We substitute in the second equation:

[tex]-7 (-3 + 5y) + 8y = -33\\21-35y + 8y = -33\\-27y = -33-21\\-27y = -54\\y = \frac {-54} {- 27}\\y = 2[/tex]

We find the value of "x":

[tex]x = -3 + 5 (2)\\x = -3 + 10\\x = 7[/tex]

ANswer:

(7,2)

Option C

What is the premieter of this red polygon

Answers

Answer:

  338 in

Step-by-step explanation:

If each of the measures shown is the measure from the vertex to the point of tangency, then that measure contributes twice to the perimeter (once for each leg from the vertex to a point of tangency).

  2(22 in + 27 in + 22 in + 98 in) = 2(169 in) = 338 in

Law of sines: sin(A)/a=sin(B)/b=sin(C)/c How many distinct

Answers

Answer:

According to the given question if one of the angle of the triangle is 75 degree and the other two sides are of length 2 and 3 units respectively then option C is correct. Only One triangle can be formed where Angle B will be 40 degree. You can figure it out from the steps mentioned below first of all draw an Arc with the length either 3cm or 2 cm that will be the base of a triangle and then from the ending point again cut an arc then after from the starting point that is the point draw  an angle of 75 degree with the help of protactor and extend it to meet the Arc finally you can get the 40 degree.

Hope this helps. Name me brainliest please

Solve the systems of substitution(find out what number x is and what number y is)

y=2x+5
y=3x+11

Answers

Answer:

  (x, y) = (-6, -7)

Step-by-step explanation:

Substitute for y:

  2x +5 = 3x +11 . . . . . use the first expression for y in the second equation

  0 = x +6 . . . . . . . . . . subtract 2x+5

  -6 = x . . . . . . . . . . . . add -6

  y = 2(-6) +5 = -7 . . . .substitute for x

The solution is x = -6, y = -7.

Find the equation of the line that is perpendicular to the line 4x + 2y = 1 and passes through the point (−4, 3).
A) y=2x+5
B) y=2x+2
C) y=1/2x+2
D) y=1/2x+5

Answers

Answer:

y=1/2x+5 or d

Step-by-step explanation:

Answer is D

Step-by-step explanation:

Please help

must show work


there are 5 that I'm stuck on​

Answers

you cannot show too much "work"

basically, you remove what is common to all of the factors, and then put brackets, as it will be multiplied back in, remember that when you multiply exponents with the same base, its same as adding them, so subtract to remove...

you can seperate two of the variables , then factor, then subtract the last one from those two, because it cannot be factored out , as in part2 #2

HELP PLZ 20 POINTS PLZ DUE TM!!!

Answers

Answer:

40 (cm)

Step-by-step explanation:

0. make up a new picture with additional elements (radius of the inscribed circle, it's 'x'; and some elements as shown in the attached picture);

1. the formula of the required perimeter is P=a+b+c, where c- hypotenuse.

2. apply the Pythagorean theorem: a²+b²=c², where c - hypotenuse, then calculate value of 'x' (attention! x>0, the length is positive value !)

3. substitute 'x' into the formula of the required perimeter. The result is 40.

PS. All the details are in the attached picture, answer is marked with red colour.

Which of the following points is a solution of the inequality y < -|x|?

A. (1,-2)

B. (1,-1)

C. (1,0 )

Answers

ANSWER

The correct choice is A

EXPLANATION

The given inequality is

y < -|x|

We substitute each point into the inequality to determine which one is a solution.

Option A

-2 < -|1|

-2 < -1.

This statement is true.

Hence (1,-2) is a solution.

Option B.

-1 < -|1|

-1 < -1.

This statement is false.

Option C

0 < -|1|

0 < -1.

This statement is also false.

Substitute the value x = -1 into the first equation and solve for y.

{ y= 2x - 1
-2x - y = 5




Answers

Answer:

y = -3

Step-by-step explanation:

Following the directions, we have ...

y = 2·(-1) -1 = -2-1 . . . . . . put -1 where x is in the equation

y = -3

Other Questions
A balanced chemical equation shows the proportions of reactants and products necessary for a. the reaction to occur. c. energy use to be minimized. b. mass to be conserved. d. electrolysis to occur. List the three functions of kidney Which statement best compares pseudopods in sarcodina and flagella in dinoflagellates?A. Both pseudopods and flagella are used for reproduction, but only flagella are used for movement.B. Pseudopods are whip-like structures, while flagella are flat structures involved in photosynthesis.C. Both pseudopods and flagella are used for movement, but only pseudopods are used to engulf food.D. Pseudopods are permanent projections from a cell, while flagella can be retracted into the cell. David uses 1/2 cup of apple juice for every 1/4 cup of cranberry juice to make a fruit drink. Enter the number of cups of apple juice David uses for 1 cup of cranberry juice. Why did religious division have such a dramatic political impact How many times larger is the volume of a sphere if radius is multiplied by 5 How is the sovereignty of a nation state Limited? Find the first four iterates of the function f(x) = x2 with an initial value of x0 = -1.a.1, 1, 1, 1c.-1, -1, -1, -1b.1, -1, 1, -1d.-1, 1, -1, 1Please select the best answer from the choices provided Who raided Harpera Ferry? Mr. jenkins is almost 67 years old and is preparing to retire. Over his life he earned an average of $3,750 per month after adjusting for inflation. The formula for calculating monthly social security benifits is 90% of the first $680 earned, then 32% of the earning over $680. Whata will Mr. Jenkins' monthly benefit be? What type of source is also known as secondhand information? When a light wave is absorbed by an object what happens to the absorbed light energy The school production of 'Our Town' was a big success. For opening night, 503 tickets were sold. Students paid $4.00 each, while non-students paid $6.00 each. If a total of $ 2296.00 was collected, how many students and how many non-students attended?The number of students was nothing. (Simplify your answer.)The number of non-students was nothing. (Simplify your answer.) Explain the difference in how current flows through two light bulbs connected in series circuit and in two light bulbs connected in parallel circuit. How has globalization improved the lives of many people around the world? Give two examples and explain your answer. _____________ refers to the process where a plant absorbs carbon dioxide from the atmosphere and then stores carbon in its roots. Find the domain and range of f(x)=2x+cos x Find the coordinates for the mid point with endpoints (3,5) and (-2,0) Which of the following has the greatest effect on reproductive potential? A.Producing more at a time offspringB.Reproducing more oftenC.Having a longer life spanD. Reproducing earlier in life The MD orders 300 mg of an elixir to be given q12h. Available is 150mg/10ml. What should be administered every 12 hours?