These are the gases involved in photosynthesis:
Photosynthesis is the process in which green plants produce glucose. It involves the conversion of carbon dioxide gas, water and minerals the plants take in from their surroundings into sugar and gaseous oxygen. Photosynthesis involves the intake of carbon dioxide and the release of oxygen.
Hope this helps:)
During photosynthesis, plants use carbon dioxide and water to produce oxygen and glucose. During respiration, organisms use oxygen and glucose to produce energy, carbon dioxide, and water.
Explanation:Photosynthesis and respiration are two processes that occur in living organisms. During photosynthesis, plants use carbon dioxide (CO2) and water (H2O) to produce glucose (C6H12O6) and oxygen (O2). This equation can be represented as: 602 + C6H12O6 → 6CO2 + 6H2O
On the other hand, respiration is the process where organisms use oxygen and glucose to produce energy, carbon dioxide, and water. This equation can be represented as: Oxygen + Glucose → Energy + Carbon Dioxide + Water.
So, photosynthesis uses carbon dioxide and water and produces oxygen and glucose, while respiration uses oxygen and glucose and produces carbon dioxide and water.
Which one of the following bonds would you expect to be the most polar? a) B–H b) N–H c) P–H d) Al–H e) C–H
Answer:
Option b) N–H is the bond that you can expect to be the most polar.Explanation:
A polar covalent bond is the result of uneven distribution of the electrons involved in the covalent bond.
The polar character of a covalent bond is determined by the difference in the electronegativities of the atoms bonded.
The higher the electronegativity difference of the two bonded atoms the more polar the covalent bond is.
Then, you need to find and compare the electronegativies of the atoms bonded.
This is the list of electronetativities of every atom in the question:
H: 2.20B: 2.04N: 3.04P: 2.19Al: 1.61C: 2.55Using that list you can do these calculations:
Bond Electronegativity difference
a) B–H 2.20 - 2.04 = 0.16
b) N–H 3.04 - 2.20 = 0.84
c) P–H 2.20 - 2.19 = 0.01
d) Al–H 2.20 - 1.61 = 0.59
e) C–H 2.55 - 2.20 = 0.35
Thus, the greatest electronegativity difference is that of N - H, 0.84, which indicates that this is the most polar bond from the choices.
The most polar bond among the given options is N-H.
Explanation:The most polar bond among the given options is N–H.
The polarity of a bond is determined by the difference in electronegativity between the two atoms involved. Nitrogen (N) has a higher electronegativity compared to the other elements in the choices, and hydrogen (H) has a lower electronegativity. The greater the electronegativity difference, the more polar the bond.
For example, in a N–H bond, nitrogen attracts the shared electrons more strongly than hydrogen, resulting in a partial negative charge on nitrogen and a partial positive charge on hydrogen.
Learn more about polarity of bonds here:https://brainly.com/question/32841252
#SPJ6
Is the equation below balanced? Explain your answer. Zn(OH)2 + NaOH → Na2ZnO2 + H2O
Answer:
No, it is not balanced.
The balanced equation is: Zn(OH)₂ + 2NaOH → Na₂ZnO₂ + 2H₂O.
Explanation:
To balance the equation, you should apply the law of conservation of mass for the equations. The law of conservation of mass states that the no. of each atom is equal in both sides (reactants and products). For the given equation: Zn(OH)₂ + NaOH → Na₂ZnO₂ + H₂O.The no. of Na atoms in reactants side is 1 but in products side is 2.
The no. of H atoms in reactants side is 3 but in product side is 2.
So, the equation is not balanced.
The balanced equation is:
Zn(OH)₂ + 2NaOH → Na₂ZnO₂ + 2H₂O.
The no. of all atoms is the same in both of reactants and products side.Zn (1), O (4), H (4), and Na (2).
6. What is the oxidation number for the atom indicated in the following compounds.
a. S in BaSO4
b. P in PO4-3
c. Cl in HCIO2
Answer:
a. +6;
b. +5;
c. +3.
Explanation:
Start with elements with well-known oxidation states.
The oxidation state on oxygen O in compounds is mostly -2. Common exceptions include:
-1 in peroxides andpositive when oxygen bonds to fluorine.The oxidation state on group 1 metals (Li, Na, K, etc.) in compounds is mostly +1.
The oxidation state on group 2 metals (Be, Mg, Ca, etc.) in compounds is mostly +2.
Barium Ba is a group 2 metal. The oxidation state on Ba in the compound BaSO₄ is expected to be +2.
The oxidation state on hydrogen H in compounds is mostly +1. The oxidation state on H might be negative when it is bonded to metals.
The oxidation state on halogens (F, Cl, Br, etc.) is mostly -1. The oxidation state may vary when the halogen is bonded to oxygen or another halogen element.
Compounds are neutral. The oxidation state on all atoms in a compound shall add up to 0. Both BaSO₄ and HClO₂ are neutral.
BaSO₄Oxidation states:
Ba: +2;The oxidation state on sulfur S is to be determined;O: -2.Let the oxidation state on S be x.
2 + x + 4 × (-2) = 0;
x = 6.
Hence, the oxidation state on S in BaSO₄ is +6.
HClO₂Oxidation states:
H: +1;Cl here is bonded to oxygen. The oxidation state on chlorine Cl is to be determined;O: -2.Let the oxidation state on Cl be x.
Refer to the equation in BaSO₄ as an example. Try setting up the equation on your own.
x = 3.
Hence, the oxidation state on Cl is +3.
PO₄³⁻Ions carry charge. Oxidation states on atoms in an ion shall add up to the charge of the ion. The superscript of an ion shows its charge. The superscript 3- in the phosphate ion shows that the ion carries a charge of -3.
Oxidation states:
The oxidation state on P is to be found;O: -2.Let the oxidation state on P be x.
x + 4 × (-2) = -3;
x = 5.
Hence, the oxidation state on P is +5.
A balanced chemical equation shows the proportions of reactants and products necessary for a. the reaction to occur. c. energy use to be minimized. b. mass to be conserved. d. electrolysis to occur.
Answer:
a
Explanation:
Answer: Option (b) is the correct answer.
Explanation:
A balanced equation is defined as the equation where number of atoms of the reactant equal to the number of atoms of the product.
This also means that mass of the reactants is equal to the mass of products in a chemical equation.
For example, [tex]2Na + Cl_{2} \rightarrow 2NaCl[/tex]
Total mass of reactants = [tex][(2 \times 23) + (35 \times 2)] g/mol[/tex]
= 116 g/mol
Total mass of products = [tex]2 \times (23 + 35)[/tex] g/mol
= 116 g/mol
Hence, mass if conserved in a chemical reaction.
thus, we can conclude that a balanced chemical equation shows the proportions of reactants and products necessary for mass to be conserved.
Which are true comparisons of alpha and beta decay? Check all that apply.
A. Beta radiation damages a cell more than alpha radiation.
B. Beta radiation can damage a higher number of cells than alpha
radiation.
C. Beta particles can travel farther than alpha particles.
D. Beta particles are bigger than alpha particles.
Answer:
See below
Explanation:
A. False. Alpha radiation is more damaging to the cell than beta radiation.
B. True. Beta radiation is less damaging, but it has greater penetrating power, so it can damage more cells.
C. True. Beta particles have greater penetrating power than alpha particles.
D. False. Beta particles are electrons. Alpha particles are much larger helium nuclei.
Answer:
False
True
True
False
Explanation:
Option A is False. Alpha radiation transfers more energy to the absorbing material than a beta particle. So alpha rays damage more cells than beta radiation.
Option B is True. Beta cells are more penetrating than alpha cells, hence they wreck more havoc.
Option C is True. Having smaller mass beta particles can travel farther, they penetrate through the skin and are absorbed by the body tissues. Alpha particles are heaver and don’t go past the skin cells.
Option D is False. Beta particles are fast moving electrons with a negative charge where alpha particles are made up of two neutrons and two protons and so it is a +2 charged helium nucleus.
The ksp for cobalt (ii) phosphate (mm = 366.73 g/mol) is 2.05 * 10-35. what is the solubility of this salt (ng/l) in a 0.029 m sodium phosphate solution?
Answer:
[tex]\boxed{\text{3.54 ng/L}}[/tex]
Explanation:
At equilibrium we have
[tex]\begin{array}{cccccc} &\text{Co}_{3}\text{(PO}_{4})_{2} & \rightleftharpoons &3\text{Co}^{2+}&+ & 2\text{PO}_{4}^{3-}\\\text{I:}& & & 0 & & 0.029\\\text{C:}& & & +3s & & 0.029 + 2s \\\text{E:}& & & 3s & &0.029+2s\\\end{array}[/tex]
[tex]K_{sp} = [\text{Co}^{2+}]^{3}[\text{PO}_{4}^{3-}]^{2}= 2.05\times10^{-35}\\\\(3s)^{3}\times (0.029 + 2s)^{2} = 2.05\times10^{-35}[/tex]
Assume that s ≪ 0.029. Then
[tex]27s^{3}\times (0.029)^{2} = 2.05\times10^{-35}\\\\2.27 \times 10^{-2}s^{3} = 2.05\times10^{-35}\\\\s^{3}= 9.028\times10^{-34}\\\\s = \sqrt[3]{9.028\times10^{-34}}= 9.665\times10^{-12}[/tex]
[tex]s = \dfrac{9.665\times10^{-12}\text{ mol}}{\text{1 L}}\times \dfrac{ \text{366.73 g} }{\text{1 mol}}\\\\ = 3.54\times 10^{-9} \text{g/L} = \text{ 3.54 ng/L}[/tex]
The solubility of cobalt(II) phosphate is [tex]\boxed{\textbf {3.54 ng/L}}[/tex].
The pH of a solution is 2.0. Which statement is correct?
Answer:
The relationship of pH and concentration of H+ ion is pH = -lg[H+]. So the concentration of H+ is 10^(-2). And [OH-][H+]=10^(-14). pOH + pH = 14. So the right answer is A.
Answer:
i don't see the statement but value is 14
Explanation:
How many grams of potassium chloride are produced from 5 mol of potassium and excess chlorine?
Answer: 372.5 g KCl
Explanation: balanced equation
2K + Cl2-------> 2KCl
2 mol K produce 2 mol Kcl
5 mol K produce = 5x2/2=5 mol Kcl
Then moles = mass/molar mass
Mass = moles x molar mass= 74.5x5=372.5 g Kcl
A 55.0g sample of iron (III) filings is reacted with 23.8g of powdered sulfur (S8). How much iron (III) sulfide in moles would be produced in this reaction?
Equation:
Convert to moles
of iron:
Convert to moles
of sulfur:
Calculate the
limiting reagent:
Solve the problem:
Answer:
0.744 mol
Explanation:
the balanced equation for the reaction is
8Fe + S₈ ---> 8FeS
molar ratio of Fe to S₈ is 8:1
number of moles of Fe - 55.0 g / 56 g/mol = 0.98 mol
number of moles of S - 23.8 g / 256 g/mol = 0.093 mol
if we are to assume that S₈ is the limiting reactant
if 1 mol of S₈ reacts with 8 mol of Fe
then 0.093 mol of S₈ reacts with - 8 x 0.093 mol = 0.744 mol of Fe
however there's 0.98 mol of Fe present but only 0.744 mol of Fe is needed
therefore Fe is in excess and S₈ is the limiting reagent
molar ratio of S₈ to FeS is 1:8
then 0.093 mol of S₈ reacts with - 8 x 0.093 = 0.744 mol of FeS
number of FeS moles produced is 0.744 mol
Answer:
0.74 moles iron (III) sulfide
Explanation:
From the balanced equation of reaction:
[tex]Fe + S --> FeS[/tex]
1 mole of Fe reacts with 1 mole of S to give 1 mole of FeS.
moles = [tex]\frac{mass}{molar mass}[/tex]
mole of Fe = 55/55.8 = 0.99 moles
mole of S = 23.8/32.07 = 0.74 moles
Sulfur is limited in quantity and will therefore determine the rate of reaction.
1 mole of sulfur gives 1 mole of FeS
0.74 moles of sulfur will therefore give 0.74 moles of FeS.
0.74 moles iron (III) sulfide will be produced.
Which chemical equation correctly represents the reaction that takes place when nitrogen gas and hydrogen gas are formed as ammonia decomposes? N(g) + H3(g) ? NH3(g) 2N(g) + 3H2(g) ? 2NH3(g) 2NH3(g) ? N2(g) + 2H3(g) 2NH3(g) ? N2(g) + 3H2(g)
Answer:
D. 2NH₃(g) ⟶ N₂(g) + 3H₂(g)
Explanation:
A chemical equation must show the correct formulas for reactants and products.
A and B are wrong, because they have NH₃ as a product.
C is wrong. H₃ does not exist.
A is correct. The equation for the decomposition of ammonia is
2NH₃(g) ⟶ N₂(g) + 3H₂(g)
2NH₃(g) ⟶ N₂(g) + 3H₂(g) correctly represents the reaction that takes place when nitrogen gas and hydrogen gas are formed as ammonia decomposes. Hence, option D is correct.
What is a decomposition reaction?A decomposition reaction occurs when one reactant breaks down into two or more products.
This can be represented by the general equation: AB → A + B.
Thus, 2NH₃(g) ⟶ N₂(g) + 3H₂(g) correctly represents the reaction that takes place when nitrogen gas and hydrogen gas are formed as ammonia decomposes.
Hence, option D is correct.
Learn more about the decomposition reaction here:
https://brainly.com/question/21491586
#SPJ2
Match the following. 1. A mixture that does not have a uniform composition and the individual components remain distinct. polar 2. A mixture that does have a uniform composition throughout and is always in the same state. insoluble 3. A substance that will not dissolve in a solvent. homogeneous 4. A homogeneous mixture saturated 5. A molecule with no internal charge variation due to bonding. solution 6. a molecule with an uneven distribution of charge due to unequal sharing of electrons during bonding nonpolar 7. A solution which has dissolved as much solute as it can at a particular temperature. unsaturated 8. A solution which is still able to dissolve solute. heterogeneous
Answer:
Explanation:
1. A mixture that does not have a uniform composition and the individual components remain distinct.
HETEROGENEOUS
An heterogeous mixture is a mixture with components in different phases.
2. A mixture that does have a uniform composition throughout and is always in the same state.
HOMOGENOUS
Homogenous mixtures have just one phase that is uniform all through.
3. A substance that will not dissolve in a solvent.
INSOLUBLE
When a solute cannot dissolve in a solvent to form a solution, we say it is insoluble.
4. A homogeneous mixture
SOLUTION
Solutions are made up of homogenous mixtures solute and solvent.
5. A molecule with no internal charge variation due to bonding.
NON-POLAR
Even distribution of charges especially between species whose electronegativity difference is 0 would lead to the formation of a non-polar compound. Here,
6. A molecule with an uneven distribution of charge due to unequal sharing of electrons during bonding
POLAR
Unequal sharing of electrons forms a polar compound. The more electronegative attracts the shared electron to itself and there is separation of charges. This leads to polarity.
7. A solution which has dissolved as much solute as it can at a particular temperature.
SATURATED
A saturated solution cannot dissolve more solute beacuse it contains enough solute as it can dissolve at a temperature.
8. A solution which is still able to dissolve solute.
UNSATURATED
An unsaturated solution is able to dissolve more solute.
A mixture that does not have a uniform composition and the individual components remain distinct is called a heterogeneous mixture. A mixture that does have a uniform composition throughout and is always in the same state is called a homogeneous mixture or solution. A substance that will not dissolve in a solvent is referred to as insoluble.
Explanation:1. A heterogeneous mixture is a mixture that does not have a uniform composition and the individual components remain distinct. For example, a mixture of oil and vinegar is heterogeneous because you can see separate layers of oil and vinegar.
2. A homogeneous mixture, also known as a solution, is a mixture that does have a uniform composition throughout and is always in the same state. An example is a sugar dissolved in water. The sugar particles are evenly distributed throughout the water.
3. Insoluble refers to a substance that will not dissolve in a solvent. For instance, sand is insoluble in water, meaning it does not dissolve in water.
4. A solution is considered saturated when it has dissolved as much solute as it can at a particular temperature. Any additional solute added will not dissolve and will form a precipitate.
5. A nonpolar molecule is a molecule with no internal charge variation due to bonding. Examples include methane (CH4) and carbon dioxide (CO2).
6. A polar molecule is a molecule with an uneven distribution of charge due to unequal sharing of electrons during bonding. Water (H2O) is a polar molecule because the oxygen atom attracts electrons more strongly than the hydrogen atoms.
7. An unsaturated solution is a solution that is still able to dissolve solute. It has not yet reached its maximum capacity to dissolve solute.
8. A heterogeneous mixture is a mixture that does not have a uniform composition and the individual components remain distinct. An example is a mixture of oil and water. The oil and water do not mix and separate into distinct layers.
Learn more about Mixture Composition here:https://brainly.com/question/33300430
#SPJ6
The reactant side of a balanced chemical equation is shown below.
PCl5 + 4H2O →
How many hydrogen atoms should there be on the product side in the equation?
8
6
4
2
Answer: There are 8 hydrogen atoms on the product side in the reaction.
Explanation:
Every balanced chemical equation follows law of conservation of mass.
This law states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This law also states that total number of individual atoms on the reactant side must be equal to the total number of individual atoms on the product side.
For the given reaction, the balance chemical equation follows:
[tex]PCl_5+4H_2O\rightarrow H_3PO_4+5HCl[/tex]
On reactant side:
Number of Phosphorus atoms = 1
Number of Chlorine atoms = 5
Number of Hydrogen atoms = 8
Number of Oxygen atoms = 4
On Product side:
Number of Phosphorus atoms = 1
Number of Chlorine atoms = 5
Number of Hydrogen atoms = 8
Number of Oxygen atoms = 4
Hence, there are 8 hydrogen atoms on the product side in the reaction.
Answer: The correct option is 8 hydrogen atoms
Explanation:
I did the test and got it right
Using the information provided in the chart determine which of these would have the highest pOH level? A) urine B) toothpaste C) rainwater D) household ammoni
Answer:
The answer is urine (A)
Explanation:
The strong acid and strong base has high rate constant of dissociation. The rate constant for weak acid and base for the dissociation is low, they do not easily dissociate in water. Therefore, option A is the correct option.
What are acid and base?Acid is a solution which releases H⁺ hydrogen ion when dissolved in water. Base releases hydroxide ion OH⁻ ion when dissolved in water.
pH is a measurement of amount of hydronium ion H₃O⁺ in a given sample. Strength of acidic nature is directly proportional to the concentration of hydronium ion.
On subtracting pH from 14, we get pOH which measures the concentration of hydroxide ion in a given solution. Temperature affect the pH. At room temperature pH scale is between 0 to 14. 7 is the pH of neutral solution. Urine among all the given option would have the highest pOH level.
Therefore, option A is the correct option.
To know more about acid and bases, here:
https://brainly.com/question/27228111
#SPJ5
Which of the following statements supports the one gene-one enzyme hypothesis?A) A mutation in a single gene can result in a defective protein.B) Alkaptonuria results when individuals lack multiple enzymes involved in the catalysis of homogentisic acid.C) Sickle-cell anemia results in normal hemoglobin.D) Multiple antibody genes can code for different related proteins, depending on the splicing that takes place post-transcriptionally.
Answer: its A
Explanation:
Answer: Option A
Explanation:
One gene one enzyme hypothesis was proposed by George Wells Beadle in which he stated that one gene directly affects the production of the single enzyme.
This consequently affects the individual step in the whole metabolic pathway.
So, a mutation in the single gene will lead to the production of the faulty protein. The step of the metabolism will be affected in which the faulty enzyme will participate.
The volume of a gas at 27.0c and 0.200atm is 80.0 ml .what volume will the same gas sample occupy at STP?
Answer:
V₂ = 14.56 mL.
Explanation:
We can use the general law of ideal gas: PV = nRT.where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n is constant, and have different values of P, V and T:(P₁*V₁) / T₁ = (P₂ * V₂) / T₂
Knowing that:
V₁ = 80.0 mL, P₁ = 0.20 atm, T₁ = 27 °C + 273 = 300 K.
V₂ = ??? mL, P₂ (STP) = 1.0 atm, T₂ (STP) = 0 °C + 273 = 273 K.
Applying in the above equation
(P ₁* V₁) / T₁ = (P₂ * V₂) / T₂
(0.20 atm * 80.0 mL) / 300 K= (1.0 atm * V₂) / 273 K
V₂ = (0.20 atm * 80.0 mL * 273 K) / (300 K * 1.0 atm)
V₂ = 14.56 mL
So, the answer is: V₂ = 14.56 mL.
The gas volume at STP will be approximately 14.56 mL, derived using the combined gas law.
To solve this problem, we need to use the combined gas law, which is expressed as:
(P1 * V1) / T1 = (P2 * V2) / T2
Given:
Initial pressure, P1 = 0.200 atmInitial volume, V1 = 80.0 mLInitial temperature, T1 = 27.0°C = 273 + 27 = 300 KStandard temperature, T2 = 0°C = 273 KStandard pressure, P2 = 1 atm (STP)We need to find the final volume V2 at STP.
Rearranging the combined gas law to solve for V2:
V2 = (P1 * V1 * T2) / (P2 * T1)
Plugging in the values:
V2 = (0.200 atm * 80.0 mL * 273 K) / (1 atm * 300 K)
V2 = (4368 mL * K) / (300 K)
V2 ≈ 14.56 mL
Thus, the volume of the gas at STP is approximately 14.56 mL.
Which gas law could be used to solve just about any gas law problem?
Charles Law
Combined gas law
Ideal gas law
Gay-Lussacs Law
The ideal gas law has the power to unravel any enigmatic gas law enigma. The captivating gas law intertwines the connections between pressure, volume, temperature, and the multitude of moles of gas.
It is conveyed through the equation PV = nRT, where P symbolizes pressure, V signifies volume, n represents the count of moles, R stands for the ideal gas constant, and T embodies temperature.
This equation empowers us to compute any of the four variables (pressure, volume, temperature, and number of moles) if we possess knowledge of the other three. It bestows a comprehensive framework for comprehending and prophesying the conduct of gases in diverse circumstances.
The spellbinding gas law can be employed to crack riddles concerning modifications in volume, pressure, or temperature of a gas, as well as enigmas involving the calculation of the number of moles of gas. It is an elemental instrument in the exploration of gases and is extensively applicable in domains such as chemistry, physics, and engineering.
In summary, the ideal gas law is an adaptable equation that encompasses the bonds between pressure, volume, temperature, and the multitude of moles of gas, rendering it the paramount preference for unraveling a vast array of gas law enigmas.
To learn more about Ideal gas law:
https://brainly.com/question/6534096
#SPJ4
Hot tea is best when served in china tea cups.
True
False
Answer: true
Explanation:
Final answer:
The statement about serving hot tea in china tea cups is a cultural preference deeply rooted in Chinese history and the appreciation for fine porcelain from the Song dynasty, highlighting the importance of tradition in the enjoyment of tea.
Explanation:
The statement "Hot tea is best when served in china tea cups" touches upon aspects of culture, history, and personal preference rather than an objective truth. From the perspective of Chinese culture and history, true porcelain, invented in the Song dynasty, became a treasured export product.
The use of china tea cups is often associated with maintaining the temperature and enhancing the flavor of tea due to its thin walls and smooth surface. Additionally, Ceylon tea, known for its purity, along with the ritualistic and cultural aspects surrounding tea consumption, illustrate the historical significance and personal nature of tea drinking preferences. Therefore, the belief that hot tea is best served in china tea cups can be seen as a cultural preference rather than an absolute truth.
The modern-day quantum model of the atom is better than john dalton’s model because it
Answer:
The correct answer from the choices, which are included in the comments section, is:
D. Answers many questions about atomsExplanation:
Let's go through every choice from the list:
A. Easier to understand:
Incorrect.
Quantum model is not quite easy to understand. On the contrary, it is complex and quite hard to understand.
John Dalton's model was the first scientific model of the atom. It depicted the atom as indivisible, extremely tiny particles that constitute all matter.
Many facts were discovered later: the atom is not indivisible, there are some subatomic particles (electrons, protons and neutrons), the electrons are not in fixed positions (orbits) that were progresively explained by new models: J.J Thomson's model, Ernest Rutherford's model, Niels Bohr's model, and, the last and current one, the quantum model/
So. it is not easier to understand but more complete.
b. is a more recent theory
Incorrect.
As said, John Dalton's theory was the first scientific theory of the atom. It was developed in the first half of XIX century. It is, definetly, no a more recent theory. Modern-day quantum model is the most recent theory of the atom.
C. Can be represented in two dimensions
Incorrect.
Modern-day quantum model represents the electrons in a 3-D arrangement around the atom's nucleus, like a "cloud" without definite size. Two dimensional representation is not a characteristic that defines how the modern-day quantum model of the atom is better than other models.
D. Answers many questions about atoms
Correct. Indeed, every model of the atom after John Dalton's model explains more facts about the atoms: J.J Thomson's explained that the negative charges are particles inside the atom (electrons); Ernest Rutherford's model explained the existence of the nucleus with protons, while the electrons are surrounding the atom; Bohrs model explained that the electrons cannot decay into the atoms' nuclei, because they can only have certain enery levels; and the modern-day quantum model explains much more facts than any previous one, specially about the behaviour of the subatomic particles.
The main difference between aerobic respiration and anaerobic respiration is that A. anaerobic respiration requires oxygen, and aerobic respiration does not. B. anaerobic respiration generates ATP, and aerobic respiration does not. C. aerobic respiration requires oxygen, and anaerobic respiration does not. D. aerobic respiration generates ATP, and anaerobic respiration does not.
Answer:
the anwser is c
Explanation:
aerobic = air
anerobic= does not
Answer: Option (C) is the correct answer.
Explanation:
In a cell, when glucose breaks down by the use of oxygen and yields carbon dioxide, water along with release of energy is known as aerobic respiration.
For example, in the mitochondria aerobic respiration takes place.
On the other hand, in a cell when glucose breaks down without the use of oxygen then it yields alcohol, carbon dioxide along with release of energy is known as anaerobic respiration.
For example, yeasts respire anaerobically.
Therefore, we can conclude that the main difference between aerobic respiration and anaerobic respiration is that aerobic respiration requires oxygen, and anaerobic respiration does not.
if the solubility of a gas in water is 4.0g/l when pressure of the gas above the water is 3.0 atm what is the pressure of the gas above the water when the solubility of the gas is 1.0g/l
Answer:0.75 atm
Explanation: 0.75 atm is the pressure if the gas
What message would you have gotten if your computer become infected with the elk cloner virus
Elk Cloner: The program with a personality. It will get on all your disks. It will infiltrate your chips. Yes, it's Cloner! It will stick to you like glue. It will modify RAM to send in the Cloner.
Answer:
Elk cloner is a computer virus designed for Apple II. This virus spreads by infecting the disks of computer operating systems. Although this virus was not primarily programmed to cause damage, it could corrupt discs by overwriting reserved tracks regardless of content. If a computer is infected with this virus, at startup it will receive the following message:
Elk Cloner: The program with personality
You will get all your records
it will get into your chips
Yes, it is Cloner!
It will stick to you as glue
will also change your RAM
Pass it on, Elk Cloner!
What effect does super critical mass have on a nuclear reaction The reaction rate increases b The reaction produces less energy c The reaction involves increased fusion dThe reaction produces fewer neutrons
Answer:
It's a.
Explanation:
The reaction will proceed at an increasing rate.
The effect that does super critical mass have on a nuclear reaction, the reaction to have on a nuclear reaction, the reaction rate increases. The correct option is a.
What are nuclear reaction?Nuclear reaction is the reaction in which two nuclei are combined to form nuclides or one nuclei combine with a subatomic particle to form nuclides.
There are four types of nuclear reaction, fission, fusion, decay and transmutation.
Thus, the correct option is a, the reaction rate increases.
Learn more about nuclear reaction
https://brainly.com/question/12649087
#SPJ2
Do all titrations of a strong base with a strong acid have the same ph at the equivalence point?
Answer:
Yes, all titrations of a strong base with a strong acid have the same pH at the equivalence point.This pH is 7.
Explanation:
Strong acids and strong bases ionize completely in aqueous solutions. The ionization of strong acids produce hydronium ions, H₃O⁺, and the ionization of strong bases produce hydroxide ions, OH⁻.
Since the ionization of strong acids and bases progress until completion, there is not reverse reaction.
The definition of pH is pH = - log [H₃O⁺]. Acids have low pH (below 7, and greater than 0) and bases have high pH (above 7 and less than 14). Neutral solutions have pH = 7.
Acid-base titrations are a method to determine the concentration of an acid from the known concentration of a base, or the concentraion of a base from the known concentration of an acid.
The equivalence point of the titration is the point at which the the number of moles of hydronium ions and hydroxide ions are equal.
Then, at that point, the hydronium and hydroxide ions will be in the stoichiometric proportion to form a neutral solution, i.e. the pH of the solution wiill be 7.
Not all titrations of a strong base with a strong acid have the same pH at the equivalence point. The pH value will be different when a weak acid is titrated with a strong base due to the presence of the weak conjugate base in the reaction mixture.
Explanation:No, not all titrations of a strong base with a strong acid have the same pH at the equivalence point. For instance, the titration of 25.00 mL of 0.100 M HCl (a strong acid) with 0.100 M NaOH (a strong base) has a pH of 7.00 at the equivalence point. However, when a weak acid, such as acetic acid, is titrated with a strong base like NaOH, the pH at the equivalence point is 8.72, because the reaction mixture contains a weak conjugate base (acetate ion). The pH value at the equivalence point is dependent on whether the acid is strong or weak, and the presence of its conjugate base.
Learn more about Titration here:https://brainly.com/question/38139486
#SPJ12
What is the Kelvin temperature for 30°C? 130 K 30 K 273 K 293 K 303 K
Answer:
303 K
Explanation:
Converting 30 degrees Celsius to Kelvin temperature would come out to 303.15 ; it would not be any higher considering the decimal amount, so it would remain a positive 303 k. Hope this helps!
The Kelvin temperature for 30°C is 303k.
What is kelvin temperature?The SI base unit of the temperature of kelvin is K.To avoid mathematical Issues, like you might get dealing with negative numbers in other temperature scales we can use kelvin.The Kelvin temperature scale is defined as an absolute temperature scale with zero at absolute zero. Because it is an absolute scale, the Kelvin scale does not have degrees while measuring.One kelvin is defined as 1/273.16 (3.6609 x 10 -3 ) of the thermodynamic temperature used in the triple point of pure water (H 2 O).To learn more about Kelvin refer to:
https://brainly.com/question/7069374
#SPJ
The atomic number of an element is the total number of which particles in the nucleus?
Number of your protons in an atom
The number of Protons
The calculation of quantities in chemical equations is called
Answer:
The calculation of quantities is chemical equations is called stoichiometry.Explanation:
In a chemical reaction, as a result of the law of conservation of mass, reactants combine in fixed proportions to form the products.
Then, a chemical reaction is characterized by cuantitative relations between the atoms and compounds, which permit to make predictions on how much product can be obtained from certain amounts of reactants or how much of each reactant you would need to obtain a desired amount of product.
Stoichiometry is the use of the mole coefficients of a chemical equation to state ratios and set proportions, and, so, determine the number of moles or masses of reactants and products.
The calculation of quantities in chemical reactions is referred to as stoichiometry. It's about using a balanced chemical equation to figure out the quantitative relationships between the amounts of reactants and products. This process can be used in situations like quantitative chemical analysis.
Explanation:The calculation of quantities in chemical reactions is referred to as stoichiometry. This means using a balanced chemical equation to determine the quantitative relationships between the quantities of reactants and products. In this process, chemical species' coefficients, derived from the balanced chemical equation, are used to provide the relative numbers, allowing a quantitative assessment of the relationships between the substances consumed and produced by the reaction.
Applying stoichiometry becomes particularly essential when dealing with more realistic situations, such as when reactants are not present in stoichiometric amounts. For instance, it is used in quantitative chemical analysis, such as titrations, where the volume of a titrant solution required to fully react with a sample solution is measured. This volume is subsequently used to calculate the concentration of analyte in the sample.
In other words, stoichiometry is the cornerstone of chemical calculations, providing a method to predict yields, determine reaction efficiencies, and understand the fundamental aspects of the reaction's reaction's stoichiometry. Quite simply, stoichiometry is a powerful tool that provides important insights into the world of chemistry.
Learn more about Stoichiometry here:https://brainly.com/question/30218216
#SPJ6
Dr. Martin is an ophiologist, or a scientist who studies snakes. During one experiment, Dr. Martin fed a snake a whole mouse and compared the mass of the snake before it consumed the mouse to the snake's mass immediately after it was fed. According to the law of conservation of mass, how should the masses compare?
A. The mass of the snake after feeding should be the same as the original mass of the snake.
B. The mass of the snake after feeding should be equal to the mass of the mouse. C. The mass of the snake after feeding should be equal to the original mass of the snake minus the mass of the mouse.
D. The mass of the snake after feeding should be equal to the original mass of the snake plus the mass of the mouse.
D) mass of snake after feeding is equal to orginal mass of snake plus mouse since the mass is conserved
The law of conservation for the feeding of mice by snake by Dr. Martin states the mass of snake after feeding being equivalent to the mass of snake before plus the mass of mice. Hence, option D is correct.
What is the law of conservation?The law of conservation is given as the state in which the quantity can neither be created nor be destroyed.
The mass as the physical quantity in the chemical reaction founds to be conserved and not lost.
Thus, for the consumption of the mice by the snake according to the law of conservation stated by Dr. Martin, that the mass of snake after feeding mice will be the sum of the mass of snake before and the mass of mice. Thus, option D is correct.
Learn more about law of conservation, here:
https://brainly.com/question/20635180
#SPJ2
Which component of an atom would you not expect to find in the nucleus, but might be orbiting around it?
Answer: Electrons orbit the nucleus
Final answer:
In an atom, electrons are not found in the nucleus but in orbitals around it. These orbitals represent regions of high probability for the electron's location, and their shapes are determined by quantum mechanical wave functions.
Explanation:
The component of an atom that you would not expect to find in the nucleus but might be orbiting around it is the electron. Electrons are found in orbitals, which are regions in space surrounding the nucleus where they are likely to be located. Unlike the Bohr model's simple orbits, these areas are defined by mathematical equations from quantum mechanics, reflecting the dual wave-particle nature of electrons.
The structure of an atom includes a central nucleus, composed of protons and neutrons, which houses most of the atom's mass, with electrons distributed in the space surrounding the nucleus.
Pure water at 25°C
ionizes in the presence of acid to form an equilibrium in which
ionizes in the presence of acid to form an equilibrium in which
self-ionizes to form an equilibrium in which
self-ionizes to form an equilibrium system in which
Answer:
The correct answer is option C
Explanation:
Pure water at 25°C self-ionizes to form an equilibrium in which. Option C is correct. This is further explained below.
What is ionization?Generally, ionization is simply defined as any process that turns electrically neutral atoms or molecules into electrically charged ones.
In conclusion, At 25°C, pure water self-ionizes to establish an equilibrium in which
Read more about ionization
https://brainly.com/question/1602374
#SPJ6
Based on the chemical equation, use the drop down menu to choose the coefficients that will balance the chemical equation:
()O2—> ()O3
The answers would be 3 and 2 so the subscripts would both equal 6.
Answer: [tex]3O_2(g)\rightarrow 2O_3(g)[/tex]
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for the given reaction will be:
[tex]3O_2(g)\rightarrow 2O_3(g)[/tex]
where the (g) stands for the state of reactants and products which is gaseous.