Explanation:
(d) Coevolution results when two or more species influence adaptation in each other.
Coevolution is the evolution in at least two species in which the evolutionary changes of every specie impact the development of different species. As such, exerts selection pressures on, and develops in light of, different species. Coevolution - Evolution that outcomes from the connections between animals. Convergent evolution Pattern of development in which two inconsequential species bit by bit become like each other through adaptation to a common environment, regularly bringing about closely resembling structures.Final answer:
Evolution is the change in genetic makeup of a population over time, often driven by the process of natural selection. Coevolution, in contrast, is a specific form of evolution where two or more species reciprocally affect each other's evolution through close interaction. So, the correct option is d : Coevolution results when two or more species influence adaptation in each other.
Explanation:
The difference between evolution and coevolution can be understood through their interaction with the environment and other species. Evolution can be defined as the changes in the genetic makeup of a population over time, which includes both adaptation and speciation. This change happens from one generation to the next and is often in response to environmental changes, including those involving other species, driven by natural selection. On the other hand, coevolution occurs when two or more species influence adaptation in each other, evolving together typically due to close interactions, such as in the case of flowering plants and their pollinators, or predator-prey relationships.
Some of the largest leaves in the world can be found on plants near the floor of dense tropical rain forests. Which of the following precursors for photosynthesis is most likely limited in these large leaves?A) oxygenB) carbon dioxideC) glucoseD) light
Light.
Explanation:
The tropical rainforest have a dense plant cover and the canopy of tall and densely packed trees do not allow much light to penetrate through them. However, light is essential precursor of photosynthesis for all green plants. To adapt in such conditions the plants that thrive on the forest floor of tropical rainforest developed large leaves so that more and more available light could be trapped in order to carry out photosynthesis.
Thus we can say here light being limited ,acts factor that lead to such morphology.
How does photosynthesis and cellular respiration contribute to the carbon cycle?
Answer:
Cellular respiration releases carbon dioxide into the environment, photosynthesis pulls carbon dioxide out of the atmosphere.
Explanation:
Why does temperature affect heart rate in ectothermic organisms
Answer:cause its hot
Explanation:
Answer:
hii
Explanation:
Affinity chromatography is a method that can be used to purify cell-surface receptors, while they retain their hormone-binding ability. A ligand (hormone) for a receptor of interest is chemically linked to polystyrene beads. A solubilized preparation of membrane proteins is passed over a column containing these beads. Only the receptor binds to the beads. This method of affinity chromatography would be expected to collect which of the following? A. Molecules of the hormone. B. Molecules of purified receptor. C. G protein. D. Assorted membrane proteins. E. Hormone-receptor complexes.
Affinity chromatography is a method used to separate molecules with high affinity. This technique enables the purification of specific molecules ranging form nucleic acids, enzymes, antigens, antibodies, etc. In the example, the ligand will produce the receptor to be displaced from the beads and then eluted out.
Answer:
B: Molecules of purified receptor
Explanation:
Affinity chromatography is used mostly for biological systems because of high natural specificity between different biomolecules. Various applications include the use of enzymes, coenzymes, hormones, nucleotides, sugars etc to isolate viruses, cells and macromolecules. It has been widely applied to the purification of monoclonal antibodies, receptor proteins and recombinant proteins
Affinity chromatography is used to perform high levels of purification based on interaction between proteins and ligands. The ligand is attached to the solid matrix (chromatograph) by covalent bond, then a mixture of molecules is passed through the column. Only the molecules that show a higher affinity for the ligand would remain in the column while other materials that lacks specificity for the ligand would pass through the column. The molecules are further purified and reversibly adsorbed by an immobilised ligand. Successful binding interactions between the ligand and the protein must be reversible to avoid disruption of the biological properties during elution from the column.
Use of synthetic fertilizers often leads to the contamination of groundwater with nitrates. Nitrate pollution is also a suspected cause of anoxic "dead zones" in the ocean. Which of the following might help reduce nitrate pollution?a) growing improved crop plants that have nitrogen-fixing enzymes.
b) adding nitrifying bacteria to the soil.
c) adding denitrifying bacteria to the soil.
d) using ammonia instead of nitrate as a fertilizer.
Explanation:
Growing improved crop plants that have nitrogen fixing enzymes
Nitrate pollution occurs because of the introduction of excessive amounts of nitrogen to ground water and surface waterUse of synthetic fertilizers has resulted in high levels of pollution and eutrophication of lakes and rivers When nitrogen fertilizers are leached deep down into the soil they cause serious pollution problemsPlants that can do nitrogen fixation include members of family FabaceaeThe symbiotic association between legumes and Rhizobium is the most important nitrogen fixing association; rhizobia bacteria convert nitrogen gas to ammonia and this process is called nitrogen fixationAdding denitrifying bacteria to the soil could help reduce nitrate pollution by converting nitrates into nitrogen gas through the process of denitrification.
The excessive use of fertilizers leads to high levels of nitrates in groundwater and contributes to the creation of anoxic "dead zones" in the ocean. To help reduce nitrate pollution, one effective method could be adding denitrifying bacteria to the soil. These bacteria perform denitrification, a process where they convert nitrates (NO3−) into nitrogen gas (N2), thereby reducing the levels of nitrates in the soil and preventing the leaching of these compounds into groundwater and ultimately the ocean. This reduction in nitrate levels could decrease the occurrence of eutrophication and subsequent anoxic conditions.
"Use your knowledge of the Wnt/Frizzled signaling system to predict how gene expression will change when Lithium is added to a cell's environment. The TCF transcription factor will bind ________ frequently with the cell's DNA, resulting in _________ transcription."
Explanation:
The TCF transcription factor will bind less frequently with the cell's DNA, resulting in decreasing transcription."less, decreasedActive canonical WNT flagging outcomes in enlistment of β-catenin to DNA by TCF/LEF relatives, prompting transcriptional actuation of TCF target qualities. The extra translation factors have been recommended to enroll β-catenin and tie it to DNA. The genome-wide example of β-catenin DNA official in murine intestinal epithelium, WNT -responsive colorectal malignant growth (CRC) cells and HEK293 early stage kidney cells. The two classes of β-catenin restricting locales. The top notch speaks to most of the DNA-bound β-catenin and co-limits with TCF4, the noticeable TCF/LEF relative in these cells.A _____ is a site populated with people with erotic dispositions that they project on the space and each other, creating a system of sexual stratification.
Answer:
sexual fields
Explanation:
A sexual field is an field of social life wherein individuals seek intimate partners and fight for sexual status.
Which term defines the ketotic state most individuals enter in the early morning even after eating a meal containing carbohydrates the previous evening?
Answer:ketosis
Explanation: individuals experience a state of ketosis in the morning even afyer eating a carbohydrate-containing meal the previous evening. Ketosis is a state of metabolism in which there is very little glucose in the body, therefore, fat acs to provide energy to the body. Although ketosiz is mostly experienced in cases of low-carbohydrate diets, it also occurs in cases of pregnancy, infacny or in lactating mothers. Such cases are termed physiologic ketosis.
The same gene that causes various coat patterns in wild and domesticated cats also causes a cross-eyed condition in these cats, the cross-eyed condition being slightly maladaptive. In a hypothetical environment, the coat pattern that is associated with crossed eyes is highly adaptive, with the result that both the coat pattern and the cross-eyed condition increase in a feline population over time. Which statement is supported by these observations?
a. Evolution is progressive and tends toward a more perfect population.
b. Phenotype is often the result of compromise.
c. Natural selection reduces the frequency of maladaptive genes in populations over the course of time.
d. Polygenic inheritance is generally maladaptive, and should become less common in future generations.
e. In all environments, the coat pattern is a more important survival factor than is the eye-muscle tone.
Answer:
The answer is B.
Explanation:
The given example in the question of the wild cat's coat patterns and the cross eyed condition are caused by the same gene. The cross eyed condition is a disadvantage for the wild cats because it affects their vision and therefore their ability to hunt and feed. But it also causes the coat pattern that leads to the increase of feline population over time. This is a result of a compromise between the two traits for their affects on the population. We can say that phenotype is often the result of compromise because not all traits support the same result.
I hope this answer helps.
Answer:
The correct answer is option b. "Phenotype is often the result of compromise".
Explanation:
The fact that the same gene controls both the coat pattern and the cross-eyed condition in cats, but only the cross-eyed condition being slightly maladaptive, suggest that phenotype is often the result of compromise. Phenotype is the result of both, the genotype and the environment. Selective pressures made by environmental conditions can cause the cross-eyed condition being maladaptive in cats.
The very limited gene pool of wild cheetahs is an example of A. founder effect. B. natural selection. C. evolutionary decline. D. mate selection. E. the bottleneck effect.
Answer:
The very limited gene pool of wild cheetahs is an example of evolutionary decline
Explanation:
When there is limited gene pool of wild cheetah is an example of evolutionary decline, as there is decrease in number of gene pool of cheetah in the wild which makes it to be scarce
How many and what type of chromosomes would be expected in a karyotype of a human male
Answer: 22 pairs of autosomal chromosomes, 1 Y chromosome, and 1 X chromosome
Explanation:
The chromosomes pair are found in same number in both males and females. The male have XY chromosome and 22 pair of autosomes.
The XY pair of chrmosomes are known as sex chromosomes which decides the person is male or female.
The karyotype of the male person will have 22 pair of autosomes and a pair of sex chromosomes XY.
Intracellular condensates are non-membrane bound biochemical subcompartments that form due to phase separation among networks of weakly interacting molecules. Sabari et al., 2018, proposed that the transcriptional coactivator BRD4 helps form intracellular condensates containing other transcriptional proteins. A prediction of this proposal is that BRD4 should behave as a liquid within the condensate with rapid movement. Which procedure could be used to analyze movement of BRD2 in living cells?
Answer:
Fluorescence recovery after photobleaching.
Explanation:
The molecules can move inside and outside of the cell trough the semi permeable membrane. The molecules might require or do not require energy depending upon the concentration gradient.
The FRAP (fluorescence recovery after photobleaching) is the techniques used to identify the diffusion and lateral movement of molecules. This technique uses the fluorescence molecule and then the photobleaching of that particular molecule is directly proportional to the movement of molecule. The bleaching can be observed on the autoradiography.
You measure the concentration of a polar molecule inside and outside of a cell. You find that the concentration is high outside but gradually increasing inside the cell. You also measure the ATP concentration inside the cell and find that it remains constant. Your best hypothesis for the process that is occurring would be: a. active transport b. passive transport c. facilitated diffusion d. simple diffusion e. endocytosis
Answer:
The correct answer is passive transport
Explanation:
Passive transport is the transport in which the molecules move inside the cell along the concentration gradient without the use of energy.
So here there is a concentration gradient and the polar molecule is moving from its high concentration to its lower concentration which results in increment of that polar molecule inside the cell and it is also given that no energy is used in this case as ATP concentration is constant which shows that the transport is passive transport. In active transport ATP is used to transport molecules across cell membrane.
The predatory bacterium, Bdellovibrio bacteriophorus, drills into a prey bacterium and, once inside, digests it. In an attack upon a gram-negative bacterium that has a slimy cell covering which can inhibit phagocytosis, what is the correct sequence of structures penetrated by B. bacteriophorus on its way to the prey's cytoplasm? 1. membrane composed mostly of lipopolysaccharide 2. membrane composed mostly of phospholipids 3. peptidoglycan 4. capsule A) 4 ?? 3 ?? 1 ?? 2 B) 1 ?? 4 ?? 3 ?? 2 C) 2 ?? 4 ?? 3 ??1 D) 4 ?? 1 ?? 3 ?? 2 E) 1 ?? 3 ?? 4 ?? 2
Answer:
D) 4,1,3,2
Explanation:
Once past the capsule, the next membrane is composed of lipopolysaccharides. Then comes the peptidoglycan cell wall. Finally, the inner membrane is composed of a phospholipid bilayer.
Bacteria are a commonly used organism for studies of genetic material in the research laboratory. The nucleic acids must first be isolated from the cells for these studies. Which of the following would most likely be used to lyse the bacterial cells for nucleic acid isolation?
a. lysozyme
b. polymixins
c. alcohol
d. water
e. mycolic acid
Answer: a. lysozyme
Explanation: Lysozyme discovered by Sir. Alexander Fleming are enzymes that catalyzes the breakdown of some carbohydrates present in the cell walls of some bacteria. They can be used to lyse the cell walls of bacteria for isolation of the nucleic acids.
The beginning of a true capillary is surrounded by a precapillary sphincter. The opening and closing of precapillary sphincters is controlled by ________.
Answer:
Local Chemical condition
Explanation:
Precapillary sphincter is a small smooth muscles that regulates the flow of blood into the capillaries.
Blood flows to the surrounding branches of the capillary due to the fact that surrounding capillaries require oxygen when the sphincters are open and the blood flows directly from the arteriole( which is a small artery) to the venule( which is a small vein) when the sphincters are closed
The opening and closing of precapillary sphincters at the beginning of a true capillary is controlled by chemical signals.
These signals work at the level of the sphincters to trigger either constriction or relaxation.
This control allows for the regulation of blood flow into a particular capillary.
For example, if the sphincter is open, blood will flow into the associated branches of the capillary blood.
Conversely, if all sphincters are closed, the blood will flow directly from the arteriole to the venule through the thoroughfare channel.
These muscle rings allow the body to accurately regulate when capillary beds receive blood flow, depending on the body's needs at any given time.
Learn more about precapillary sphincters here:
https://brainly.com/question/32374396
#SPJ6
Isabella was horrified when her newborn son Matteo became cyanotic immediately after he was born. He was whisked away; when the doctor returned, he told Isabella and her husband that their son had a congenital heart defect called TGV or transposition of the great vessels. Part A - Cyanosis To become cyanotic means to turn blue. What could cause a new born to turn blue
Answer:
A new born baby can turn blue when there is not enough oxygen rich blood in his body
Explanation:
TGV - Transposition of the great arteries is a defective heart condition that occurs from birth. The two great arteries are the aorta and pulmonary artery. The aorta carries oxygen-rich blood from the heart to the rest of the body while the pulmonary artery carries oxygen deficient blood from the body to the lungs
Normally the aorta which is supposed to be connected to the left ventricle and supply oxygen rich blood from the heart to the rest of the body is transposed. Meaning that it is instead connected to the right ventricle and carries oxygen-deficient blood to the body.
Conversely in TGV situation, the pulmonary artery is connected to the left ventricle (instead of the right ventricle) and carries oxygen rich (instead of oxygen-deficient) blood to the lungs.
The result is that the new born baby body has oxygen deficient blood and hence begins to burn blue (cyanotic)
In the Z-scheme ____ is the initial electron donor and ____ is the final electron acceptor. A. Water; NADP B. NADPH; oxygen C. Water; oxygen D. ATP; carbon dioxide
Explanation:
Z scheme also known as non cyclic electron flow which starts with the absorption of light by photosystem II
Z scheme involves both photosystem(PS) I and photosystem(PS) IIWater becomes oxidized and oxygen gas is released/evolved as a result NADP+ gets reduced and produces NADPHOxidation of water and release of protons in lumen is done by PSII whereas reduction of NADP+ to NADPH is done by PSIOxidation of water molecule establish gradient of proton and this gradient drives synthesis of ATPIn the Z-scheme of photosynthesis, water (H2O) is the initial electron donor, and NADP+ (nicotinamide adenine dinucleotide phosphate) is the final electron acceptor. Therefore option A is correct.
The Z-scheme, also known as the light-dependent reactions, occurs in the thylakoid membranes of chloroplasts.
During this process, light energy is absorbed by photosystems I and II, exciting electrons in chlorophyll molecules.
These electrons are then transferred along an electron transport chain, which includes cytochrome complexes, plastocyanin, and finally, NADP+. In the last step, NADP+ accepts two electrons and a proton, becoming reduced to NADPH.
Water is split, providing the electrons needed to replenish the electrons lost from chlorophyll in photosystem II, and oxygen (O2) is released as a byproduct.
Therefore option A Water; NADP is correct.
Know more about photosynthesis:
https://brainly.com/question/29764662
#SPJ6
You find a green organism in a pond near your house and believe it is a plant, not an alga. Which line of evidence would definitively support your hypothesis?
Final answer:
The presence of specialized structures like roots, stems, and leaves, as well as the ability to undergo photosynthesis, would definitively support the hypothesis that the green organism is a plant and not an alga.
Explanation:
The line of evidence that would definitively support the hypothesis that the green organism found in the pond near your house is a plant and not an alga is if it has specialized structures such as roots, stems, and leaves. These structures are characteristic of plants and are not found in algae. Additionally, if the organism undergoes photosynthesis and contains chloroplasts, it would further support the idea that it is a plant.
Proliferation of lymphocytes occurs immediately after which events?
The question is incomplete as it does not have the options which are:
A) release from the bone marrow
B.) seeding of secondary lymphoid organs
C) entering the circulation
D) antigen encounter & activation
Answer:
D) antigen encounter & activation
Explanation:
The immune response of the body is determined by the immune cells flowing in the blood.
When a type of immune cell called lymphocytes interact with the antigen (foreign body), this induces the activation of the immune response.
A type of lymphocyte which flows in the blood is B-lymphocytes which contain antibodies and binds with antigen produces cytokines like IL-4,5. These cytokines induce the B cells to produce plasma cells and memory cells. The plasma cells produce more B lymphocytes.
Thus, Option-D is correct.
Lymphocyte proliferation occurs after activation and binding of lymphocytes to antigens, followed by clonal expansion stimulated by cytokines like IL-2, leading to immune response and memory cell formation.
The proliferation of lymphocytes occurs immediately after the activation of naive B-lymphocytes, T4-lymphocytes, and T8-lymphocytes when they bind to their corresponding epitopes. This event, known as clonal expansion, is essential for mounting a successful immune response. Cytokines, such as interleukin-2 (IL-2), produced by these cells and others like dendritic cells, are crucial for this proliferation. Lymphocytes then differentiate into effector and memory cells. Memory cells provide a heightened and rapid secondary response upon re-exposure to the same antigen, the basis of long-lasting immunity and immunization strategies.
There are several different types of symbiotic relationships. In this case, a tick attaches to an animal and feeds on its blood. Ticks need blood at every stage of their life cycle. Ticks can also spread disease to the animals when they penetrate the animal's skin while sucking its blood. What type of symbiotic relationship is this? Explain.
Answer:
Parasitism
Explanation:
There are three main types of symbiotic relationship which includes:
Mutualism: this is a type of symbiotic relationship that occurs between two organism where both gains/has something to offer to the relationship. Example is the mutualistic relationship between nitrogen fixing bacteria and root nodules of leguminous plant
Commensalism: a type of relationship in which only one benefits but does not cause harm to the other. Example: cattle egret and cattle
Parasitism: a relationship where one organism benefit and cause harm to the host organism. Example is the tick and its host
Answer:
paratism
Explanation:
A client with chronic arterial occlusive disease undergoes percutaneous transluminal coronary angioplasty (PTCA) for mechanical dilation of the right femoral artery. After the procedure, the client will be prescribed long-term administration of which drug?A. Aspirin or acetaminophen (Tylenol).B. Pentoxifylline (Trental) or acetaminophen (Tylenol).C. Aspirin or clopidogrel (Plavix).D. Penicillin V or erythromycin (E-Mycin)
Answer:
Aspirin or clopidogrel (Plavix)
Explanation:
Aspirin or clopidogrel (plavix).-rationale: after ptca, the client begins long-term aspirin or clopidogrel therapy to prevent thromboembolism
The rainforest is an area rich in natural resources. Resources taken from this region are used for lumber, medicines, food and many other products. ________________ is one of the current factors affecting extraction of resources from the rainforest. A. Inconvenient transportation of resources B. Lack of storage for resources C. Troublesome weather patterns D. Political opposition
Answer:
C. Troublesome weather patterns is one of the current factors affecting extraction of resources from the rainforest.
Based on what we know about the osmosis of water molecules across plasma membranes, predict what will happen to the cytoplasmic volume of the cells of Elodea (that is, the amount of liquid stored inside the cells) when an Elodea leaf is placed in a 15% NaCI solution (a hypertonic environment)
Based on what we know about the osmosis of water molecules across plasma membranes, predict what will happen to the cytoplasmic volume of red blood cells (that is, the amount of liquid stored inside the cells) when red blood cells are placed in distilled water (a hypotonic environment)
Answer:
when placed in hyper tonic solution , the cytoplasmic volume of elodea plant will be reduced, this is because, elodea is a water plant with high water potential; therefore,with cytoplasm of high water potential elodea will loose water from the cytoplasm to the external; hypertonic solution, of lower of potential by osmosis. This reduces the cytoplasmic volume.With time the protoplasm pulls away from the cell wall, and the whole elodea structure shrinks.
However,, when RBC is placed in hypotonic solution, of higher water potential than the RBC (which has lower water potential), the cytoplasmic volume increases as water moves into the cytoplasm by osmosis. The RBC swells and eventually busted. This is hemolysis.
Explanation:
In hypertonic solutions, water leaves cells causing cytoplasmic volume to decrease. In hypotonic solutions, water enters cells causing cytoplasmic volume to increase.
Explanation:In a hypertonic environment, such as a 15% NaCI solution, water molecules will move out of the Elodea cells through osmosis, causing the cytoplasmic volume to decrease. The hypertonic solution has a higher concentration of solute compared to the cytoplasm, so water will leave the cells to equalize the concentration. This can lead to shrinkage or wilting of the Elodea cells.
In a hypotonic environment, like distilled water, water molecules will move into the red blood cells through osmosis, causing the cytoplasmic volume to increase. The hypotonic solution has a lower concentration of solute compared to the cytoplasm, so water will enter the cells to equalize the concentration. This can result in the swelling and potential bursting of the red blood cells.
Learn more about osmosis here:https://brainly.com/question/33306139
#SPJ3
A long filamentous organelle found within muscle cells that has a banded appearance is called
Answer:
A long filamentous organelle found within muscle cells that has a banded appearance is called myofibril
Myofibril is called a long filamentous organelle found within muscle cells that has a banded appearance.
The myofibril consists of thick and thin filaments that form a pattern of striations, with thin filaments of actin in opposite directions that are joined by actin dimers.
Each myofibril has a banded appearance and is located within the striated muscle fiber, together with the mitochondria and the sarcolemma.The molecular and cellular mechanisms and processes that explain muscle contraction in skeletal muscle occur in the myofibril sarcomere.Therefore, we can conclude that the myofibrils are groups of thick and thin filaments that collaborate in muscle contraction.
Learn more here: https://brainly.com/question/14203605
What feature of DNA allows for faithful copies to be made during DNA replication and passed on to the daughter cells? If you cannot remember from high-school biology, you can review these basic concepts by completing this week's homework assignment first, before continuing this pre-lecture lesson: Molecular Basis of Heredity complementary base-pairing rules redundancy of genetic code no restriction of sequence of nucleotides along length of DNA molecule Central Dogma of Biology
Answer:
complementary base-pairing rules
Explanation:
DNA is the genetic material of living cells. It is a long chain of double-stranded molecules, in which each strand is complementary to one another i.e. Adenine base is paired with Thymine base while Guanine base pairs with Cytosine base following the complementary base pairing rule as proposed by Chargaff. This pairing is responsible for the double helical structure of the DNA.
The complementary base pairs that a DNA molecule contains make it able to produce identical copies of itself during replication or duplication. Before replication of DNA can occur, the double strands need to unwind to form two separate strands, which serves as a template for the synthesis of new complementary strands.
In this manner, each new strand contains one template strand and one complementary strand, which forms two new double helix that is identical to the original strand. This two identical copies of DNA gets separated into two daughter cells, which is the essence of the DNA replication.
If you wanted to sequence the genome of Ötzi, the 5,300-year-old "Iceman" mummy found in the Alps in 1991, which method would you be most likely to use?
The question is incomplete as it does not have the options which are:
a) DNA
b) AGCT
c) PCR
d) SNP
Answer:
PCR (polymerase chain reaction)
Explanation:
The polymerase chain reaction is the technique which replicates and produces multiple copies of the DNA molecule artificially in a short period of time.
The PCR technique employs a variety of enzymes and all the prerequisites which are required in the DNA replication in vivo conditions.
In the given question, if the genome of the mummy has to sequence then after the collection of samples from the bones, the DNA has to replicate through the process of PCR. The samples from the different bone structures can be compared and analysed and a complete genome sequence can be analysed.
Thus, PCR is correct.
Compare and contrast some features of prokaryotic and eukaryotic cells. Match each statement with the correct cell type. 1. Lack of membrane-bound nucleus.2. DNA in cytoplasm.3. Single, circular chromosome.4. Membrane-bound nucleus.5. DNA inside nucleus.6. Multiple chromosomes. 7. Prokaryotic Cell. 8. Eukaryotic Cell.
Prokaryotic cells are cells with simpler features without membrane-bound organelles and nuclei. They are unlike the more complex eukaryotic cells with specialized organelles like the nucleus and membrane-bound mitochondrion, chloroplast, lysosomes, etc.
Both prokaryotic and eukaryotic cells have some basic features in common such as the presence of ribosomes for the synthesis of proteins and cell membrane for maintaining homeostasis. However, the absence of nuclei means that prokaryotic cells have their genetic materials which could be as simple as a circular chromosome lying freely in the cytoplasm.
That being said, each of the statements in the illustration can be matched as follows:
Prokaryotic cells: lack of membrane-bound nucleus, DNA in cytoplasm, single circular chromosomes
Eukaryotic cells: membrane-bound nucleus, DNA inside the nucleus, multiple chromosomes.
More on prokaryotic and eukaryotic cells can be found here: https://brainly.com/question/1100720
The term _____ refers to a group of related plants that grow in some regions of Central and South America and whose leaves are used as natural sweeteners
Answer:
dtyykuk
Explanation:
utlilitli
You are given the task of designing an aerobic, mixotrophic protist that can perform photosynthesis in fairly deep water (for example, 250 meters deep) and can also crawl about and engulf small particles. With which two of the following structures would you provide your protist?1. hydrogenosome
2. apicoplast
3. pseudopods
4. chloroplast from red alga
5. chloroplast from green alga
Answer:
3. pseudopods
4. chloroplast from red alga
Explanation: Pseudopods are extensions of the Cytoplasm of cells like Amoeba, they are changed in shape and appearance in order to aid the movement and for predation of the organisms that possess it.
Chloroplast from Red algae are characterized as not having Centrioles and flagella in their Eukaryotic cells and are known to contain the red pigments instead of the green pigments as seen generally in chloroplast.