What is the difference in height between the top surface of the glycerin and the top surface of the alcohol? Suppose that the density of glycerin is 1260 kg/m3 and the density of alcohol is 790 kg/m3.

Answers

Answer 1

Here is the full question

Glycerin is poured into an open U-shaped tube until the height in both sides is 20 cm. Ethyl alcohol is then poured into one arm until the height of the alcohol column is 10 cm. The two liquids do not mix.

What is the difference in height between the top surface of the glycerin and the top surface of the alcohol? Suppose that the density of glycerin is 1260 kg/m3and the density of alcohol is 790 kg/m3.

Express your answer in two significant figures and include the appropriate units (in cm)

Answer:

ΔH ≅ 3.73 cm

Explanation:

The pressure inside a liquid is known as hydrostatic pressure and which is represent by the formula:

P =   ρ × g × h

where;

ρ is the density of the fluid

g is the gravitational constant

h is the height from the surface

From the question above;

For glycerine; we have:

density of glycerine = 1260 kg/m³

gravitational constant = 9.8 m/s²

height = ???

[tex]P_{(g)= 1260kg/m^3}*9.8m/s^2*h_g[/tex]   ----- equation (1)

On the other hand for alcohol:

density of alcohol is given as = 790 kg/m³

gravitational constant = 9.8 m/s²

height = 10 cm

[tex]P_{(a)= 790kg/m^3*9.8m/s^2*10[/tex]           ----------- equation (2)

if we equate equation 1 and 2 together; we have

[tex]P_{(g)= P_{(a)[/tex]

[tex]1260kg/m^3}*9.8m/s^2*h_g = 790kg/m^3*9.8m/s^2*10cm[/tex]

Making [tex]h_g[/tex] the subject of the formula, we have :

[tex]h_g= \frac{ 790kg/m^3*9.8m/s^2*10cm}{1260kg/m^3*9.8m/s^2}[/tex]

[tex]h_g[/tex] = 6.269 cm

The difference in the height denoted  by ΔH can therefore be calculated as:

ΔH [tex]= H_a-H_g[/tex]

ΔH [tex]= 10cm - 6.269cm[/tex]

ΔH = 3.731 cm

ΔH ≅ 3.73 cm           (to two significant figures)


Related Questions

How much glycerol ( is liquid supplied at 100%) would you need to make 200 mL of 20% v/v (volume/volume) glycerol solution?

Answers

Answer:

40mL of glycerol are needed to make a 20% v/v solution

Explanation:

This problem can be solved with a simple rule of three:

20%  v/v is a sort of concentration. In this case, 20 mL of solute are contained in 100 mL of solution.

Therefore, in 100 mL of solution you have 20 mL of solvent (glycerol)

In 200 mL, you would have,  (200 .20)/ 100 = 40 mL

A 49.48-mL sample of an ammonia solution is analyzed by titration with HCl. It took 38.73 mL of 0.0952 M HCl to titrate the ammonia. What is the concentration of the original ammonia solution?

Answers

Answer:

M₂ = 0.0745 M

Explanation:

In case of titration , the following formula can be used -

M₁V₁ = M₂V₂

where ,

M₁ = concentration of acid ,

V₁ = volume of acid ,

M₂ = concentration of base,

V₂ = volume of base .

from , the question ,

M₁ = 0.0952 M

V₁ = 38.73 mL

M₂ = ?

V₂ = 49.48 mL

Using the above formula , the molarity of ammonia , can be calculated as ,

M₁V₁ = M₂V₂  

0.0952 M * 38.73 mL = M₂* 49.48 mL

M₂ = 0.0745 M

Consider the following equilibria in aqueous solution (1) Ag++ Cl-ーAgCl(aq) (2) AgCl(aq)CAgC12 (3) AgCls)Ag*CI K = 20-103 K = 93 K= 1.8.10-10 (a) Find K for the reaction AgCI(s)AgCl(aq). The species AgCl(aq) is an ion pair consisting of Ag and Cl associated with each other in solution. (b) Find [AgCl(aq)] in equilibrium with excess AgCl(s).

Answers

Explanation:

(a)  Chemical reaction equation is given as follows.

           [tex]Ag^{+} + Cl^{-} \rightarrow AgCl(aq) \rightarrow K_{1}[/tex]

Also,  

         [tex]AgCl(s) \rightarrow Ag^{+} + Cl^{-} \rightarrow K_{3}[/tex]

Therefore, the net reaction equation is as follows.

         [tex]AgCl(s) \rightarrow AgCl(aq)[/tex]

Now, we will calculate the value of K for this reaction as follows.

          K = [tex]K_{1} \rightarrow K_{2}[/tex]

             = [tex]2.0 \times 10^{3} \times 1.8 \times 10^{-10}[/tex]

             = [tex]3.6 \times 10^{-7 }[/tex]

Hence, the value of K for the given reaction is  [tex]3.6 \times 10^{-7 }[/tex].

(b)  As the reaction  is given as follows.

              [tex]AgCl(s) \rightarrow AgCl(aq)[/tex]

Therefore, when excess of AgCl(s) is added then the amount of [AgCl(aq)] present in equilibrium is as follows.

                   K = [AgCl(aq)] = [tex]3.6 \times 10^{-7 }[/tex]

Thus, the value of [AgCl(aq)] in equilibrium with excess AgCl(s) is [tex]3.6 \times 10^{-7 }[/tex].

(a) The equilibrium constant K for the reaction[tex]\(\text{AgCl(s)} \rightleftharpoons \text{AgCl(aq)}\) is \( 3.6 \times 10^{-9} \).[/tex]

(b) The concentration of AgCl(aq) in equilibrium with excess AgCl(s) is [tex]\( 3.6 \times 10^{-9} \, \text{M} \).[/tex]

Part (a): Finding K for the reaction-

We are given the following equilibria and their constants:

1. [tex]\(\text{Ag}^+ + \text{Cl}^- \rightleftharpoons \text{AgCl(aq)} \quad K_1 = 20\)[/tex]

2. [tex]\(\text{AgCl(aq)} \rightleftharpoons \text{Ag}^+ + \text{Cl}^- \quad K_2 = 93\)[/tex]

3. [tex]\(\text{AgCl(s)} \rightleftharpoons \text{Ag}^+ + \text{Cl}^- \quad K_3 = 1.8 \times 10^{-10}\)[/tex]

We need to find K for the reaction:

[tex]\[ \text{AgCl(s)} \rightleftharpoons \text{AgCl(aq)} \][/tex]

We can see that we need to combine these equilibria in a way that gets us from AgCl(s) to AgCl(aq)

Let's write the reactions again:

1. [tex]\(\text{Ag}^+ + \text{Cl}^- \rightleftharpoons \text{AgCl(aq)} \quad K_1 = 20\)[/tex]

2. [tex]\(\text{AgCl(aq)} \rightleftharpoons \text{Ag}^+ + \text{Cl}^- \quad K_2 = 93\)[/tex]

3. [tex]\(\text{AgCl(s)} \rightleftharpoons \text{Ag}^+ + \text{Cl}^- \quad K_3 = 1.8 \times 10^{-10}\)[/tex]

The relationship between these equilibria can be described as follows:

- [tex]\(\text{AgCl(s)} \rightleftharpoons \text{Ag}^+ + \text{Cl}^- \quad (K_3)\)[/tex]

- [tex]\(\text{Ag}^+ + \text{Cl}^- \rightleftharpoons \text{AgCl(aq)} \quad (K_1)\)[/tex]

If we multiply K₃ by K₁, we will get the desired equilibrium:

[tex]\[ \text{AgCl(s)} \rightleftharpoons \text{Ag}^+ + \text{Cl}^- \quad (K_3) \][/tex]

[tex]\[ \text{Ag}^+ + \text{Cl}^- \rightleftharpoons \text{AgCl(aq)} \quad (K_1) \][/tex]

Multiplying these two equilibria together, the intermediate [tex]\(\text{Ag}^+\)[/tex] and [tex]\(\text{Cl}^-\)[/tex] ions cancel out, giving us:

[tex]\[ \text{AgCl(s)} \rightleftharpoons \text{AgCl(aq)} \][/tex]

The equilibrium constant for this reaction is:

[tex]\[ K = K_3 \times K_1 \][/tex]

Substituting the given values:

[tex]\[ K = (1.8 \times 10^{-10}) \times 20 \] \\[/tex]

[tex]\[ K = 3.6 \times 10^{-9} \][/tex]

So, the equilibrium constant K for the reaction [tex]\(\te{AgCl(s)} \rightleftharpoons \text{AgCl(aq)}\)[/tex] is [tex]\( 3.6 \times 10^{-9} \).[/tex]

Part (b): Finding AgCl(aq) in equilibrium with excess AgCl(s)

When AgCl(s) is in equilibrium with AgCl(aq), the equilibrium expression for this reaction is:

[tex]\[ K = [\text{AgCl(aq)}] \][/tex]

From Part (a), we found that:

[tex]\[ K = 3.6 \times 10^{-9} \][/tex]

Therefore, the concentration of [tex]\(\text{AgCl(aq)}\)[/tex] in equilibrium with excess [tex]\(\text{AgCl(s)}\)[/tex] is:

[tex]\[ [\text{AgCl(aq)}] = 3.6 \times 10^{-9} \, \text{M} \][/tex]

The properties of several unknown solids were measured. Solid Melting point Other properties A >1000 °C does not conduct electricity B 850 °C conducts electricity in the liquid state, but not in the solid state C 750 °C conducts electricity in the solid state D 150 °C does not conduct electricity Classify the solids as ionic, molecular, metallic, or covalent. Note that covalent compounds are also known as covalent network solids or macromolecular solids. Ionic Molecular Metallic Covalent

Answers

Answer:

Explanation:

A >1000 °C does not conduct electricity : covalent ( usually do not conduct electricity, they are formed by the sharing of electrons)

B 850 °C conducts electricity in the liquid state, but not in the solid state: Ionic ( ionic or electrovalent compounds are formed between atoms where one loses an electron while the other gains e.g NaCl, they conduct electricity when dissolved in a polar solvent because they dissociate into ions and have high melting and boiling points)

750 °C conducts electricity in the solid state : Metallic ( metals generally have delocalized electrons that enables them to conduct electron since they are no associated with bond and are therefore free to move)

D 150 °C does not conduct electricity : Molecular ( consist mainly of molecules; they do not have charge)

Which isomer was produced from the bromination of trans-stilbene and cis-stilbene? Draw the structures of the products (use solid and dashed wedges).

Answers

The bromination of trans-stilbene results in meso-1,2-dibromo-1,2-diphenylethane, an achiral molecule. In contrast, the bromination of cis-stilbene yields enantiomeric products, (1R,2S)-1,2-dibromo-1,2-diphenylethane and (1S,2R)-1,2-dibromo-1,2-diphenylethane.

The bromination of trans-stilbene and cis-stilbene leads to different products due to the arrangement of the double bonds in the starting materials.

1. **Trans-Stilbene:**

  - In trans-stilbene, the two phenyl rings are on opposite sides of the double bond. Bromination in the presence of bromine ([tex]\(Br_2\)[/tex]) or other brominating agents typically occurs with syn-addition across the double bond.

  - The product is meso-1,2-dibromo-1,2-diphenylethane. The meso compound has a plane of symmetry, resulting in an achiral molecule.

2. **Cis-Stilbene:**

  - In cis-stilbene, the two phenyl rings are on the same side of the double bond. Bromination of cis-stilbene can yield two enantiomeric products due to anti-addition across the double bond.

  - The products are (1R,2S)-1,2-dibromo-1,2-diphenylethane and (1S,2R)-1,2-dibromo-1,2-diphenylethane.

 

Tryptophan is an essential amino acid important in the synthesis of the neurotransmitter serotonin in the body. What are the hybridization state, molecular geometry and approximate bond angle at the indicated carbon and nitrogen atoms?

Answers

Answer:

The molecules are hybridized at different angles as shown in the explanation.

Explanation:

The hybridization and the geometries of the carbon atoms are as follows:

C1     → sp², trigonal planar, angle = 120⁰

C (II)→  sp³, tetrahedral, angle = 109.5⁰

C(III)→ sp², trigonal planar, 120⁰

C(IV)→ sp³, trigonal pyramidal, 109, 5⁰

Observe the reactions given below. Classify the reactants based on whether they are oxidized or reduced. Zn(s)+Cu2+(aq)→Zn2+(aq)+Cu(s) 3Fe(s)+4H2O(g)→Fe2O3(s)+4H2(g) Drag the appropriate items to their respective bins. View Available Hint(s)

Answers

Answer:

1. Zn is oxidize.

Cu is reduced.

2. Fe is oxidize.

H2 is reduced.

Explanation:

1. Zn(s)+Cu2+(aq)→Zn2+(aq)+Cu(s)

From the equation,

Zn changes oxidation number from 0 to +2. Therefore Zn is oxidized.

Cu2+ changes oxidation number from +2 to 0. Therefore, Cu2+ is reduced

2. 3Fe(s)+4H2O(g)→Fe2O3(s)+4H2(g)

From the equation,

Fe changes oxidation number from 0 to +3. Therefore, Fe is oxidized.

H changes oxidation number from +1 to 0. Therefore, H is reduced

How many hours will it take for the concentration of methyl isonitrile to drop to 15.0 % of its initial value?

Answers

Answer:

The concentration  of methyl isonitrile will become 15% of the initial value after 10.31 hrs.

Explanation:

As the data the rate constant is not given in this description, However from observing the complete question  the rate constant is given as a rate constant of 5.11x10-5s-1 at 472k .

Now the ratio of two concentrations is given as

[tex]ln (\frac{C}{C_0})=-kt[/tex]

Here C/C_0 is the ratio of concentration which is given as 15% or 0.15.

k is the rate constant which is given as [tex]5.11 \times 10^{-5} \, s^{-1}[/tex]

So time t is given as

[tex]ln (\frac{C}{C_0})=-kt\\ln(0.15)=-5.11 \times 10^{-5} \times t\\t=\frac{ln(0.15)}{-5.11 \times 10^{-5} }\\t=37125.6 s\\t=37125.6/3600 \\t= 10.31 \, hrs[/tex]

So the concentration will become 15% of the initial value after 10.31 hrs.

Complete question:

The rearrangement of methyl isonitrile (CH3NC) to acetonitrile (CH3NC) is a first-order reaction and has a rate constant of 5.11x10-5s-1 at 472k . If the initial concentration of CH3NC is 3.00×10-2M. How many hours will it take for the concentration of methyl isonitrile to drop to 15.0 % of its initial value?

Answer:

The time taken for the concentration of methyl isonitrile to drop to 15.0 % of its initial value is 10.3 hours

Explanation:

The initial concentration of CH3NC is 3.00 X 10⁻²M =0.03M

The rate constant  K= 5.11 X 10⁻⁵s⁻¹

If the concentration of methyl isonitrile to drop to 15.0 %;

The new concentration of methyl isonitrile becomes 0.15 X 0.03 = 0.0045 M

The time taken to drop to 0.0045 M, can be calculated as follows:

[tex]t = -ln[\frac{(CH_3NC)}{(CH_3NC)_0}]/K[/tex]

[tex]t = (-ln[\frac{0.0045}{0.03}]/5.11 X 10^{-5})X(\frac{1 min}{60 s}) = 618.8 mins[/tex]

→ 618.8 mins X 1hr/60mins = 10.3 hours

Therefore, the time taken for the concentration of methyl isonitrile to drop to 15.0 % of its initial value is 10.3 hours

Based on the molecular formula, determine whether each compound is an alkane, alkene, or alkyne. (Assume that the hydrocarbons are noncyclical and there is no more than one multiple bond.)

a. C6H10
b. C4H10
c. C8H14
d. C8H16

Answers

Answer:

a. alkyne

b. alkane

c. alkyne

d. alkene

Explanation:

The general formula for each class of compound is given below

Alkane: [tex]C_nH_{2n+2}[/tex]

Alkene: [tex]C_nH_{2n}[/tex]

Alkyne: [tex]C_nH_{2n-2}[/tex] (assuming single multiple bonds)

Now let us classify according to the above formulas:

a. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne

b. It has two hydrogen atoms more than the two times of carbon atoms hence, it's alkane

c. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne

d. It has hydrogen atoms two times of carbon atoms hence, it's alkene

Answer:Based on the molecular formula, the following compounds belongs to the following groups:

a. C6H10 ( alkyne)

b. C4H10 ( alkane)

c. C8H14 (alkyne)

d. C8H16 (alkene)

Explanation: Hydrocarbon is an organic chemical compound that contains Hydrogen and carbons. There are three main types of Hydrocarbons which includes:

- Saturated Hydrocarbons.( They are composed entirely of single bonds and are saturated with hydrogen.). They are the alkane.

- Unsaturated Hydrocarbons: They are composed of either a double or triple bonds. The double bonds are the alkene and the triple bonds are the alkynes.

- Aromatic Hydrocarbons: they contain an aromatic ring. Example is the Benzene.

I hope this helps. Thanks.

Calcium carbonate decomposes when heated to solid calcium oxide and carbon dioxide gas. The balanced equation is: CaCO3(s) → CaO(s) + CO2(g) Before this reaction was run, the reaction container, including the CaCO3, had a mass of 24.20 g. After the reaction, the container with product (and any unreacted reactant) had a mass of only 22.00 g because the CO2 gas produced did not remain in the container. What mass of CaCO3 reacted?

Answers

Answer:

The mass of CaCO3 reacted  is 5.00 grams

Explanation:

Step 1 :Data given

Before the reaction, the container, including the CaCO3, had a mass of 24.20 g

After the reaction the container with product had a mass of only 22.00 g because the CO2 gas produced did not remain in the container.

Molar mass of CO2 = 44.01 g/mol

Molar mass CaCO3 = 100.09 g/mol

Step 2: The balanced equation

CaCO3 → CaO + CO2

Step 3: Calculate mass of CO2

Mass of CO2 = 24.20 grams - 22.00 grams

Mass of CO2 = 2.20 grams

Step 4: Calculate moles CO2

Moles CO2 = mass CO2 / molar mass CO2

Moles CO2 = 2.20 grams / 44.01 g/mol

Moles CO2 = 0.0500 moles

Step 5: Calculate moles CaCO3

For 1 mol CaCO3 we'll have 1 mol CaO and 1 mol CO2

For 0.0500 moles CO2 we need 0.0500 moles CaCO3

Step 6: Calculate mass CaCO3

Mass CaCO3 = moles CaCO3 * molar mass CaCO3

Mass CaCO3 = 0.0500 moles  * 100.09 g/mol

Mass CaCO3 = 5.00 grams

The mass of CaCO3 reacted  is 5.00 grams

Final answer:

2.20 grams of calcium carbonate (CaCO3) reacted, as calculated by the difference in mass before and after the decomposition reaction, which released carbon dioxide gas from the container.

Explanation:

The initial mass of the reaction container with calcium carbonate (CaCO3) was 24.20 g, while the final mass after the reaction was 22.00 g. The mass of CaCO3 that reacted can be found by subtracting the final mass from the initial mass, because the only mass lost would be the carbon dioxide (CO2) gas that escaped from the container.

Mass of CaCO3 that reacted = Initial mass - Final mass
= 24.20 g - 22.00 g
= 2.20 g

Therefore, 2.20 grams of calcium carbonate reacted, decomposing into calcium oxide (CaO) and releasing carbon dioxide gas according to the reaction CaCO3(s) → CaO(s) + CO2(g).

Covalent bonds in a molecule absorb radiation in the IR region and vibrate at characteristic frequencies.
(a) The C—O bond absorbs radiation of wavelength 9.6 μm. What frequency (in s⁻¹) corresponds to that wavelength?
(b) The H—Cl bond has a frequency of vibration of 8.652 x 10¹³ Hz. What wavelength (in μm) corresponds to that frequency?

Answers

Answer:

(a) ν = 3.1 × 10¹³ s⁻¹

(b) λ = 3.467 μm

Explanation:

We can solve both problems using the following expression.

c = λ × ν

where,

c: speed of light

λ: wavelength

ν: frequency

(a)

c = λ × ν

ν = c / λ

ν = (3.000 × 10⁸ m/s) / (9.6 × 10⁻⁶ m)

ν = 3.1 × 10¹³ s⁻¹

(b)

c = λ × ν

λ = c / ν

λ = (3.000 × 10⁸ m/s) / (8.652 × 10¹³ s⁻¹)

λ = 3.467 × 10⁻⁶ m

λ = 3.467 × 10⁻⁶ m (10⁶ μm/ 1 m)

λ = 3.467 μm

Rank the ions in each set in order of increasing size:
(a) CI⁻, Br⁻, F⁻
(b) Na⁺, Mg²⁺, F⁻
(c) Cr²⁺, Cr³⁺

Answers

Answer:

a) F⁻ < Cl⁻ < Br⁻

b) Mg²⁺ < Na⁺ < F⁻

c) Cr³⁺ < Cr²⁺

Explanation:

The ions in (a) part of the question belong to a halogen group. F, Cl, and Br are present in periods 2, 3, and 4 respectively. As we move down the group the size of atoms increases hence their ions will be in the same order. (ion from top to bottom of group 7)

The ions in (b) part of the question are isoelectronic. The relative size of such species can be estimated by the charge on their nucleus. Lower the nucleus charge greater will be the size of the ion.

Nuclear charge of Mg²⁺ = no. of protons = 12

Nuclear charge of Na⁺   = no. of protons = 11

Nuclear charge of F⁻     = no. of protons =  9

The ions in (c) part are the two oxidized states of chromium. In such cases, higher the number of nuclear charge smaller will be the ion.

Give all possible ml values for orbitals that have each of the following: (a) l = 2; (b) n = 1; (c) n = 4, l = 3.

Answers

Answer:

(a) ml = 0, ±1, ±2

(b) ml = 0

(c) ml = 0, ±1, ±2, ±3, ±4

Explanation:

The rules for electron quantum numbers are:

1. Shell number, 1 ≤ n

2. Subshell number, 0 ≤ l ≤ n − 1

3. Orbital energy shift, -l ≤ ml ≤ l

4. Spin, either -1/2 or +1/2

So in our exercise,

(a) l = 2; equivalent with with sublevel d

-l ≤ ml ≤ l, ml = 0, ±1, ±2, equivalent with dxy, dxz, dyz, dx2-y2, dz2

(b) n = 1;

n = 1, only 01 level

l = 0, equivalent with sublevel s

ml = 0

(c) n = 4, l = 3.

l = 3, equivalent with sublevel f

ml = 0, ±1, ±2, ±3, ±4

Calcium chloride contains calcium and chloride ions. Write the ground-state electron configuration for the calcium ion. You may write either the full or condensed electron configuration.

Answers

Answer:

Explanation:

Calcium is the element of the group 2 and period 4 which means that the valence electronic configuration is [tex]1s^22s^22p^63s^23p^64s^2[/tex] or [tex][Ar]4s^2[/tex].

Chlorine is the element of the group 17 and period 3 which means that the valence electronic configuration is [tex]1s^22s^22p^63s^23p^5[/tex] or [tex][Ne]3s^23p^5[/tex].

Thus, calcium losses 2 electrons to 2 atoms of chlorine and these 2 atoms of chlorine accepts each electron to form ionic bond. This is done in order that the octet of the atoms are complete and they become stable.

Thus, the formula of calcium chloride is [tex]CaCl_2[/tex].

Hence, in [tex]CaCl_2[/tex], Calcium exits in [tex]Ca^{2+}[/tex] form which has electronic configuration of [tex]1s^22s^22p^63s^23p^6[/tex] or [tex][Ar][/tex]

Final answer:

The ground-state electron configuration for a calcium ion (Ca²+) is 1s²2s²2p63s²3p6, the same configuration as the noble gas Argon (Ar). This is because a calcium ion loses its two 4s valence electrons when it forms a cation.

Explanation:

The calcium ion, denoted as Ca²+, has lost its valence electrons to form a cation. In an uncharged, ground state calcium atom, it contains 20 electrons with configuration as 1s²2s²2p63s²3p64s². When it loses its two 4s valence electrons to become a cation, its electron configuration changes to 1s²2s²2p63s²3p6 which is similar to the noble gas Argon (Ar).

Learn more about Electron Configuration here:

https://brainly.com/question/29157546

#SPJ12

In what ways are microwave and ultraviolet radiation the same? In what ways are they different?

Answers

Answer:

Electromagnetic waves are usually defined as those waves that are generated due to the vibrations between an electric as well as a magnetic field. Here, the component comprising the electric field and the component comprising the magnetic field vibrates perpendicular to each other, and both are in phase. Some of the examples of this type of wave are microwaves, infrared, ultra-violet, visible light, X-rays and many more.

The microwave and ultraviolet radiations are two electromagnetic waves that have similar characteristics, travel at a similar speed of about 300,000 km per second.

They differ from one another in many ways. It is because the microwaves have a higher wavelength, low frequency, and low energy. On the other hand, ultraviolet radiations have a low wavelength, high frequency, and high energy.

Within its genome, an organism must encode all of the genes necessary for maintaining life and for multiplying. As organisms increase in complexity, the size of their genomes and the total number of genes tend to increase. While there are exceptions to this trend, organism complexity can still be useful for the estimation of genome size.

Answers

Final answer:

The genome of an organism contains all its genetic material necessary for life and reproduction. Genome size varies widely across species and can inform us about genetic diversity and evolutionary history. The Human Genome Project and similar research have deepened our understanding of genomes and their role in growth, development, and evolution.

Explanation:

The genome of an organism includes all of its genetic material, which contains the necessary information for sustaining life and reproduction. As the complexity of organisms increases, generally, so does the size of their genomes. However, genome size doesn't correlate directly to the number of genes an organism has.

For instance, humans have about 3.5 pg of DNA in their genome, which translates to roughly 3.4 billion base pairs, despite not having the largest genome when compared to certain plants or even other animals. Intriguingly, a significant portion of the genome consists of non-coding DNA that doesn't seem to have a direct function in gene encoding.

Genome size differs widely across species, with eukaryotes often having multiple chromosomes and bacteria generally having smaller genomes. The genome size can provide information on an organism's genetic diversity and evolutionary history. The role of the genome is vital in the growth and development of organisms, dictating the specific instructions for these processes.

Additionally, the sequencing of genomes, as in the Human Genome Project, has provided valuable insights into genetic variations between and within species, fostering a greater understanding of evolutionary biology and potential medical advancements.

Household hydrogen peroxide is an aqueous solution containing 3.0% hydrogen peroxide by mass. What is the molarity of this solution? (Assume a density of 1.01 g>mL.)

Answers

Answer: Molarity of this solution is 0.88 M

Explanation:

Molarity : It is defined as the number of moles of solute present in one liter of solution.

Formula used :

[tex]Molarity=\frac{n\times 1000}{V_s}[/tex]

where,

Given : 3.0 g of hydrogen peroxide is present in 100 g of solution.

n = moles of solute = [tex]\frac{\text {given mass}}{\text {molar mass}}=\frac{3.0g}{34g/mol}=0.088mol[/tex]

[tex]V_s[/tex] = volume of solution in ml= [tex]\frac{\text {mass of solutuion}}{\text {density of solution}}=\frac{100g}{1.01g/ml}=99.0ml[/tex]

Now put all the given values in the formula of molarity, we get

[tex]Molarity=\frac{0.088moles\times 1000}{99.0ml}=0.88mole/L[/tex]

Thus molarity of this solution is 0.88 M

A hydrate of beryllium nitrate has the following formula: Be(NO3)2⋅xH2O . The water in a 3.41-g sample of the hydrate was driven off by heating. The remaining sample had a mass of 2.43 g .Find the number of waters of hydration (x) in the hydrate.

Answers

Answer:

The formula is Be(NO3)2*3H2O. The number of waters in the hydrate is 3

Explanation:

Step 1: Data given

Mass of the hydrate sample = 3.41 grams

Mass after heating = 2.43 grams

Step 2: Calculate mass of water

After heating, all the water is gone. So the mass of water can be calculated by

Mass of hydrate before heating - mass after heating

Mass of water = 3.41 -2.43 = 0.98 grams

Step 2 : Calculate moles H2O

Moles H2O = mass H2O / molar mass H2O

Moles H2O = 0.98 grams / 18.02 g/mol

Moles H2O = 0.054 moles

Step 3: Calculate moles Be(NO3)2

Moles Be(NO3)2 = 2.43 grams / 133.02

Moles Be(NO3)2 = 0.0183 moles

Step 4: Calculate molecules water

Molecules H2O = 0.054 moles / 0.0183 moles

Molecules H2O = 3.0

The formula is Be(NO3)2*3H2O. The number of waters in the hydrate is 3

The number of waters of hydration in the hydrate is 3.

Based on the given information,  

• The formula of the beryllium nitrate hydrate is Be(NO3)2⋅xH2O.  

• The weight of the sample is 3.41 grams.

• The weight of the sample after heating of the sample is 2.43 grams {weight of Be(NO3)2}.  

Now, the mass of xH2O will be,  

= 3.41 g - 2.43 g  

= 0.98 grams

The moles of Be(NO3)2 will be calculated as,  

Mass of Be(NO3)2/Molecular weight of Be(NO3)2 = 2.43 g/133 = 0.01827 moles

The moles of xH2O = 0.98/18 = 0.05444 moles

Now the value of x will be,  

= 0.05444/0.01827  

= 3

Thus, the number of waters of hydration in the hydrate is 3.

To know more about:

https://brainly.com/question/14480268

A tree was cut down and used to make a statue 2300 years ago. What fraction of 14C that was present originally remains today? t½ of 14C is 5730 yr

Answers

Answer:

0.76

Explanation:

N = No(0.5)^t/t1/2

N/No = (0.5)^t/t1/2

t = 2300 years, t1/2 = 5730 years

N/No = (0.5)^2300/5730 = 0.5^0.401 = 0.76

You are interested in thymol in mouthwash. The manufacturer lists the active ingredients as thymol (0.064%), menthol (0.042%), eucalyptol (0.092%) and methyl salicylate. The inactive ingredients include caramel, water and alcohol (21.6%) in addition to sodium benzoate, color, poloxamer 407 and benzoic acid.

(a) Does thymol represent a major, minor or trace concentration?

(b) of the ingredients listed with concentration, which ones can be considered in trace amounts?

(c) Which substance(s) is/are the sample?

(d) Which substance(s) is/are the analyte?

(e) Which substance(s) is/are the matrix?

(f) If you were to prepare a blank for your measurement, what substance(s) would it contain?

Answers

Answer:

a) Thymol represents a minor concentration.

b) Of the ingredients listed, the ones that qualify as being contained in trace amounts are the ones with concentrations less than 0.01%, 100ppm or 0.1mg/L. And in this question, none of the given concentrations is less than 0.01%. Maybe one of the other constituents whose concentrations weren't given is in trace amounts.

c) The mouthwash brought for analysis is the sample.

d) Thymol is the analyte.

e) The matrix is every component of the mouthwash sample apart from the analyte constituent, thymol.

Menthol, eucalyptol, methyl salicylate, caramel, water, alcohol in addition to sodium benzoate, color, poloxamer 407 and benzoic acid are all member substances of the matrix.

f) The blank can contain every constituent apart from the analyte constituent, thymol.

Explanation:

a) The composition range for major, minor and trace components are given thus.

1-100% Major

0.01-1% Minor

1 ppb to 100ppm Trace

<1ppb ultra trace

In Chemistry terms,

•Major constituents: Substances in concentrations over 1mg/L

•Minor constituents: Substances in concentrations between 1mg/L and 0.1 mg/L

•Trace constituents: Substances in concentrations under 0.1 mg/L

Hence, thymol with a concentration of 0.064% represents a minor constituent.

b) Of the ingredients listed, the ones that qualify as being contained in trace amounts are the ones with concentrations less than 0.01%, 100ppm or 0.1mg/L. And in this question, none of the given concentrations is less than 0.01%. Maybe one of the other constituents whose concentrations weren't given is in trace amounts.

c) In chemical analysis or Analytical chemistry, a sample is a portion of material selected from a larger quantity of material.

Therefore, for this question, the mouthwash is the sample.

d) In Analytical Chemistry, an analyte or analyte component is a substance or chemical constituent that is of interest in an analytical procedure.

For this question, the analyte is thymol; the constituent the analyser is interested in.

e) In chemical analysis, matrix refers to the components of a sample other than the analyte of interest.

Therefore, the matrix is every component of the mouthwash sample apart from the analyte constituent, thymol.

Menthol, eucalyptol, methyl salicylate, caramel, water, alcohol in addition to sodium benzoate, color, poloxamer 407 and benzoic acid are all member substances of the matrix.

f) A blank solution is a solution containing little to no analyte of interest, so, the blank can contain every constituent apart from thymol.

Hope this helps!

Benzoyl peroxide, the substance most widely used against acne, has a half-life of 9.8 × 103 days when refrigerated. How long will it take to lose 5% of its potency (95% remaining)? Assume that this is a first-order reaction. Give your answer in scientific notation.

Answers

Answer:

[tex]7.3\times 10^2\ days[/tex]

Explanation:

Given that:

Half life = [tex]9.8\times 10^3[/tex] days

[tex]t_{1/2}=\frac{\ln2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac{\ln2}{t_{1/2}}[/tex]

[tex]k=\frac{\ln2}{9.8\times 10^3}\ days^{-1}[/tex]

The rate constant, k = 0.00007 days⁻¹

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

Given:

5 % is lost which means that 0.05 of [tex][A_0][/tex] is decomposed. So,

[tex]\frac {[A_t]}{[A_0]}[/tex] = 1 - 0.05 = 0.95

t = ?

[tex]\frac {[A_t]}{[A_0]}=e^{-k\times t}[/tex]

[tex]0.95=e^{-0.00007\times t}[/tex]

t = 732.76 days = [tex]7.3\times 10^2\ days[/tex]

It will take approximately [tex]\( 7.25 \times 10^2 \)[/tex] days for benzoyl peroxide to lose 5% of its potency when refrigerated.

To determine the time, it takes for benzoyl peroxide to lose 5% of its potency, we can use the first-order reaction kinetics formula:

[tex]\[ N(t) = N_0 \times e^{-kt} \][/tex]

where:

[tex]\( N(t) \)[/tex] is the amount of substance remaining after time [tex]\( t \)[/tex],

[tex]\( N_0 \)[/tex] is the initial amount of substance,

[tex]\( k \)[/tex] is the rate constant,

[tex]\( t \)[/tex] is the time.

The half-life [tex]\( t_{1/2} \)[/tex] is related to the rate constant [tex]\( k \)[/tex] by the equation:

[tex]\[ t_{1/2} = \frac{\ln(2)}{k} \][/tex]

Given the half-life [tex]\( t_{1/2} = 9.8 \times 10^3 \)[/tex] days, we can solve for [tex]\( k \)[/tex]:

[tex]\[ k = \frac{\ln(2)}{t_{1/2}} = \frac{\ln(2)}{9.8 \times 10^3} \][/tex]

Now, we want to find the time [tex]\( t \)[/tex] when 95% of the substance remains, so [tex]\( N(t) = 0.95N_0 \)[/tex]. Plugging this into the first-order reaction formula:

[tex]\[ 0.95N_0 = N_0 \times e^{-kt} \][/tex]

[tex]\[ 0.95 = e^{-kt} \][/tex]

Taking the natural logarithm of both sides:

[tex]\[ \ln(0.95) = -kt \][/tex]

Solving for [tex]\( t \)[/tex]:

[tex]\[ t = -\frac{\ln(0.95)}{k} \][/tex]

Substituting [tex]\( k \)[/tex] with the expression involving the half-life:

[tex]\[ t = -\frac{\ln(0.95)}{\ln(2)/t_{1/2}} \][/tex]

[tex]\[ t = -\frac{\ln(0.95) \cdot t_{1/2}}{\ln(2)} \][/tex]

[tex]\[ t = -\frac{\ln(0.95) \cdot 9.8 \times 10^3}{\ln(2)} \][/tex]

[tex]\[ t \approx -\frac{\ln(0.95) \cdot 9.8 \times 10^3}{0.693} \][/tex]

[tex]\[ t \approx -\frac{-0.051293 \cdot 9.8 \times 10^3}{0.693} \][/tex]

[tex]\[ t \approx \frac{0.5027 \times 10^3}{0.693} \][/tex]

[tex]\[ t \approx 7.25 \times 10^2 \][/tex]

What is the volume of a 0.5 mol/L NaOH solution required to completely react with 20 mL of a 2.0 mol/L HCl solution? What is the pH value of the produced solution? (Hint: Write and balance the chemical reaction between HCl and NaOH, and then use the stoichiometric relation (molar relation) between NaOH and HCl to calculate the minimum volume of NaOH solution.) Group of answer choices

Answers

Answer:

The volume of NaOH required is 80mL

pH of the resulting solution is 7 since reaction produces a normal salt

Explanation:

First, we generate a balanced equation for the reaction as shown below:

NaOH + HCl —> NaCl + H2O

From the equation,

nA = 1

nB = 1

From the question,

Ma = 2.0 mol/L

Va = 20 mL

Mb = 0.5 mol/L

Vb =?

MaVa / MbVb = nA /nB

2x20 / 0.5 x Vb = 1

0.5 x Vb = 2 x 20

Divide both side by 0.5

Vb = (2 x 20)/0.5

Vb = 80mL

The volume of NaOH required is 80mL

Since the reaction involves a strong acid and a strong base, a normal salt solution will be produced which is neutral to litmus paper. So since the salt solution is neutral to litmus paper then the pH of the resulting solution is 7

The pH of a solution prepared by mixing HCl and NaOH, we need to determine the concentration of the resulting solution. Since HCl and NaOH react in a 1:1 ratio to form water and salt (NaCl), we can use the concept of neutralization to find the resulting concentration.

Moles of HCl = volume (in L) × molarity = 0.020 L × 0.30 mol/L = 0.006 mol

Moles of NaOH = volume (in L) × molarity = 0.015 L × 0.60 mol/L = 0.009 mol

Since HCl and NaOH react in a 1:1 ratio, the limiting reagent is HCl. This means that all of the HCl will react with NaOH, and we will have an excess of NaOH. Therefore, the number of moles of HCl remaining will be zero.

Total volume = 20.0 mL + 15.0 mL = 35.0 mL = 0.035 L

Concentration of resulting solution = (Moles of HCl + Moles of NaOH) / Total volume

= (0.006 mol + 0.009 mol) / 0.035 L

= 0.429 mol/L

pH = -log[H+]

pH = -log(0.429)

≈ 0.366

Therefore, the pH of the solution prepared by mixing 20.0 mL of 0.30 M HCl with 15.0 mL of 0.60 M NaOH is approximately 0.366.

Learn more about concentration here : brainly.com/question/30862855
#SPJ11

The EA₂ of an oxygen atom is positive, even though its EA₁ is negative. Why does this change of sign occur? Which other elements exhibit a positive EA₂? Explain.

Answers

Explanation:

Electron affinity of 7th group elements whose electron affinity of their anionic forms ( EA2) are higher than the electron affinity of their neutral form(EA1). This is because their anionic forms are more stable than their neutral form. If the reaction is endothermic ,change in the energy is negative this means that electron affinity is positive. And vice versa for negative electron affinity.

The EA2 of oxygen is positive because energy is required to add an electron to a small space that is already dense with negative charge. The EA2 of sulfur is also positive.

The electron affinity refers to the energy evolved when one mole of electrons is added to an atom. We know that the energy required to add the second electron to oxygen is positive rather than negative implying that the process is endothermic.

This is because, energy is required to add an electron to a small space that is already dense with negative charge. The EA2 of sulfur is also positive.

Learn more: https://brainly.com/question/8646601

(3) 1. HCl NaOH: In Part I: An aqueous solution of sodium hydroxide reacts with an aqueous solution of hydrochloric acid, yielding water. Write the balanced molecular, ionic, and net ionic equations

Answers

Answer:HCl(aq) + NaOH (aq) -> NaCl (aq) + H2O(l)

Explanation:

The reaction of HCl and NaOH is a neutralization reaction. When an acid and a base react salt and water is produced.

HCl(aq) + NaOH (aq) ----> NaCl (aq) + H2O(l)

Because the reactants and products are ionic compounds, they exist as ions in a solution.

H+(aq) + Cl-(aq) + Na+(aq) + OH-(aq) -------> Na+(aq) + Cl-(aq) + H2O(l)

The aim of a neutralization reaction is the formation of water. Na+(aq) + Cl-(aq) remain the same on both the reactants side and the products side, the net ionic reaction will be

H+(aq) + OH-(aq) -------> H2O(l)

The reaction of HCl and NaOH forms water in a neutralization reaction. The net ionic equation, H⁺ + OH⁻ → H₂O, emphasizes the essential combination of ions to produce water.

The reaction between hydrochloric acid (HCl) and sodium hydroxide (NaOH) is a neutralization reaction, resulting in the formation of water and salt. In molecular form, the equation is written as:

HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l)

Considering the ionic nature of these compounds in solution, they exist as ions. The complete ionic equation includes the dissociation of each compound into its constituent ions:

H⁺(aq) + Cl⁻(aq) + Na⁺(aq) + OH⁻(aq) → Na⁺(aq) + Cl⁻(aq) + H₂O(l)

Sodium cations (Na⁺) and chloride anions (Cl⁻) remain unchanged on both sides, acting as spectator ions. Eliminating these spectator ions yields the net ionic equation:

H⁺(aq) + OH⁻(aq) → H₂O(l)

This simplified representation emphasizes the essential components of the neutralization reaction, focusing on the combination of hydrogen ions (H⁺) from the acid and hydroxide ions (OH⁻) from the base to form water. The net ionic equation succinctly captures the core chemical transformation occurring in the neutralization process.

For more such information on: reaction

https://brainly.com/question/25769000

#SPJ6

Which aqueous solution has the lowest boiling point?

a. 1.25 MC6H12O6
b. 1.25 M KNO3
c. 1.25 MCa(NO3)2
d. None of the above.

Answers

Answer:

C

Explanation:

The aqueous solution C has three ions where as b 2 ions and A no Ionization

In the manufacture of nitric acid by the oxidation of ammonia, the first product is nitric oxide. The nitric oxide is then oxidized to nitrogen dioxide:

2 NO(g) + O2(g) → 2 NO2(g)

Calculate the standard reaction enthalpy for the reaction above (as written) using the following data:
N2(g) + O2(g) → 2 NO(g) ∆H ◦ = 180.5 kJ
N2(g) + 2 O2(g) → 2 NO2(g) ∆H◦ = 66.4 kJ

(A) −128.2 kJ/mol rxn
(B) −100.3 kJ/mol rxn
(C) −520.2 kJ/mol rxn
(D) −252.4 kJ/mol rxn
(E) −690.72 kJ/mol rxn
(F) −114.1 kJ/mol rxn

Answers

Answer:

F

Explanation:

simple subtration

In the manufacture of nitric acid by the oxidation of ammonia, the first product is nitric oxide. The nitric oxide is then oxidized to nitrogen dioxide. The standard reaction enthalpy for the reaction is −114.1 kJ/mol rxn.

What is an enthalpy ?

A thermodynamic system's enthalpy is the sum of its internal energy and the product of its pressure and volume. It is a constant-pressure state function that is used in many measurements in chemical, biological, and physical systems.

Enthalpy is significant because it tells us how much heat is present in a system (energy). Heat is important because it allows us to generate valuable work. An enthalpy shift indicates how much enthalpy was lost or gained during a chemical reaction, with enthalpy referring to the heat energy of the system.

During chemical reactions, atom bonds can dissolve, reform, or both in order to absorb or release energy. The heat absorbed or emitted by a device under constant pressure is referred to as enthalpy.

Thus, option F is correct.

To learn more about an enthalpy, follow the link;

https://brainly.com/question/7827769

#SPJ5

A 1.0223 g sample of an unknown nonelectrolyte dissolved in 10.2685 g of benzophenone produces a solution that freezes at 31.7°C. If the pure benzophenone melted at 47.5°C, what is the molecular weight of the unknown compound?

Answers

Answer: The molecular weight of unknown non-electrolyte is 61.75 g/mol

Explanation:

Depression in freezing point is defined as the difference in the freezing point of water and freezing point of solution.

[tex]\Delta T_f=\text{Freezing point of benzophenone}-\text{Freezing point of solution}[/tex]

To calculate the depression in freezing point, we use the equation:

[tex]\Delta T_f=iK_fm[/tex]

or,

[tex]\text{Freezing point of benzophenone}-\text{Freezing point of solution}=iK_f\times \frac{m_{solute}\times 1000}{M_{solute}\times W_{solvent}\text{ (in grams)}}[/tex]where,

i = Vant hoff factor = 1 (for non-electrolyte)

[tex]K_f[/tex] = molal freezing point depression constant = 9.80°C/m

[tex]m_{solute}[/tex] = Given mass of unknown non-electrolyte = 1.0223 g

[tex]M_{solute}[/tex] = Molar mass of unknown non-electrolyte = ?

[tex]W_{solvent}[/tex] = Mass of solvent (benzophenone) = 10.2685 g

Putting values in above equation, we get:

[tex]47.5-31.7=1\times 9.80\times \frac{1.0223\times 1000}{M_{solute}\times 10.2685}\\\\M_{solute}=\frac{1\times 9.80\times 1.0223\times 1000}{15.8\times 10.2685}=61.75g/mol[/tex]

Hence, the molecular weight of unknown non-electrolyte is 61.75 g/mol

Final answer:

The molecular weight of the unknown nonelectrolyte dissolved in benzophenone can be calculated using the formula for freezing point depression and the information provided in the question. After performing the necessary calculations, the molecular weight of the unknown compound is found to be 331 g/mol.

Explanation:

To calculate the molecular weight of the unknown compound, we use the formula for freezing point depression:

ΔT = iKfm

Where ΔT is the change in temperature, i is the van't Hoff factor which is 1 for nonelectrolytes, Kf is the cryoscopic constant for benzophenone, which, in this case, is 5.12°C kg/mol, and m is the molality of the solution. The change in temperature is the difference between the freezing points of pure benzophenone and the solution: 47.5°C - 31.7°C = 15.8°C.

The molality can be calculated by rearranging the formula:

m = ΔT / (iKf) = 15.8 / (1 * 5.12) = 3.086 mol/kg

Since we are given grams and want to convert to kilograms:

1.0223g of unknown compound / molar mass (unknown) = 3.086 mol/kg

Rearrange to find the molar mass (molecular weight) of the compound:

molar mass (unknown) = 1.0223g / 3.086 kg = 0.331 kg/mol = 331 g/mol

Hence the molecular weight of the unknown nonelectrolyte dissolved in benzophenone is 331 g/mol.

Learn more about Molecular Weight here:

https://brainly.com/question/34441475

#SPJ6

. You transfer 25.00 mL of your Kroger brand vinegar solution via volumetric pipet to a 250.00 mL volumetric flask and dilute to the final volume using distilled water, after which you mix the solution well. Next, you take a 25.00 mL aliquot of this diluted commercial vinegar solution and transfer it to a 150 mL Erlenmeyer flask. Titration of this sample to the phenolphthalein endpoint with sodium hydroxide required 15.81 mL of the 0.1002 M NaOH titrant. Based on this data, what is the molar concentration of the acetic acid in the original Kroger brand commercial vinegar solution ?

Answers

Answer:

0.0634 M.

Explanation:

Equation of the neutralisation reaction:

CH3COOH + NaOH--> CH3COONa + H2O

Number of moles = molar concentration * volume

= 0.1002 * 0.01581

= 0.00158 mol.

By stoichiometry,

1 mole of acetic acid reacts with 1 mole of NaOH

Number of moles of acetic acid = 0.00158 mol.

Concentration in 2nd dilution = moles/ volume

= 0.00158/0.25

= 0.00634 M

At 25 ml,

Concentration =

C1 * V1 = C2 * V2

= (0.00634 * 0.25)/0.025

= 0.0634 M.

The molar concentration will be "0.0634 M".

Given:

Molar concentration of NaOH = 0.1002 MVolume = 15.81 mL or, 0.01581 L

Neutralization reaction's equation:

[tex]CH_3 COOH+ NaOH \rightarrow CH_3COONa+H_2O[/tex]

Now,

The number of moles will be:

= [tex]Molar \ concentration\times Volume[/tex]

= [tex]0.1002\times 0.01581[/tex]

= [tex]0.00158 \ mol[/tex]

and,

The concentration of second dilution will be:

= [tex]\frac{Moles}{Volume}[/tex]

= [tex]\frac{0.00158}{0.25}[/tex]

= [tex]0.00634 \ M[/tex]

hence,

The concentration at 25 mL will be:

→ [tex]C_1\times V_1 = C_2\times V_2[/tex]

or,

→         [tex]C_2 = \frac{C_1\times V_1}{V_2}[/tex]

                 [tex]= \frac{0.00634\times 0.25}{0.025}[/tex]

                 [tex]= 0.0634 \ M[/tex]

Thus the above response is right.  

Learn more about molarity here:

https://brainly.com/question/13599639

There are exactly 60 seconds in a minute, exactly 60 minutes in an hour, exactly 24 hours in a mean solar day, and 365.24 solar days in a solar year. Part A How many seconds are in a solar year

Answers

Answer: The number of seconds in a solar year is [tex]3.2\times 10^7s[/tex]

Explanation:

We are given some conversion factors:

1 minute = 60 seconds

1 hour = 60 minutes

1 solar day = 24 hours

1 solar year = 365.24 solar days

Calculating the number of seconds in 1 solar year by using the conversion factors, we get:

[tex]\Rightarrow (\frac{60s}{1min})\times (\frac{60min}{1hr})\times (\frac{24hr}{1\text{solar day}})\times (\frac{365.24\text{solar days}}{1\text{ solar year}})\\\\\Rightarrow (\frac{31556736s}{1\text{ solar year}})[/tex]

There are 31556736 seconds in 1 solar year.

Hence, the number of seconds in a solar year is [tex]3.2\times 10^7s[/tex]

At 1 atm, how much energy is required to heat 75.0 g H 2 O ( s ) at − 20.0 ∘ C to H 2 O ( g ) at 119.0 ∘ C?

Answers

Answer:

238,485 Joules

Explanation:

The amount of energy required is a summation of heat of fusion, capacity and vaporization.

Q = mLf + mC∆T + mLv = m(Lf + C∆T + Lv)

m (mass of water) = 75 g

Lf (specific latent heat of fusion of water) = 336 J/g

C (specific heat capacity of water) = 4.2 J/g°C

∆T = T2 - T1 = 119 - (-20) = 119+20 = 139°C

Lv (specific latent heat of vaporization of water) = 2,260 J/g

Q = 75(336 + 4.2×139 + 2260) = 75(336 + 583.8 + 2260) = 75(3179.8) = 238,485 J

Other Questions
On February 1, 2017, Pat Weaver Inc. (PWI) issued 10%, $1,000,000 bonds for $1,116,000. PWI retired all of these bonds on January 1, 2018, at 102 for total proceeds of $1,020,000. Unamortized bond premium on that date was $92,800. How much gain or loss should be recognized on this bond retirement "In my speech I will demonstrate that there are clear parallels between the study of natural sciences and the study of humanities." This thesis sentence suggests which organizational patterns? Complete the table for the given Rule:y=x-3 Ingrid has $27 to buy oil paints for her painting class. Each tube of paintcosts $4. How many tubes can she buy? Do not include units in your answer. Which are causes of mechanical weathering If the simple interest on $6 comma 000 for 2 years is $480, then what is the interest rate? A 1 MB digital file needs to transmit a channel with bandwidth of 10 MHz and the SNR is 10 dB. What is the minimum amount of time required for the file to be completely transferred to the destination? 1 1/2 as a fraction Review the example.School uniforms should not be required because they are stupid and ugly.How do you know that this example is illogical?It simply restates the statement using different words.It uses strong language to arouse emotions, instead of appealing to logic.It attacks the opposition instead of the argument.It appeals to the audience's innate desire to follow the crowd or fit in. If one builds a canal linking a predator-rich pond to a predator-poor pond, then what type of selection should subsequently be most expected among the mosquitofish in the original predator-rich pond, and what type should be most expected among the mosquitofish in the formerly predator-poor pond? What is the combination of Cu(s) +S(s) A(n) ______ is a handheld vertical lever, mounted to a base, that you move to control the actions in a game. the\ function\ h\left(x\right)=\frac{1}{2}\left(x+3\right)^{2}+2.How\ is\ the\ graph\ of\ h\left(x\right)\ t\ r\ a\ nslated\ \ from\ the\ parent\ graph\ of\ a\ quadratic\ function,\ f\left(x\right)=x^{2} Recently, a bank was trying to decide what fee to charge for "expedited payments"long dash payments that the bank would transmit extra speedily to enable customers to avoid late fees on cable TV bills, electric bills, and the like. To try to determine what fee customers were willing to pay for expedited payments, the bank conducted a survey. It was able to determine that many of the people surveyed already paid fees for services that exceeded the maximum fees that they said they were willing to pay. This illustrates that__________. What is the mass of 187 liters of CO2 gas? The volume is measured at STP. Balance Decomposition NH3 = Which table represents exponential growth? A 2-column table has 4 rows. The first column is labeled x with entries 1, 2, 3, 4. The second column is labeled y with entries 2, 4, 6, 8. A 2-column table has 4 rows. The first column is labeled x with entries 1, 2, 3, 4. The second column is labeled y with entries 2, 4, 8, 16. A 2-column table has 4 rows. The first column is labeled x with entries 1, 2, 3, 4. The second column is labeled y with entries 2, 4, 7, 11. A 2-column table has 4 rows. The first column is labeled x with entries 1, 2, 3, 4. The second column is labeled y with entries 2, 4, 6, 10. "Gratitude is a word that I cherish."What is the rhetorical/poet device? On a piece of paper, use a protractor and a ruler to construct ABC with AB=6 cm , mA=80 , and mB=50 .What is AC ?3 cm6 cm9 cm12 cm Country Furniture Company manufactures furniture at its? Akron, Ohio, factory. Some of its costs from the past year? include:Depreciation on sales office?$ ? 9,000Depreciation on factory equipment? 16,000Factory supervisor salary? 50,500Sales commissions? 23,000Lubricants used in factory equipment? 3,000Insurance costs for factory? 21,000Wages paid to maintenance workers? 115,000Fabric used to upholster furniture? 10,000Freightminus?in?(on raw? materials) ? 3,000Costs of delivery to customers? 9,000Wages paid toassemblyminus?lineworkers ? 155,500Lumber used to build product? 82,000Utilities in factory? 54,500Utilities in sales office? 26,500Product costs for Country Furniture Company totaledA.?$370,000.Your answer is not correct.B.?$486,500.C.?$526,500.D.?$510,500.